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Abstract

We introduce two emptiness checks for Büchi automata
whose states represent sets that may include each other. The
first is equivalent to a traditional emptiness check but uses
inclusion tests to direct the on-the-fly construction of the au-
tomaton. The second is impressively faster but may return
false negatives. We illustrate and benchmark the improve-
ment on a symmetry-based reduction.

1. Introduction

The automata-theoretic approach to model-
checking [15] uses automata on infinite words to represent
a system as well as a property to check on it. Both automata
are synchronized, and the resulting product automaton is
examined by an emptiness check.

One drawback of this approach, known as the state ex-
plosion problem, lies in the large size of the automaton that
represents the behavior of the system, and hence in the re-
sulting size of the product automaton that has to be checked
for emptiness. Several techniques have been proposed to
reduce the size of both automata [14]. Some of these, like
unfolding graphs [4], observation graphs [9], or symmetry-
based reductions [8], share a common property: instead of
an automaton A, they build an automaton B whose state are
a symbolic representation of a set of states of A.

To take an example, the method of partial symme-
tries introduced by Haddad et al. [8] works by partition-
ing the set of successors s1, s2, . . . , sn of a state of the
original automaton, and using these partitions as the states
S1, S2, . . . , Sm of the reduced automaton B. However, be-
cause this might be done locally in each state, there is no
guarantee that a state s of the original automaton may be
represented by only one state S in B. This reduced automa-
ton can then be checked for emptiness (using any main-
stream emptiness check algorithm [11, 5, 7]) with the same
result as if the original automaton A had been checked (of

course the idea is that B is constructed directly from the
system and the property, in such a way that we avoid the
construction of A).

Unfortunately, these methods may well construct a “re-
duced” automaton that has more states that the original au-
tomaton! Indeed, if we call A the original automaton and
QA its set of states, this technique constructs an automa-
ton B where QB ⊆ 2QA and may have at worst 2|QA|

states. However in many practical cases we still have
|QB| < |QA|. For instance, Fig. 1 (ignore f and g for the
moment) shows two automata A and B, where B’s states
are sets of states of A. In the sequel, we will always use
lowercase letters like si to denote states of the original au-
tomaton, and uppercase letters like Si to denote states of the
reduced automaton (which are sets of states).

Furthermore, we can see that some states of A may ap-
pear in several states of B, and most importantly a state of
B may even be a subset of another state of B (e.g., S4 ⊆ S1

and S5 ⊆ S2). These inclusions motivate this paper.
When the state space is constructed on-the-fly during the

emptiness check, we will show that we can perform inclu-
sion tests to reduce the number of constructed states. For
instance, in Fig. 1 we can avoid constructing S4 and S5 be-
cause the information they represent is already included in
S1 and S2.

To rid ourselves of the construction technique used to
build B, we present our emptiness check algorithms in a
general framework of powerset automata.

Section 2 defines these automata formally, and proposes
a set of 5 properties tying A to B that are sufficient to en-
sure that both automata are equivalent with respect to their
emptiness. Section 3 presents our emptiness check algo-
rithm for such automata. Basically such an algorithm may
answer “empty” or “not empty”. Section 4 shows a small
modification that leads to a faster algorithm that can an-
swer “empty” or “I don’t know”. The definitions and al-
gorithms presented in the aforementioned sections are ab-
stract in the sense that they do not presume how B was
constructed from A: as an illustration, Section 5 adapts the
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Figure 1. An example of powerset automaton B for an automaton A, with FA = FB = {f, g}.

technique of Haddad et al. [8] to show how to construct a B
using (partial-)symmetries, and we prove that this construc-
tion satisfies the requirements of our algorithm. We also
benchmark this construction and show that although theo-
retically the algorithm may still explore 2|QA| states in the
worst case, in practice it improves the state space size by a
good factor.

2. Definitions

We start with the definition of the automata we manip-
ulate. We use structures that look like Generalized Büchi
Automata, but without atomic propositions and with accep-
tance conditions on transitions. In the automata-theoretic
approach, atomic propositions are only used for the com-
putation of the synchronized product and can be ignored
after this operation: the emptiness check algorithm does
not need them. Putting acceptance conditions on transi-
tions rather than on states is motivated by the fact that it
is more generic: state-based acceptance conditions can be
converted to transition-based acceptance conditions without
adding states or transitions, while the converse is not true.

Definition 1 (UTGBA). An Unlabelled Transition-based
Generalized Büchi Automaton (UTGBA) is a Büchi au-
tomaton without any atomic propositions, but with gener-
alized acceptance conditions on transitions. It is a tuple
A = 〈QA,Q0

A,FA,∆A〉 where

• QA is a finite set of elements called states,
• Q0

A ⊆ QA is a set of initial states,
• FA is a finite set of elements called acceptance condi-

tions,
• ∆A ⊆ QA × 2FA × QA is the transition relation,

where each transition carries a (possibly empty) set of
acceptance conditions of FA.

