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Abstract. In the face of continuous cyberattacks, many scientist have
proposed machine learning-based network anomaly detection methods[1].
While deep learning effectively captures unseen patterns of Euclidean
data, there is a huge number of applications where data are described in
the form of graphs[2]. Graph analysis have improved detecting anoma-
lies in non-Euclidean domains, but it suffered from high computational
cost. Graph embeddings have solved this problem by going into low di-
mensional embeddings, but it lacks the ability of generalizing to un-
seen nodes. Graph convolution neural network GraphSAGE method have
solved this problem by its inductive framework. In this paper we will see
how graph convolutional neural network improved the performance of
detecting anomalies over the traditional graph analysis and graph em-
bedding methods.
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1 Introduction

Anomaly detection is any method for finding events that don’t match a given
expectation[3]. In the face of continuous cyberattacks, many scientist have pro-
posed machine learning-based network anomaly detection methods such as one-
class support vector machines (OSVM), autoencoder (AE), and isolation forest
(IS)[1].

These methods typically consider that instances are separated and identi-
cally scattered. However, in many real-world applications, instances are usually
explicitly linked with each other, they have graph structures. While deep learn-
ing definitely captures hidden patterns of Euclidean data, there is an increasing
number of applications where data are expressed in the form of graphs[2]. Unlike
the formal grid-like Euclidean space data (images, audio and text), the previous
network data are from irregular non-Euclidean domains[4]. For that, a graph
can be used as an effective tool to describe and model the complex structure
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of network data. Clearly, a graph G(V, E) is typically defined as a set of ver-
tices indicated by V, and certain edges indicated by E between different vertices
[2]. Currently, graph-structured data are progressively used to model complex
systems, ranging from social media networks [5], traffic networks [6] to financial
nets [7]. Concurrently, detecting anomalies from graph has become an important
research problem [8].

Graph analytic is used for advanced quantitative considerations and con-
trol of complicated networks, but traditional methods suffer from high compu-
tational cost and excessive memory conditions [2]. Graph embedding methods
can be effective in transforming from high-dimensional sparse graphs into low-
dimensional, dense and continuous vector spaces, keeping maximally the graph
structure properties[2]. However, Graph embedding covers various kinds of meth-
ods targeting the same task only. Therefore, graph convolutional neural network
which are designed for various tasks can address the graph embedding problem
through a graph auto encoder framework [4]. The main objective of this research
is to further investigate an anomaly detection system that is suitable for detect-
ing anomalies using graphs having the best performance. To accomplish this
objective, the research addresses the following question:

e How can graph convolutional neural network improve the prediction per-
formance in anomaly detection over the traditional graph analysis and graph
embedding methods?

2 State of the art

In this section we will present how graph analytic and graph embedding were
used for detecting anomalies. We will discuss the benefits and limits of the pro-
posed methods, and how Graph Neural Network can address these limitations.

2.1 Non Euclidean Space

Definition and benefits: As we mentioned before there is an increasing num-
ber of applications where data are represented as a graph that means going from
Euclidean to non-Euclidean space. However, in order to perform analysis on non-
Euclidean space graph analysis methods have came into. Graph analytic (also
known as network analysis) has become an exciting and impacting research area
in recent years. Developing effective and efficient graph analytic can greatly help
to better quantitative understanding and control of complex networks [2].

Methods: Graph analytic methods such as connectivity analysis, community
detection analysis and centrality analysis, are largely based on extracting hand-
crafted graph topological features of nodes and edges directly from the adjacency
matrices. In our work we have used the Speaker-Listener Label Propagation Al-
gorithm (SLLPA). SLLPA is an improvement of the Label Propagation algorithm
that is capable of detecting multiple communities per node [9)].

Limitations: When we apply these methods to large-scale network analysis in
industrial systems, they may suffer from high computational cost and excessive
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memory conditions as a result of high-dimensionality and showing heterogeneous
characteristics of the original networks [10]. In addition, the hand-engineered
features are often task-specific and cannot bring identical performance while
employing them for other tasks [2].

2.2 Low dimensionality

Definition and benefits: Graph embedding techniques have shown important
role for the capacity of transforming high-dimensional sparse graphs into low-
dimensional, dense and continuous vector spaces. The main purpose of graph
embedding methods is to encode nodes into a latent vector space, pack every
node’s properties into a vector with a lower dimension.

Methods: Graph embedding methods used points to three main categories [11]:
matrix factorization-based methods, random walk-based methods, and neural
network-based methods [11]. In this paper we will focus on Random walk based
method mainly Node2Vec, and fast random projection (FastRP). Node2Vec is a
node embedding algorithm that measures a vector representation of a node where
the neighborhood is sampled through random walks [12]. FastRP is a scalable
and performance algorithm for learning distributed node representations in a
graph [13].

