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Abstract.
Several libraries dedicated to mathematical morphology exist. But they lack genericity,

that is to say, the ability for operators to accept input of different natures —2D binary
images, graphs enclosing floating values, etc. We describe solutions which are integrated in
Olena, a library providing morphological operators. We demonstrate with some examples
that translating mathematical formulas and algorithms into source code is made easy and
safe with Olena. Moreover, experimental results show that no extra costs at run-time are
induced.
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1. Introduction

Most people involved in mathematical morphology are mathematicians or im-
age processing practitioners rather than computer scientists. Therefore, they
should find it easy to use program libraries in order to avoid dealing with im-
plementation problems and rather focus only on the methodological aspects
of their work. Köthe [7] notes that the lack of algorithmic comparison in the
literature is due to the difficulty of implementing computer vision algorithms.
Furthermore, Mallat [10] insists on the notion of reproducible computational
science; that is to say, an author of article should make source code available.
Along these lines, Pitas has recently published a book [12] fully illustrated with
source code.

Quite a lot of image processing libraries are available on the Internet; how-
ever, they are usually restricted to very few image structures and data types,
whereas mathematical morphology applies on a wide range of data: signals,
2D and 3D images, graphs, etc., containing integers with different precisions,
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floats, binaries, and so on. It is then very difficult for practitioners to find a
library with morphological operators that meet their requirements.

When an image processing algorithm —for instance an erosion— is trans-
lated into a single routine in a given computer language, one says that this rou-
tine is generic if it accepts different input types. D’Ornellas and van den Boom-
gaard [4, 3] mention that generic algorithms for morphological image operators
could be developed in C++ using the generic programming paradigm.

The aim of this paper is twofold: it presents a new library which provides
mathematical morphology operators, and it shows how one can easily translate
a mathematic formula into a C++ program in the context of our library.

This paper is organized as follows. In section 2, we present different paradigms
to program image processing operators; we discuss their advantages and draw-
backs with regard to their genericity level and their safety for the user. Then,
in section 3, we study the particular cases of several morphological operators.
Last, we conclude in section 4 and we give an evaluation of their performance.

2. Programming Paradigms, Types, and Safety

2.1. State of the Art

Most of image libraries are built on a C-style programming paradigm, and two
families can be identified.

The first family considers that a general type, usually float, is enough to
store data1. A 2D image structure is then defined as depicted below (left
column). A major drawback of this approach is that there are no semantical
distinctions between images with respect to their data type: procedures are
therefore unable to check constraints about input images. For instance, the
procedure foo (below, right column) expects that both input images have the
same data type but cannot check it. It is then very easy for a programmer to
call routines incorrectly.

struct image2d
{

unsigned nrows, ncols;
float∗∗ data;

};

void foo(image2d∗ ima1, image2d∗ ima2)
{

/∗ ... ∗/
}

Two other important drawbacks are that non-scalar data cannot be handled
by this image structure and that images consume memory unnecessarily.

The second family of library programming style, described by Dobie and
Lewis [2], addresses these problems by enforcing type control. To this end, the
2D image structure is modified, see the left column below: a new field, type,
allows the programmer to insert assertions to check at run-time the proper
nature of the input images (right column below).

1 The general type float is the most convenient one for general purpose library; In math-
ematical morphology, a general type would rather be short, even if PDE-based approaches
are now in fashion.
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typedef enum { INTU8, FLOAT } data t;

struct image2d
{

unsigned nrows, ncols;
data t type;
void∗∗ data;

};

void foo(image2d∗ ima1, image2d∗ ima2)
{

assert(ima1−>type == ima2−>type);
switch(ima1−>type) {

case INTU8:
/∗ call sub−routine for INTU8 ∗/
foo INTU8(ima1, ima2); break;

/∗ ... ∗/
}

}

Unfortunately, if safety is enforced for the library user, the library program-
mer has to write as many sub-routines as there are data types. For instance,
the sub-routine foo INTU8 contains the code dedicated to unsigned 8 bit inte-
gers. Since writing many similar routines per algorithm is long and tedious,
libraries usually handle only very few data types.

We have shown that genericity wrt data types can be handled either by the
use of a general type (float) or in a tedious fashion by code replication (the
different cases of switch). However, image structures are still not generic, since
we can only handle 2D images. Some C libraries use macros (keyword #define)
to emulate C++ templates. However, macros cannot handle all features that
we enjoy with templates (e.g. stronger typing, recursivity, meta-programming).