Definition 2 (Reachable states). Let A =
〈QA,Q0

A,FA,∆A〉 be a UTGBA. A state s is reach-
able if s ∈ Q0

A or if there exists a finite sequence
〈s0, F0, s1〉〈s1, F1, s2〉 · · · 〈sn−1, Fn−1, sn〉 of transitions
of ∆A, starting at an initial state s0 ∈ Q0

A, and ending on
state sn = s. We denote Reach(A) the set of all reachable
states of A.

Definition 3 (Run & accepting run). Let A be a UT-
GBA as above. A run of A is an infinite sequence
〈s0, F0, s1〉〈s1, F1, s2〉 · · · of transitions of ∆A, starting at
an initial state s0 ∈ Q0

A. A run is accepting if ∀f ∈
FA, ∀i > 0, ∃j > i, such that f ∈ Fj , i.e., if its tran-
sitions are labelled by each acceptance condition infinitely
often.

We write Run(A) and Acc(A) the set of all runs and the
set of all accepting runs of A.

For σ = σ(0)σ(1)σ(2) · · · ∈ Run(A), we denote σin(i),
σacc(i), and σout(i) the source, the acceptance condition,
and the destination of the ith transition of σ, in other words
σ(i) = 〈σin(i), σacc(i), σout(i)〉. Finally we denote σi the
suffix of σ starting after the ith transition, that is: σi =
σ(i)σ(i + 1)σ(i + 2) · · · .

As an example, consider B in Fig. 1. The acceptance
conditions are f, g, and thus B has only one accepting run:
Acc(B) = {S0S3S0S3S0S3 . . .}.

An emptiness check tells whether Acc is empty, and here
we are interested in an equivalence relation between au-
tomata that is solely based on the result of this operation.

Definition 4 (Emptiness-equivalence). Two UTGBAs, A
and B, are ∅-equivalent iff either both automata have an
accepting run, or none have.

A ∅≡B iff Acc(A) = ∅ ⇐⇒ Acc(B) = ∅

Now we propose a set of 5 properties that link two UT-
GBA A and B such that the states of B are sets of states
of A, and B is ∅-equivalent to A. The idea is that if we
know a method to construct a B that verifies these sufficient
conditions, we can run the emptiness check on B and avoid
constructing A. These properties hold in Fig. 1.

Definition 5 (℘-UTGBA). Let A = 〈QA,Q0
A,FA,∆A〉

and B = 〈QB,Q0
B,FB,∆B〉 be two UTGBAs. B is a ℘-

UTGBA (powerset UTGBA) over A if it satisfies the fol-
lowing properties:

QB ⊆ 2QA \ {∅} (1)
FB = FA (2)⋃

S∈Q0
B

S = Q0
A (3)



∀〈s, F, s′〉 ∈ ∆A, ∀S ∈ Reach(B),
s ∈ S =⇒ ∃S′ ∈ QB s.t. s′ ∈ S′, and 〈S, F, S′〉 ∈ ∆B

(4)

∀〈S, F, S′〉 ∈ ∆B, ∀s′ ∈ S′, ∃s ∈ S, s.t. 〈s, F, s′〉 ∈ ∆A
(5)

Proposition 1. Let A = 〈QA,Q0
A,FA,∆A〉 and B =

〈QB,Q0
B,FB,∆B〉 be two UTGBAs such that B is a ℘-

UTGBA over A. Then A ∅≡B.

Proof. We want to show that ∃σ ∈ Acc(A) ⇐⇒ ∃σ′ ∈
Acc(B).
(=⇒) Let σ = 〈s0, F0, s1〉〈s1, F1, s2〉 · · · ∈ Acc(A). Since
s0 ∈ Q0

A we can use (3) and find an S0 ∈ Q0
B such that

s0 ∈ S0. Since S0 is reachable in B and contains s0,
we can use (4) to find an S1 ∈ QB such that s1 ∈ S1

and 〈S0, F0, S1〉 ∈ ∆B. Likewise, because S1 is reach-
able in B and contains s1 by construction, we can use
(4) again to find an S2 ∈ QB such that s2 ∈ S1 and
〈S1, F1, S2〉 ∈ ∆B. Iterating (4) we can construct a se-
quence σ′ = 〈S0, F0, S1〉〈S1, F1, S2〉 · · · ∈ Run(B) such
that si ∈ Si for all i. Since FB = FA (2) and σ′ visits each
acceptance condition as often as σ, σ′ ∈ Acc(B).
(⇐=) Let σ′ = 〈S0, F0, S1〉〈S1, F1, S2〉 · · · ∈ Acc(B).
Let’s build a tree whose nodes (except the root) are states
of A. Let’s call ⊥ the root of the tree at depth 0. The nodes
of depth n > 0 are exactly the states in Sn−1. The father s
of any node s′ at depth n > 1 is chosen among the nodes of
depth n − 1 such that 〈s, Fn−1, s

′〉 ∈ ∆A; (5) guarantees
that such a node s exists. The father of any node at depth
1 is ⊥. All edges of this tree, except those leaving the root
node, correspond to transitions of ∆A.
The set of nodes at depth n > 0 is a subset of QA,
which is finite, so although this tree is infinite it has a
finite degree. By König’s lemma it contains an infinite
branch. The sequence constructed by following the edges
of this infinite branch and ignoring the first edge (leaving
⊥) 〈s0, F0, s1〉〈s1, F1, s2〉 · · · is an accepting run of A. In-
deed it is a run of A (s0 ∈ Q0

A) that visits each acceptance
condition as often as σ′.