Limitations:

1. They cannot easily scale up to large network embeddings and only consider
local connections.

2. Do not articulate enough to take the diversity of connectivity patterns seen
in networks.

3. Dynamic graph embedding mainly focus on the evolution of graphs and
ignore the similarities among them [14].

4. Do not have node features that can be generalized to unseen nodes.

2.3 Graph Neural Network

Definition and benefits: Graph Neural Networks (GNNs) are a significant
stride to operate precisely on graph-structured data, and a promising method
to solve these above limitations. GNNs are actually a message passing in other
words neighborhood node aggregation scheme, where every node aggregates fea-
ture information of its neighbors to measure its new feature vector. After various
iterations of information aggregation, the feature vector of a node will arrest the
structural information among the node’s neighborhood [8]. GNNs have non-
linear activation functions and parallelization skills, which can solve the data
non-linearity and the computational complexity problems, respectively [15].

Methods: Graph neural networks (GNNs) are classified into recurrent graph
neural networks (RecGNNs), convolutional graph neural networks (ConvGNNs),
graph autoencoders (GAEs), and spatial-temporal graph neural networks
(STGNNs) [4]. Although GNNs have established outstanding performance in
many graph mining tasks [5][6][16], it remains unclear how to accomplish their
potentiality for graph anomaly detection GAD problem [15].
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Convolutional graph neural networks (ConvGNNs) ConvGNNs acquire
the movement of convolution from grid data to graph data [4]. ConvGNNs play
an important role in building up many other complex GNN models [4]. In recent
years, some convolutional neural network methods for learning over graphs have
been proposed. These methods do not scale to large graphs or are designed for
whole-graph classification (or both) [17] [18] [19]. However, GraphSAGE method
[19] adopts sampling to obtain a fixed number of neighbors for each node.

GraphSAGE Model GraphSAGE is graph convolution neural network that
can be used for detecting anomalies. GraphSAGE is an inductive algorithm for
computing node embeddings. GraphSAGE is applying node feature information
to achieve node embeddings on unseen nodes or graphs [20]. Rather than train-
ing individual embeddings for every node, the algorithm learns a function that
achieves embeddings by sampling and aggregating features from a node’s regional
neighborhood [19] as shown in Figure 1. GraphSAGE adopts sampling to obtain
a fixed number of neighbors for each node [4]. It performs graph convolutions
according to 1:

WP = o (WH - fi(h (D Vu € Sy(0)}) M

where hgo) = Xy, fr(-) is an aggregation function, Sy (v)is a random sample of
the node v’s neighbors [4].

Fig.1: Visual illustration of the GraphSAGE sample and aggregate approach
[19].

3 Requirements

The first step for identifying the right model to detect anomalies using graph
convolutional neural network is to define the requirements of such a model.
The model aims to detect anomalies in graphs using graph convolutional neural
network methods. These requirements are derived from the literature [4] and
from our experience, and are summarised in this section. Detecting anomalies
using ConvGNNs models should have the following requirements:

— Dynamicity: Graph is inherently dynamic, hence inductive frameworks are
more appropriate since they can generalize on unseen data.

— Scalability: The dimensions of the graph play a fundamental role in driving
the selection of the approach to be applied. Therefore, generation of the
embeddings should be as fast and scalable as possible.
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— Inductively: The model should be able to generate embeddings for some
target nodes as soon as new information has been made available.

— Transferable: The nodes embeddings should be suitable to be fed into down-
stream Machine Learning applications.

— Heterogeneity: ConvGNNs works on homogeneous graphs. However, having
different types and different forms of nodes and edges leads to heterogeneity
of the graphs which is not yet handled by ConvGNNs.

4 Anomaly detection using ConvGNNs

In this section we will see how to use graph convolutional neural network for
graph anomaly detection. In fact we have used GraphSAGE which is a graph
convolution neural network method and it is used as a node embedding tech-
nique for non-Euclidean domain. In particular, we see how GraphSAGE works
in detecting anomalies compared to graph analysis and graph embedding algo-
rithms such as Fast-RP and Node2vec. The main challenge in this section is to
prove that Graph neural network can detect anomalies better than using graph
analysis and graph embedding.

4.1 Steps to detect anomalies

In this section we will show the steps needed to detect anomalies according to
the above requirements.

1. Load a dataset as a csv, json, or pcap extension inside the neo4j. The stan-
dardization data format of the dataset should include the following prop-
erties: IP address, start timestamp, last timestamp, PKseqlD, and a label
attack to see if this node is normal or anomaly. These properties represent
the node in the graph.

2. Create the graph composed of nodes and edges using Neo4j. In our work we
represent a node as an event. The edges represent a relationship between
two events and they are constructed according to the following conditions:
(a) Events should have the same source IP address.