2.2. C++ and Genericity

An interesting feature of the C++ language [13] is genericity using the template

keyword. In the left column sample code below, image2d is a meta-structure
parameterized by an unknown data type T and the procedure foo is similarly
parameterized. Its input must share the same data type as made explicit by
the procedure signature: this constraint is now checked at compile-time.

template<class T>
struct image2d
{

unsigned nrows, ncols;
T∗∗ data;

};

template<class T>
void foo(image2d<T>& ima1,

image2d<T>& ima2)
{

//...
}

int main()
{

image2d<float> ima1, ima2;
//...
foo(ima1, ima2); // first call

image2d<int> ima3, ima4;
//...
foo(ima3, ima4); // second call

}

In the right column above, the client instantiates different kinds of image
(ima1 contains floats whereas ima3 contains integers) and calls foo twice. At
each call, the compiler automatically deduces the type T from the input types
and creates a specialized version of the meta-procedure foo. In our example,
T is set to float at the first call and a version of foo dedicated to process 2D
floats images is generated. That means that the compiler creates specific sub-
routines, and therefore saves the programmer from performing this tedious task
(see section 2.1).
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2.3. Full Genericity and STL Style

Now we turn to full genericity as we want a procedure to accept different
image types. The key idea is given by the style of the Standard Template
Library (stl for short) now part of the C++ Standard Library [13]: procedures
should be parameterized by their input types. This paradigm is called generic
programming by the object-oriented scientific computing community [11].

For instance in order to browse the contents of images with different struc-
tures, obviously one cannot keep two loops when input is 2D or three when
it is 3D. These image structure implementation details must be hidden. The
solution that early appears in imaging software [9] is the use of iterator objects.
Consider the code below. A new procedure, bar, sets every pixel to 0. It is
now parameterized by InputIter which represents an iterator type. The object
p iterates from the first point of the targeted image to the last, these iteration
boundaries being given by the methods begin() and end() of the image class.
When bar is called, the particular procedure instantiated by the compiler uses
an iterator i of type image2d iterator<float>; the single loop is thus able browse
image with different structures.

template<class T>
struct image2d
{

typedef image2d iterator<T> iterator;
unsigned nrows, ncols;
T∗∗ data;
iterator begin();
iterator end();
//...

};

template<class InputIter>
void bar(InputIter first, InputIter last)
{

for (InputIter i = first; i != last; ++i)
∗i = 0;

}

int main()
{

image2d<float> ima;
//...
foo(ima.begin(), ima.end());

}

Finally, the procedure bar can accept various kind of input. It is fully
generic, type-safe and, moreover, as fast as dedicated C. Indeed, the use of pa-
rameterization (templates) along with type deductions (typedefs) is handled by
the compiler, that is, statically. In a classical object-oriented way of program-
ming, lot of work is performed at run-time (e.g, method dispatch through a
hierarchy) and the resulting programs are not as efficient as the one presented
in this section. As far as we know, the only other image processing library
based on this programming paradigm is Vigra by Köthe [8].

Please note that the contents of sections 2.1 to 2.3 is discussed in more
detail in [5], [4], [3], [6] and [8].

2.4. Image Processing Style

We find the previous proposal unsatisfactory: programs should be closer to
algorithm descriptions in mathematical language rather than in a computer
scientist language. Our proposal is not to design a new language dedicated to
image processing such as in [1] but to provide tools that make easier program-
ming for practitioners: we want something like:
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template<class I>
void bar(image< I>& ima)
{

Exact ref(I, ima);
Iter(I) p(ima);
for all(p) ima[p] = 0;

}

int main()
{

image2D<float> ima;
//...
bar(ima);

}

And that’s indeed what we have in our library.
Please note that, for some mathematical morphology algorithms, there are

few approaches to design them (parallel, in-place, based on priority queue and
so on). Although we cannot provide a single version for all these flavors, we
are still able to preserve the other levels of genericity.

3. Case Studies of Mathematical Morphology Operators

In this section, we study several morphological operators and we show that
mathematical formulas and algorithms can easily be written using our tools2.
In particular, the watershed operator is described as suggested by d’Ornellas
and van den Boomgaard [4].

TABLE I
: Some Simple Morphological Operators.

Operator Formula Code

dilation ∀x, [δB(f)](x) = max
b∈B

f(x + b) for all(x) df[x] = max(f, x, B);

closing φB(f) = εB̌ [δB(f)] erosion(dilation(f, B), -B);

black top-hat BTHB (f ) = φB (f )− f minus(closing(f, B), f);

th contrast op. κTH = Id + WTHB − BTHB plus(f, minus(white top hat(f, B),

black top hat(f, B)));

3.1. Simple Operators

Table I presents how four morphological operators are translated in C++ code.