We now develop two propositions that introduce the
emptiness check algorithm. (For brevity, we omit the proofs
of these propositions and the following, and refer the inter-
ested reader to our technical report [1].) Both propositions
use the following notation.

Definition 6 (Substitution of initial states). Let A =
〈Q,Q0,F ,∆〉 be a UTGBA, and T ⊆ Q a set of states of
A. We denote A[T ] the automaton sharing the same struc-
ture asA but using the set T as initial states. In other words
A[T ] = 〈Q, T,F ,∆〉.

The next proposition can be observed on Fig. 1: since no
run that traverses state S1 is accepting, then neither are the
runs that traverse state S4 because S4 ⊆ S1.

Proposition 2. Let B = 〈QB,Q0
B,F ,∆B〉 be a ℘-UTGBA

over A = 〈QA,Q0
A,F ,∆A, 〉 and consider two states T

and D of QB such that D ⊆ T . We have

Acc(B[{T}]) = ∅ =⇒ Acc(B[{D}]) = ∅

The following proposition allows us to split a transition
〈R,F, T 〉 into a set of transitions 〈R,F, T1〉, . . . , 〈R,F, Tn〉
with T1 ∪ · · · ∪ Tn = T , while preserving ∅-equivalence.
Doing so might require adding new states and transitions
to the automaton. Basically we want to substitute T by an
automaton C that has T1, . . . , Tn as initial states, and that is
∅-equivalent to A[T ]. Fig. 2 illustrates this proposition. It
will prove useful to apply such a decomposition if some Ti

states have already been visited.

Proposition 3 (Decomposition of a transition in a
℘-UTGBA). Let B = 〈QB,Q0

B,F , ∆B〉 be a ℘-UTGBA
over A = 〈QA,Q0

A,F ,∆A〉. Consider a transition
〈R,F, T 〉 ∈ ∆B and let C = 〈QC ,Q0

C ,F ,∆C〉 be a
℘-UTGBA over A[T ]. The automaton B′ = 〈QB ∪
QC ,Q0

B′ ,F ,∆B′〉 where

Q0
B′ =

{ (
Q0
B \ {T}

)
∪Q0

C if T ∈ Q0
B

Q0
B otherwise

∆B′ =(∆B \ {〈R,F, T 〉}) ∪ {〈R,F, T ′〉 | T ′ ∈ Q0
C} ∪∆C

is a ℘-UTGBA over A.

3. Emptiness Check of ℘-UTGBA

A generalized Büchi automaton accepts a run (i.e., is
nonempty) if it contains a reachable cycle in which all ac-
ceptance conditions appear. The emptiness check algo-
rithms that have been devised to check this condition can
be distinguished into two classes [5]:

• Nested Depth-First Searches (NDFS) algorithms will
use a first DFS to find a state from which several DFS
will be nested to find cycles around this state that visit
each acceptance condition [12].

• Strongly-Connected-Component-based (SCC) algo-
rithms will decompose the automaton into SCC and
look for a reachable SCC in which all acceptance con-
ditions appear.

NDFS algorithms have long been favored to SCC-based al-
gorithms because of their better memory footprint (a couple
of extra bits per state versus an integer). However it has
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Figure 2. Example of decomposition of a transition 〈R,F, T 〉 using proposition 3.

been pointed out that these extra data are negligible com-
pared to what it takes to represent a state of a system (of-
ten hundreds of bytes) [11]. Furthermore, SCC-based al-
gorithms have several advantages over NDFS: they need to
explore less states to detect non-empty automata [7, 5], and
they will deal with generalized acceptance conditions for
free [5]. The algorithm we present here is derived from that
of Couvreur [3], which is SCC-based.

3.1. Original algorithm

The idea is to enumerate all the maximal strongly con-
nected components (MSCC) of an automaton. Any graph
contains at least one MSCC without an outgoing arc, so to
list all MSCCs, we should find such a terminal MSCC, re-
move it from the graph, and list all MSCCs of the result-
ing graph. To do so, the algorithm performs a depth-first
search (DFS) of the automaton. While doing so, it main-
tains a stack of SCCs traversed by the DFS stack. As new
transitions are visited, the SCC stack may be augmented or
compacted. When an SCC is popped off the stack, meaning
it is terminal, we check whether it is accepting: if that is the
case, the algorithm terminates, otherwise all the states of
this component are marked as “removed” so that whenever
the DFS hits one of them again it can ignore it.