(b) The difference between the last timestamp and start timestamp between
each event should be less than 20 sec.

When these two conditions are satisfied between two different events a rela-

tionship ”Connected-To” is created as an edge between them.

3. Apply different Graph Data Science methods on the graph created using the
Neo4j Data Science Library.

(a) Apply Graph Analysis: community detection, centrality, and similarity
algorithms.

(b) Apply Graph embedding algorithms: Node2Vec and FastRP.

(¢) Apply Graph Convolutional Neural Network: GraphSAGE.

4. To detect anomalies in the graph; Apply the output of GraphSAGE on the
output of Graph Analysis and Graph Embedding to compare the results.
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4.2 Model and schema

In this section we will show our schema as represented in figure 2. Our model
consist of two parts; Methodology and Results. Our methodology shows that
using Neo4j Graph Data Science library, we can apply graph analysis , graph
embedding and graph convolutional neural network methods on our created
graph. Results shows that using the output of ConvGNNs on graph Analysis
and graph embedding can improve the performance of detecting anomalies.

C L)~ spphGaphosa | Neod] Graph
a- >q Create Graph Q Scence Methods Data Science
@ _— — Oy Library
Neodj - @R
S 7/ \Y
> 7 Database ~ e
o
-
2 !
8
R . X . .
T o) 0'."’-"::“ Lu -
F [ gl A f( 3 ".:): B X
= w - N T ¥ e
= o T Ll 75
Graph Analysis Graph Embedding Graph Neural Network (GNN)
.c, GraphSAGE Method
oo
e
L o
n |
5
=)
@
w
[

Fig. 2: Model to detect anomalies

5 Implementation

In this section we will see the software and the dataset used for the evaluation.

5.1 Neo4j

The implementation of detecting anomalies using GraphSAGE is performed
through cypher queries for graph data science in Neo4j. Neo4j is an in memory
graph that offers an integrated graph database for graph persistence so there’s
no need to recreate your graph each time it changes [21]. Moreover, Neo4j graph
data science library can be used using Neo4j graph data science playground that
is called NEuler. All the evaluation are carried out on Neo4j cypher queries and
NEuler.

5.2 DataSet

We have imported the IoT-BoT dataset in Neo4j. [oT-BoT dataset has a realistic
testbed, a multiple tools being used to carry out several botnet scenarios, and
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by organizing packet capture files in directories, based on attack types[22]. In
order to have some statistics on the IoT-BoT dataset we implemented a Python
application that can show us the number of events in total and the number of
events being attacked inside the dataset. The number of events is 3668522 and
the number of attacked events is 3668045. For simplicity we have taken part of
this dataset to do the evaluation.

6 Evaluation

In this section, we perform a set of experiments to evaluate the performance of
detecting anomalies using GraphSAGE model compared to different graph anal-
ysis and graph embedding algorithms. The evaluation of detecting anomalies
using GraphSAGE model is performed for its four core target properties: Dy-
namicity, Scalability, Inductivity, and Transferability. We have used the IoT-BoT
dataset for the evaluation part.

6.1 Dynamicity and Transferability

To evaluate the Transferability of detecting anomalies using GraphSAGE, we will
challenge the model for its capability to be fed into downstream Machine Learn-
ing applications. We have applied the K-Nearest Neighbors (KNN) algorithm on
the output training of GraphSAGE (graph convolution neural network). KNN
computes a distance value for all node pairs in the graph and creates new rela-
tionships between each node and its k nearest neighbors [23]. Thus applying KNN
on GraphSAGE will lead to a new relationship called ” SIMILAR-GraphSAGE”.
This relationship will be used for comparing the results of using SLLPA (graph
analysis method) and FastRP (graph embedding) on GraphSAGE output.

To evaluate the Dynamicity of detecting anomalies using GraphSAGE, we
will challenge the model for its capability to detect unseen attacks. First we
compared GraphSAGE to graph analysis (SLLPA method). Then we compared
GraphSAGE to graph embedding (FastRP method). SLLPA is used to cluster
the graphs according to attacked and normal events. Figures 3a and 3b shows
the clustering using SLLPA method and clustering using SLLPA on GraphSAGE
output respectively. Label 0 on the event means that the event is normal (blue
event) and label 1 means that the event is attacked (green event). The result in
Figure 3a shows two clusters containing 6 attacked events (2 in the frist clus-
ter and 4 in the second one), while the result in Figure 3b shows two clusters
containing 14 attacked events all in the same cluster. Moreover, Figures 4a and
4b shows the embedding using FastRP method and embedding using FastRP
on GraphSAGE output respectively. The red events in the figures are the at-
tacked events and the yellow events are the normal ones. The result in Figure
4a shows the detection of 7 attacked event, while the result in Figure 4b shows
the detection of 9 attacked events.