Dilation. In our library, the body of the dilation procedure ( left column below)
performs the following operations. Line 2 first defines the output image, fd,
whose type is the procedure parameter I. To this aim, fd needs some structural
information from the input image f (for instance, its size). At line 3, an iterator
x is declared whose type is deduced from I. Then, the iteration is performed.
To remain close to the mathematical formula, a particular function, max, is
specialized according to the nature (type) of the structuring element. That is,
whether B is flat or not, calling max does not run the same code.

2 In future versions, C++ operator overloading capabilities will be used in order to get
a more natural way of expressing formulas. For instance, minus(closing(f,B), f) will be
replaced by closing(f,B) − f.
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1 border::adapt copy(f, B.delta());
2 I fd(f.info());
3 Iter(I) x(f.info());
4 for all(x)
5 fd[x] = max(f, x, B);
6 return fd;

7 Iter(SE) b(B);
8 b = begin;
9 Value(f) val = f[x + b];

10 for all remaining(b)
11 if (val < f[x + b])
12 val = f[x + b];
13 return val;

The body of procedure max when B is a flat structuring element is presented
in the right column above. Note that in order to keep this procedure generic, all
implementation details are hidden. An important feature of our library is that
we do not have to care too much about accessing data out of image support.
For instance, in the case of 2D images, x+b (e.g., line 11) may fall outside the
image support if x is near the image boundary. In order to save the programmer
from writing extra code to test if x+b is valid, some image type, such as 2D
image, have an outside border and we can assign values to these particular
points. In the case of dilation, we call border::adapt copy (line 1) which first
adapts the border size of the image to that of the structuring element and then
copies values of the image inner boundary to the border3. Finally, dilating
induces no side effect. Image processing routines relying on masks, windows,
neighborhoods or structuring elements, are simpler to implement.

Closing. In our library, we do not want to annoy the user with memory man-
agement of the data structures such as images or graphs. In the case of the
closing operator, a temporary image is first created resulting from a dilation
process, and then, erosion is applied to obtain the final result. In classical
libraries, the programmer should delete the temporary image to recover its
memory. There is a risk of forgetting this deletion and to get some memory
leaks at run-time. Another immediate consequence is that operators cannot be
chained such as in:

erosion(dilation(f, B), −B)

because no variable holds the temporary image which thus is responsible for a
memory loss.

For user convenience, we have implemented a transparent memory man-
agement: when a data structure is no longer referenced, it is automatically
destroyed. Combining operators is thus made as simple as possible.

Top-Hat Contrast Operator. A lot of morphological operators rely on arith-
metics, and usually, image processing libraries use built-in types —that is,
types provided by the programming language— to express the nature of data.
A resulting well-known problem is value overflow. In the sample line below
positive values are encoded on 8 bit, ranging from 0 to 255:

unsigned char i = 255, j = 1, k = (i + j) / 2;

3 In the case of the input image being a graph, since the notion of border does not exist,
calling border::adapt copy is still valid but does not execute any code. Another approach
is to set the border to −∞ ( +∞) in the case of dilation (erosion).
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we finally have k set to 0. In the case of non-flat structuring elements and
in the case of morphological operators involving arithmetics, e.g., the top-hat
contrast operators, the programmer should not deal with from these problems.
To this end, we have defined our own data types and the corresponding safe
arithmetics. For instance, in the line above, one should use int u8 instead of
unsigned char and the compiler raises en error at at compile-time because the
type of expression (i + j) / 2 is now int u9 and because the assignment from
this type towards the “smaller” type int u8 is forbidden.

We also have equipped our library with conversion routines that can be used
either as stand-alone functions or as first argument of other routines. In the
sample code below, the user does not need to know the data type of the image
returned by the contrast operator; she can guarantee that, at the very end,
every pixel value falls between 0 and 255. So, she benefits simultaneously from
safe arithmetics and convenient data type manipulations.

Last, the notion of scoping, whose correctness is verified by the compiler,
ensures the programmer that she uses as little memory as possible; at the end
of the main scope, only lena lies in memory.