3.2. Adaptation to ℘-UTGBA

The new algorithm differs from the original in two
points. First, the check for removed states is generalized:
any removed state D can indeed be ignored by the DFS, but
so can any state T ⊆ D! This is thanks to proposition 2.

Fig. 3 illustrates the second difference. Consider au-
tomaton B1 where the DFS is examining the transition
〈R,F, T 〉 going to a new state T . Notice that there exists
a state D in the search stack (or more generally in any SCC
on the search stack) such that D ⊆ T . From the point of
view of the underlying automaton it means some states in
R can reach those in D and vice-versa, so they all belong to
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Figure 3. Inclusion checks in the search
stack. We rewrite B1 to B2.

the same SCC. For the emptiness check it would be benefi-
cial to split the transition 〈R,F, T 〉 as in B2: it explicits the
loop on the SCC and reuses previously seen states. Such a
decomposition is correct thanks to proposition 3, but it has
additional constraints we now formalize.

Let B = 〈QB,Q0
B,F ,∆B〉 be a ℘-UTGBA over some

A. Decomp(B, 〈S, F, T 〉, D) is an operation that should
perform a decomposition like in proposition 3. Besides B
and 〈S, F, T 〉, which have the same purpose as in the defi-
nition, the argument D is a state of B that is also a subset
of T . Decomp should build the required automaton C with
two additional constraints:

• we want D ∈ Q0
C (and the other states of Q0

C will by
definition complete T ),

• and ∆C should not add transitions to the states of B,
i.e., {〈S, F, S′〉 ∈ ∆C | S ∈ Reach(B)} ⊆ ∆B.

Decomp returns a pair B′,Q0
C : the new automaton, and

the initial states of C. (Since in practice we build B on the
fly, as needed by the emptiness check, what really matters
is that Decomp doesn’t add any transition to the part of B



already seen by the emptiness check, so it can continue from
the result of Decomp as if it had started from it.)

The complete algorithm presented in Fig. 4 requires
three operations on the structure of the states: tests for
equality and inclusion, and the decomposition. We denote
them respectively, =, ⊆ and Decomp. These operations are
the only steps of the algorithm that have to be tailored to the
encoding of the states.

3.3. Correctness of this algorithm

We only sketch enough of the actual proof [1] to be able
to understand the algorithm. At any point of the execution
we denote the contents of the todo and SCC stacks by:

todo = 〈state0, succ0〉〈state1, succ1〉 · · · 〈statem, succm〉
SCC = 〈root0, la0, acc0, rem0〉 · · · 〈rootn, lan, accn, remn〉

todo is a DFS stack of pairs 〈state, succ〉 where succ
is the set of outgoing transitions of state that haven’t been
considered yet. We call state0 . . . statesm the search path.

Each tuple in SCC represents a strongly connected com-
ponent traversed by the search path. rooti is the number of
the first state of the component visited by the algorithm, and
together with H (a map that numbers each visited state) it
allows to define the set Si of states belonging to the ith SCC
as follows:

Si = {s ∈ QB | rooti 6 H[s] < rooti+1} for 0 6 i < n

Sn = {s ∈ QB | rootn 6 H[s]}

acci is the set of acceptance conditions traversed by tran-
sitions between states of Si. lai are the acceptance condi-
tions on the transition between the (i−1)th and the ith com-
ponents. The resulting chain of SCC is depicted by Fig. 5.
Finally remi is a set of states to be removed when the com-
ponent is popped, as we will see later.

The states of the automaton B being checked are parti-
tioned into three sets:

• The active states are those which are keys of H and
have a nonzero value,

• the removed states are those which are keys of H and
have a value of 0,

• the unexplored states are those that are not keys of H .

Initially, all states are unexplored. The function “DFS-
push” is the only place a state can switch from unexplored to
active, and the function “DFSpop” is the only place where
it can switch from active to removed.

The following invariants are preserved at every line of
“main” [1]:

Proposition 4. m > n (in the above notation for todo
and SCC) and there exists a strictly increasing func-
tion f such that ∀i 6 n, rooti = H[statef(i)]. In

1 // Let B = 〈QB,Q0
B,F , ∆B〉 be the input automaton to check.