This shows that using GraphSAGE we can get more anomalies detected.
These anomalies were not seen in both clustering and embedding, in other words
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Fig.3: Comparing the dynamicity of graph analysis (SLLPA) to graph neural
network (GraphSAGE)

(a) FastRP (b) FastRP-GraphSAGE

Fig.4: Comparing the dynamicity of graph embedding (FastRP) to graph neural
network (GraphSAGE)

detecting unseen attacks is proved. The accuracy of clustering is also being im-
proved, since by using GraphSAGE we are getting cluster for the normal events
and different cluster for the attacked events. Moreover, although using SLLPA-
GraphSAGE method is detecting more anomalies than FastRP-GraphSAGE,
we can notice from figure 5 that computational time for FastRP-GraphSAGE
is clearly less than the computational time using SLLPA-GraphSAGE method.
Thus using GraphSAGE on embedding to detect anomalies have less complexity
than using graph analysis.

6.2 Inductivity

The model should be able to generate embeddings for some target nodes as soon
as new information has been made available. This means the ability to predict.
Link prediction is a common machine learning task applied to graphs: train-
ing a model to learn, between pairs of nodes in a graph, where relationships
should exist [24]. In our work we have applied Link prediction on graph anal-
ysis, graph embedding, and graph convolutional neural network. In addition,
we have used two different types of aggregators for GraphSAGE to see their
performance: mean and pool aggregators. The GraphSAGE aggregator function
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Fig.5: Computational time for SLLPA, SLLPA-GraphSAGE, FastRP, and
FastRP-GraphSAGE

can be customized at will. The simplest architecture consists in the mean oper-
ator which aggregates the neighbours’ vectors by computing their element-wise
mean.The pooling aggregator, instead, uses the neighbours’ vectors as input to
a fully connected layer before performing the concatenation, and then it applies
an element wise max-pooling operation. Link prediction method in Neo4;j is used
to calculate the precision, recall, and F1-Score. The F1-Score is the harmonic
mean of Precision and Recall, this score is widely exploited since it is a trade-off
among the previous metrics and consent to have a better understanding of the
predictive performance of the model. Table 1 shows the value of the precision,
recall, F1-Score, and duration of time for applying link prediction on SLLPA,
Node2Vec, FastRP, GraphSAGE-Mean, and GraphSAGE-Pool. It is possible to
notice from the results presented in Table 1 that GraphSAGE-Pool is preferable
since it has the higher F1-Score with less computational time than the other
methods.

Link prediction Precision Recall F1-Score Time duration
SLLPA 0.748 0.757 0.752 0.77
Node2Vec 0.742 0.757 0.749 0.54
FastRP 0.749 0.755 0.752 0.54
GraphSAGE- 0.755 0.76 0.757 0.22
Mean

GraphSAGE- 0.798 0.817 0.807 0.15
Pool

Table 1: Link Prediction Performance on SLLPA, Node2Vec, FastRP,
GraphSAGE-Mean, and GraphSAGE-Pool

In figure 6a, we shows that applying Link prediction on GraphSAGE-Pool is
having the best complexity score in terms of computational time. Thus having
new information in our graph will give more accurate result and better perfor-
mance when using GraphSAGE-Pool.
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6.3 Scalability

To evaluate the Scalability of detecting anomalies using GraphSAGE, we will
challenge the model for its capability to be faster in detecting anomalies accord-
ing to different embedding dimensions. The embedding dimensions represent the
dimension of the generated node embeddings as well as their hidden layer rep-
resentations. We have chosen the following dimensions d = 1, d = 10, d = 20,
d = 40, d = 64, and d = 128. Figure 6b shows the computational time with
respect to different embedding dimensions for Node2Vec, FastRP, GraphSAGE-
Mean, and GraphSAGE-Pool. A greater dimension offers a greater precision,
but is more costly to operate over. However, when comparing the complexity of
Node2Vec and FastRP to GraphSAGE we can notice that GraphSAGE is being
more scalable and faster. GraphSAGE-Pool shows some slight improvement in
its performance compared to GraphSAGE-Mean.
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Fig.6: Scalability of GraphSAGE (mean and pool) compared to SLLPA,
Node2Vec, and FastRP

7 Conclusions and Perspectives

Detecting anomalies using GraphSAGE model prove to comply with the re-
quirements for scalability, transferability, dynamicity, as well as inductivity for
learning. Experiments showed that graph convolutional neural network Graph-
SAGE has improved the performance of detecting anomalies compared to graph
analysis and graph embedding. This proposal opens a great challenge for the ca-
pability of detecting anomalies on heterogeneous graph. This graph have many
different types of vertices and many types of edges. And they make the process
of calculating embeddings more complicated. For this, a new algorithm in graph
neural network should be proposed to study the ability of detecting anomalies
on these graphs.
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