// file inclusions:
#include ”basics2d.hh”
#include ”io/pnm.hh”
#include ”convert/bound.hh”
#include ”morpho/top hat.hh”

// usage declarations:
using namespace oln;
using convert::bound;
using morpho::top hat contrast op;

int main ()
{

image2d<int u8> lena;
{ // sub−scope

read pnm(lena, ”lena.pgm”);
image2d<int u8> output

= top hat contrast op(bound<int u8>(),
lena,
square(5));

save pnm(output, ”output.pgm”);
}
// here, only lena is in the scope

}

3.2. Watershed

Mathematical morphology operators, such as the watershed, are often more
complicated than those already discussed. In [4], d’Ornellas and van den Boom-
gaard argue that a generic implementation of the watershed is possible based
on a wave-front propagation; they give the algorithm canvas that we recall
in the left column below. Our library provides a generic implementation of
this algorithm, that is, a function which works on various structures (n-D im-
ages, graphs, etc.) containing data of various types4. The corresponding code
excerpts from our library are given in the right column below.

4 The queue-based priority algorithm presented here is of course optimal for discrete data
types. However, the user can alsa call it when data are floating values.
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Initialization Step:
PQ q;

For (every p in domain D){
If (M(p) != 0 and (exist (p′) in NG(p) :

M(p′) == 0))
q.enq(p, f(p));}

Data Driven Propagation Step:
While(!(q.empty())){

q.deq();

For(every(p′) in (NG(p) ∩ D))
If (M(p′) == 0)

If (exists (p′′) in NG(p′) :
M(p′′) != M(p))

M(p′) = WSHED;
else {

M(p′) = M(p);
q.enq(p′, f(p′))

}
}

// Initialization Step:
PQ q;
Iter(I2) p(M);

for all(p)
if (M[p] != 0 && exist eq(M, p, Ng, 0))

q.push(queue elt(p, f[p]));

// Data Driven Propagation Step:
while (!q.empty()) {

Point(I1) p = q.top().first; q.pop();
Neighb(N) p prime(Ng, p);
for all neigh (p prime) if (M.hold(p prime))

if (M[p prime] == 0)
if (exists neq(M, p prime, Ng, M[p]))

M[p prime] = WSHED
else {

M[p prime] = M[p];
q.push(queue elt(p prime, f[p prime]));

}
}

Note that we also succeeded in providing tools making “sophisticated” mor-
phological algorithms implementation easy.

4. Conclusion

In this article, we have shown that computer programs can achieve both gener-
icity and user-friendliness. Based on the conclusions of d’Ornellas and van den Boom-
gaard [4], we have proposed solutions —some of them being described here—
and we have built an appropriate framework of object-oriented tools: Olena.
Olena is a library dedicated to image processing practitioners, and in par-
ticular, to mathematical morphology users. The sources of Olena are freely
available on the Internet at the address:

http://www.lrde.epita.fr/olena

Last, getting all the benefits described in this article has not compromised
efficiency. Table II gives processing time for some morphological operators.
These algorithms were tested on the classical gray-level 256× 256 image lena
with a 1 Ghz personal computer running gnu/Linux; the code was compiled
using the gnu C++ compiler with all optimizations enabled. The column
“regular” refers to operators being implemented in a classical way; equivalent
“fast” versions of morphological operators, based on [14], are also available in
Olena. We are aware of the optimal 11× 11 dilation which uses a decomposi-
tion of two dilations by straight lines. The algorithm is O(1) with line dilation
approaches such as van Herck’s [15]. But we do not use it because this is only
a text-book study to evaluate and compare execution times. Finally, table III
presents major functionalities in Olena.
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TABLE II
: Performance Evaluation (time in seconds).

Algorithms Structural Elt. Regular Fast

Dilation 3× 3 Square 0,04 0.05

Dilation 11× 11 Square 0,46 0,12

Dilation Disk of radius 6 0,44 0,13

Closing Disk of radius 6 0,85 0,31

Top-Hat Contrast Op. Disk of radius 6 1,74 0,62

Watershed 4-Connectivity 0,17 —

TABLE III
: Functionalities.

Dilation / Erosion

Closing / Opening

White Top Hat / Black Top Hat / Top Hat Contrast Operator

Hit-or-Miss

Hit-or-Miss Opening Foreground / Background

Hit-or-Miss Closing Foreground / Background

Beucher / Internal / External Gradient

Geodesic Dilation / Erosion

Geodesic Reconstruction by Dilation / Erosion (simple, sequential, hybrid)

Minima Imposition

Regional Minima

Watershed

Minima / Maxima Killer
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7. U. Köthe. Reusable implementations are necessary to characterize and compare vi-



10

sion algorithms. in DAGM-Workshop on Performance Characteristics and Quality of
Computer Vision Algorithms, September 1997.
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