2 todo: stack of 〈state ∈ QB, succ ⊆ ∆B〉
3 SCC: stack of 〈root ∈ N, la ⊆ F , acc ⊆ F , rem ⊆ QB〉
4 H: map ofQB 7→ N
5 max← 0
6

7 main():
8 forall S0 ∈ Q0

B
9 DFSpush(∅, S0)

10 while ¬todo.empty()
11 if todo.top().succ = ∅
12 DFSpop()
13 else
14 pick one 〈R, F, T 〉 off todo.top().succ
15 if ∃D ∈ H .keys() such that (T ⊆ D) ∧H[D] = 0
16 continue
17 elsif T 6∈ H
18 if ∃D ∈ H .keys() such that D ⊆ T ∧H[D] > 0
19 B,Q0

C ← Decomp(B, 〈R, F, T 〉, D)
20 todo.top().succ← todo.top().succ ∪

{〈R, F, D〉} ∪ {(R, F, T ′) | T ′ ∈ Q0
C}

21 else
22 DFSpush(F , T )
23 elsif H[T ] > 0
24 if merge(F , H[T ]) = F
25 return ⊥
26 return >
27

28 DFSpush(F ⊆ F , S ∈ Q):
29 max←max + 1
30 H[S]←max
31 SCC.push(〈max, F, ∅, ∅〉)
32 todo.push(〈S, {〈R, F, T 〉 ∈ ∆B |R = S}〉)
33

34 DFSpop():
35 〈S, 〉 ← todo.pop()
36 SCC.top().rem.insert(S)
37 if H[S] = SCC.top().root
38 forall R ∈ SCC.top().rem
39 H[R]← 0
40 SCC.pop()
41

42 merge(F ⊆ F , n ∈ N):
43 r← ∅
44 while (n < SCC.top().root)
45 F ← (F ∪ SCC.top().acc ∪ SCC.top().la)
46 r← r ∪ SCC.top().rem
47 SCC.pop()
48 SCC.top().acc← SCC.top().acc ∪ F
49 SCC.top().rem← SCC.top().rem ∪ r
50 return SCC.top().acc

Figure 4. Emptiness check of a ℘-UTGBA.
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Figure 5. The meaning of la and acc in SCC.

other words, root0, root1, . . . , rootn is a subsequence of
H[state0],H[state1], . . . , H[statem]. (I.e., the roots of the
strongly connected components are on the search path of the
depth-first search, and in the same order.)

Proposition 5. For any i 6 n the subgraph induced by the
states of Si is a SCC. Furthermore there exists a cycle in
this SCC that visits all the acceptance conditions of acci.
Finally S0,S1, · · · ,Sn is a partition of the set of active
states.

Proposition 6. ∀i < n,∃s ∈ Si, 〈s, lai+1, statef(i+1)〉 ∈
∆B.

Proposition 7. For any i < n, remi holds all states of Si

not on the search path.

Proposition 8. For any removed state q, Acc(B[{q}]) = ∅.

The first two propositions guarantee that if the algorithm
finds an i such that acci = F , it corresponds to a reachable
(prop. 4) accepting component (prop. 5). The last propo-
sition justifies that no accepting run exists if the algorithm
has removed all the states.

3.4. Counterexamples

When verifying a model by the automata theoretic ap-
proach, the presence of an accepting run means that there
exists an execution of the modeled system that invalidates
the property being checked, i.e., a counterexample. There-
fore whenever the emptiness check exits with ⊥, meaning
the automaton has an accepting run, the user usually wants
to see such a run to debug the model (or the property).

To produce a genuine accepting run from the stack of
SCCs, these SCCs have to be searched again. The method
described by Couvreur et al. [5] could be used only with the
guarantee it would visit the same states that the emptiness
check visited.

In our case, doing so seems hard because the compu-
tation of the successors of a state using inclusion and de-
composition depend on the value of H .keys() which has
evolved. Besides, it would only give a counterexample us-
ing states of B while the user will prefer a counterexample
using states of A.

Our suggestion is that once the emptiness check of B has
failed, we search a counterexample in A, but using the data
structures computed by the emptiness check of B to narrow
the search. Computing the set of states of each SCC is easily

done by unwinding the todo and SCC search stacks: the set
of states that belong to the top-most SCC is Sn = remn ∪
{statef(rootn), statef(rootn)+1, . . . , statem}. The set of
states from the previous SCC are then Sn−1 = remn−1 ∪
{statef(rootn−1), statef(rootn−1)+1, . . . , statef(rootn)−1},
etc. Checking whether a state s ∈ QA belongs to the ith

SCC then amounts to testing whether ∃S ∈ Si such that
s ∈ S. It is thus possible to constraint the search in A to
remain inside these SCCs.

4. Approximative Emptiness Check

Consider Fig. 3 again. In the previous section we have
seen that at lines 18–21 the algorithm of Fig. 4 takes the
situation depicted by automaton B1, where the emptiness
check reaches a state T ⊇ D such that D belongs to the
search stack, and translates that into B2 to reuse existing
states and build SCCs as soon as possible. We proved that
this transformation preserves the result of the emptiness
check (B1 ∅-equivalent to B2).

We now turn to the situation B3 on Fig. 6, where the
emptiness check examines a transition 〈R,F, T 〉 such that
T ⊆ D and D is in the search stack. We can rewrite
this transition as 〈R,F, D〉, as depicted by B4, by replac-
ing lines 18–20 of Fig. 4 by:

18 if ∃D ∈ H .keys() such that T ⊆ D ∧H[D] > 0
19 // Note the order of T and D above.
20 todo.top().succ← todo.top().succ ∪ {〈R, F, D〉}

Assume that B3 is a ℘-UTGBA over some A. Note that
the above transformation breaks property (5) of definition 5,
because s3 and s4 have no predecessor in R; so B4 is not a
℘-UTGBA over A. However by adding some transitions to
A to please property (5) it is possible to derive an A′ such
that B4 is a ℘-UTGBA over A′.

Therefore if the emptiness check algorithm finds an ac-
cepting component in B4, there is an accepting run inA′ but
not necessarily in A. However since runs of A are also runs
of A′, if the algorithm does not find any accepting compo-
nent in B4, no accepting run exists in A and A′.

In other words, this modified algorithm returns “empty”
or “I don’t know”. As we will show in Section 5.4 this
transformation is a lot faster than the other (“correct”) one
presented in Section 3. Since model-checking is mainly in-
terested in ensuring that some automaton is empty, it makes
sense to try this semi-decision procedure first and fall back
to the “correct” procedure if the answer isn’t “empty”.
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Figure 6. Inclusion checks in the search
stack. We rewrite B3 to B4.

Note by the way that if the modified algorithms return
⊥ but no inclusion has been done in the stack (one could
count the number of times line 20 has been executed), then
the automaton actually is nonempty.

5. Application to Symmetries

In this section we show how to exploit symmetries to
construct a UTGBA B that is a ℘-UTGBA over some au-
tomaton A. We first define A, the synchronized product of
a transition system T , representing the behavior of a sys-
tem, and a Transition-based Generalized Büchi Automaton
P , representing the property to check.

Definition 7 (Labelled transition system). A labelled tran-
sition system is a tuple T = 〈QT ,Q0

T ,Σ,∆T 〉, where

• QT is a finite set of states,
• Q0

T ⊆ QT is the set of initial states,
• Σ = 2AP is an alphabet, where AP is the set of atomic

propositions,
• ∆T ⊆ QT × Σ × QT is a transition relation such

that ∀〈s1, p1, d1〉, 〈s2, p2, d2〉 ∈ ∆T , p1 = p2 ⇐⇒
(s1, d1) = (s2, d2).

The set of reachable states Reach(T ) is defined as usual.
The latter condition on ∆T means that each transition is
uniquely defined by its label (it is always possible to add
more atomic propositions to the system to satisfy this con-
straint).

Definition 8 (Transition-based Generalized Büchi Automa-
ton). A TGBA is a Büchi automaton with labels and gener-
alized acceptance conditions on transitions. It is defined as
a tuple P = 〈QP ,Q0

P ,Σ,F ,∆P〉, where

• QP is a finite set of states,
• Q0

P ⊆ QP is a set of initial states,
• Σ = 2AP is an alphabet,
• F is a finite set of acceptance conditions,
• ∆P ⊆ QP × Σ× 2F ×QP is the transition relation,

where each transition is labelled by a letter of Σ and a
set of acceptance conditions of F .

Definition 9 (Synchronized product). The synchronized
product between T = 〈QT ,Q0

T , Σ,∆T 〉 and P =
〈QP ,Q0

P ,Σ,F ,∆P〉 is the UTGBA A = T ⊗ P defined
by A = 〈QA,Q0

A,F ,∆A〉, where

• QA = QT ×QP is the set of states,
• Q0

A = Q0
T ×Q0

P is the set of initial states,
• ∆A ⊆ QA × 2F × QA is the transition relation be-

tween states such that
∃
〈
〈s, q〉, F, 〈s′, q′〉

〉
∈ ∆A iff ∃〈s, p, s′〉 ∈

∆T ,∃〈q, p′, F, q′〉 ∈ ∆P and p = p′.

5.1. Symmetry-based Construction of a ℘-
UTGBA

Now we construct B, a ℘-UTGBA over A = T ⊗P , us-
ing a technique introduced by Haddad et al. [8] but adapted
to transition-based automata. The idea is to exploit the sym-
metries of T in addition to those of the arcs of P , to gather
sets of nodes of A.

Since these symmetries sit on group theory, we recall
some elementary notions.

Definition 10. Let (G, ◦) be a group with a neutral element
id , and let E be a set.

• An action of G over E is a mapping G×E 7→ E such
that the image (g, e) denoted by g.e fulfills ∀e ∈ E :
id .e = e and ∀g, g′ ∈ G, (g ◦ g′).e = g.(g′.e).

• The isotropy subgroup GE′ of a subset E′ ⊆ E is de-
fined by GE′ = {g ∈ G | ∀e ∈ E′, g.e ∈ E′}.

• For a subgroup H of G (denoted H < G), the orbit
H.e of e ∈ E under H is H.e = {g.e | g ∈ H}.

• An action g of G can be straightforwardly extended to
the powerset of E. For any E′ ⊆ E, g.E′ = {g.e |
e ∈ E′}.

We can now characterize a symmetric transition system
with respect to a group.

Definition 11 (Symmetric transition system with respect to
a group). Let T = 〈QT ,Q0

T , Σ,∆T 〉 be a transition system
and G be a group acting on AP . T is said to be symmetric
with respect to G iff every transition of T has a “symmet-
ric” transition with respect to any element of G and the ac-
tion of G is congruent with respect to the transition relation:
∀g ∈ G, ∀〈s1, p1, d1〉 ∈ ∆T ,∃〈s2, p2, d2〉 ∈ ∆T such that




s1 ∈ Q0

T ⇐⇒ s2 ∈ Q0
T ,

p2 = g.p1 and
∀〈s′1, p′1, d′1〉 ∈ ∆T , s′1 = d1,∃〈s′2, p′2, d′2〉 ∈ ∆T , s.t.

s′2 = d2 and p′2 = g.p2

The action of the group on AP is extended to
Reach(T ) by denoting g.s the unique s2 such that
∀g ∈ G, ∀〈s1, p1, d1〉 ∈ ∆T , s1 = s,∃d2 ∈
QT , 〈s2, g.p1, d2〉 ∈ ∆T . (The uniqueness is due to the
constraint on ∆T in definition 7.)
Because G is group, a consequence of this definition is that
G.Q0

T = Q0
T .

These definitions allow us to give a possible construction
of a B.

Definition 12 (Symbolic Synchronized Product). Let T =
〈QT ,Q0

T ,Σ,∆T 〉 be a transition system symmetric w.r.t.
a group G, P = 〈QP ,Q0

P ,Σ,F ,∆P〉. The Symbolic
Synchronized Product of T and P is a UTGBA B =
〈QB,Q0

B,F ,∆B〉 where:

• Q0
B = {〈G, G.s, q〉 | s ∈ Q0

T , q ∈ Q0
P}

• QB = Q0
B ∪ V where V is the set of tuples of the form

〈H,O, q〉 such that H < G, O ⊆ Reach(T ), q ∈ QP ,
and H.O = O.

• ∆B is defined by construction as follows:〈
〈H,O, q〉, F, 〈H ′, O′, q′〉

〉
∈ ∆B iff

∃(s, s′, p, p′, F ) ∈ O × O′ × Σ × Σ × 2F such that
〈s, p, s′〉 ∈ ∆T , 〈q, p′, F, q′〉 ∈ ∆P , and p = p′. Then
O′ = (H ∩Gp′).s′ and H ′ ⊆ GO′ .

If A = T ⊗ P = 〈QA,Q0
A,F ,∆A〉, any state

〈H,O, q〉 ∈ QB of B represents the set {〈x, q′〉 ∈ QA |
x ∈ O ∧ q′ = q} of states of A. Hence we can write
〈x, q′〉 ∈ 〈H,O, q〉, and this allows us to prove that B is a
℘-UTGBA over A [1].

5.2. Asymmetric Transition Systems

The method, as described here, is heavily dependent on
the global symmetries of the transition system T (i.e., on the
group G). The bigger G is, the better the achieved reduction
is. On a transition system mostly asymmetric, G will be
very small, maybe the identity (i.e., no symmetries at all),
and consequently the subgroups H < G computed for each
node will allow even less reductions.

There is one way to handle an asymmetric transitions
system T with this method: it is to rewrite it as a composi-
tion TS ⊗C where TS is globally symmetric w.r.t. a large G
and C is a constraint automaton such that TS⊗C = T . Now,
instead of constructing the symbolic synchronized product
method of T ⊗ P , we can construct it for TS ⊗ PC where

PC = C ⊗ P . In other words, we shifted all asymmetries
from the system automaton to the property automaton. This
works because the method does not require a symmetric
property automaton.

Haddad et al. [8] show one way to construct TS and C
from T , while we are using a more optimal transition-based
construction which is yet unpublished.

5.3. Operations for the emptiness check

For this construction to make sense (memory-wise), the
set O of a state 〈H,O, q〉 must never be stored explicitly.
In our implementation this is achieved by using a modi-
fied version of the symbolic representation of Well Formed
Petri-Nets [2]. This data structure supports the following
operations.

Let T = 〈H1, O1, q1〉 and D = 〈H2, O2, q1〉 be two
states of B. Since the sets Oi are not stored explicitly we
cannot compare states with different Hi unless they are ex-
panded into the set of states of A they represent. To avoid
this explicit expansion we introduce the following operation
that we can use to unify the Hi.

The refinement of 〈H1, O1, q1〉 w.r.t. H2 is the finite set
Ref(〈H1, O1, q1〉,H2) = {〈H1∩H2, Oi, q1〉 | i ∈ N} such
that ∀i, (H1 ∩H2).Oi = Oi, and

⋃
i Oi = O1.

This allows us to check the inclusion of two states with:
〈H1, O1, q1〉 ⊆ 〈H2, O2, q1〉 iff Ref(〈H1, O1, q1〉,H2) ⊆
Ref(〈H2, O2, q1〉,H1).

Seeking visited states that include others (as on lines 15
and 18 of Fig. 4) can be sped up using a two level hash-
table. Let G be the group acting on AP such that ∀p ∈
AP , G.p = AP . For a state 〈H1, O1, q1〉, pick an s ∈ O1:
G.s is the coarsest equivalence class in which s can belong.
We use G.s as a key for our first-level hash table and q1 as a
key for the second level. Therefore when looking for states
that include 〈H1, O1, q1〉, we only need to look through the
states that share the same G.s and q1.

Decomp(B, 〈R,F, T 〉, D) is achieved using the refine-
ment above. T is refined with respect to D’s H2,
and D is refined with respect to H1, so we can com-
pute the difference: {Ti}i = Ref(〈H1, O1, q1〉,H2) \
Ref(〈H2, O2, q1〉,H1). (The algorithm is improved by
grouping some of these Tis.)

5.4. Performance

The symbolic synchronized product of definition 12 has
been implemented using the core of GreatSPN1 [2], and
the emptiness checks we presented are implemented in
Spot2 [6]. Connecting the two tools allowed us to compare
different techniques.

1http://www.di.unito.it/∼greatspn/
2http://spot.lip6.fr/
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Table 1. States (st.) and transitions (tr.) ex-
plored by each algorithm on different mod-
els, and seconds (T) taken. All averaged on n
properties.

Table 1 presents some measurements on two
parametrized models, WCS [2] and PO [10], that were
chosen for their symmetric or asymmetric properties: PO
is a completely symmetric model (objects of similar nature
behave identically), while WCS is an asymetric model
(objects behave differently). In both cases increasing the
parameter increases the number of states of the system.
Each of these models was synchronized against 50 ran-
domly generated property automata: the table has been split
to average the cases where the resulting product is empty
separately from the cases where it is not. The reason is
that the emptiness check has to check all states of an empty
product, but can abort early if it is nonempty. The column
n shows how many of the 50 cases were empty or not.

The abbreviations in the headers refer to how the prod-
uct was constructed and checked for emptiness. SP is the
synchronized product of definition 9 while SSP designates
the symbolic synchronized product of definition 12. SP’s
states are not sets, so it is checked with a traditional empti-
ness check (TEC) similar to the one of Fig. 4 but without
any inclusion check or decomposition. IEC designates the
emptiness check of Fig. 4. NSIEC is the same algorithm
without lines 18–21 (i.e., No Stack Inclusion). Finally, AEC
designates the approximative emptiness check of Section 4.

We observe that although SP is a lot faster than SSP, it
visits many more states and hence requires a lot more mem-
ory. The different versions of our emptiness check algo-
rithm can be compared in the four SSP columns: on the
WCS model, adding inclusion checks in the removed states
(NSIEC) reduces the size of the explored automaton (com-
pared to TEC), and adding inclusion checks in the search
stack (IEC) reduces the automaton further. Therefore, al-
though the decomposition operation is costly (time-wise)
it really helps reduce the memory footprint of the model-
checking. The last column shows that approximation is in-
deed faster and constructs less states than all other meth-
ods (and yielded no false negatives in these experiments).
On the PO model, the new emptiness check algorithms are
not significantly better because the symmetric nature of the
model offers little occasion for inclusion; still it can be seen
that they do not incur any overhead.

Finally Fig. 7 shows the memory consumption of our im-
plementation of the latest emptiness-check algorithm w.r.t.
the traditional approach.

6. Conclusion

In this paper, we presented two novel emptiness check
algorithms dealing with automata whose states are sets, and
exploiting inclusions between these sets.

The results we obtained on the symmetry-based con-
struction indicate that using inclusion and decomposition
reduces the number of states by a great factor to the detri-
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Figure 7. Average Memory used (in MB, on a
log scale) by our implementations of SP+TEC
(top) and SSP+AEC (bottom) to check empty
products of increasing WCS models.

ment of the time. Actually, the loss of time is due to the
way the states are encoded. Because this technique calls for
a representation of sets that allow fast inclusion checks and
decomposition, we expect that encoding sets with BDDs or
DDDs [13] would improve the situation.

However this application should not occlude the fact
that our algorithms have been developed in a more generic
framework: any technique that can construct an automaton
satisfying the five constraints of definition 5 could be used
with these emptiness checks.

We believe it might be even possible to relax these
constraints in order to support more methods, like the
previously mentioned unfolding graphs [4] or observation
graphs [9], that construct some “set automata” that do not
strictly satisfy our conditions.

Another area that could be explored is the use of inclu-
sion checks in NDFS emptiness checks. This doesn’t seem
easy because NDFS algorithms will visit a state several
times and require that the set of successors (re-)computed
for a state remain the same: this is not guaranteed if the
inclusion checks use a H .keys() that changes. This is the
same problem faced with counterexample generation in sec-
tion 3.4, so ideas for either area could benefit the other.
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