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Abstract. The importance of machine learning (ML) in detecting cy-
berattacks lies in its ability to efficiently process and analyze large vol-
umes of IoT data, which is critical in ensuring the security and privacy of
sensitive information transmitted between connected devices. However,
the lack of explainability of ML algorithms has become a significant con-
cern in the cybersecurity community. Therefore, explainable techniques
are developed to make ML algorithms more transparent, thereby improv-
ing trust in attack detection systems by its ability to allow cybersecurity
analysts to understand the reasons for model predictions and to identify
any limitation or error in the model. One of the key artifacts of explain-
ability is interface explainability models such as impurity and permuta-
tion feature importance analysis, Local Interpretable Model-agnostic Ex-
planations (LIME), and SHapley Additive exPlanations (SHAP). How-
ever, these models are not able to provide enough quantitative informa-
tion (metrics) to build complete trust and confidence in the explanations
they generate. In this paper, we propose and evaluate metrics such as re-
liability and latency to quantify the trustworthiness of the explanations
and to establish confidence in the model’s decisions to accurately detect
and explain cyberattacks in IoT data during the ML process.
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1 Introduction

Explainability is a crucial factor for establishing trust in ML models [Gui+18].
According to the High-Level Expert Group on Artificial Intelligence (AI) es-
tablished by the European Union, trust is a critical factor in promoting the
development and adoption of AI technologies [AI19a]. Trust is defined as the be-
lief that an Al system will perform as expected and compliant with ethical and
legal norms. To achieve trust in Al, the group [AI19a| recommends considering
several properties, including transparency, accountability, reliability, safety, and
privacy. However, without the ability to understand and interpret the decisions
made by the model, trust cannot be established. This is where explainability
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comes in. It enables users to understand how the model arrived at its decisions,
and therefore plays a crucial role in building trust.

In addition, trust and explainability are critical for the effectiveness of ML
models in cybersecurity. As cyber threats continue to evolve in IoT data, it is
crucial to prioritize explainability since it allows security analysts to compre-
hend the complex interactions between devices [Mol20|, which can be difficult
due to the distributed nature of IoT systems. With a better understanding of the
reasons behind detection, analysts gain valuable insights which help them im-
prove the detection process. However, achieving explainability using ML models
in IoT data can be a complex task. To address this challenge, we extend on the
framework for explainability in ML developed by Arrieta [Arr+20]. The frame-
work identifies five key artifacts of explainability that are crucial for ensuring
transparency throughout the data analysis process: data traceability [Mor+21],
model understandability [Mur+19], output comprehensibility [Fer+19], interface
explainability [Fer+19], and human interpretability [Arr+20]. Among these ar-
tifacts, interface explainability is the key for building trust and for increasing
the adoption of ML systems. While models such as impurity feature importance,
permutation feature importance analysis, LIME, and SHAP provide intuitive ex-
planations, they have limitations in offering complete quantitative information
and facilitating direct comparisons between explanations.

We therefore propose a novel approach for evaluating the quality of interface
explainability models, with a specific focus on reliability of features and latency
for providing explanations. We first evaluate existing metrics for interface ex-
plainability models, then develop new ones that can improve decision-maker’s
trust and confidence in the models they select. We aim at providing decision-
makers with a solid foundation for selecting and evaluating interface explain-
ability models that are transparent, trustworthy, and effective in making critical
decisions. To accomplish this objective, we address the following question: How
to evaluate quantitatively the explanations provided by interface explainability
models to ensure trust in the data analysis process?

The paper is organized as follows. Section 2 introduces the state of the art,
and Section 3 shows the benchmark for evaluating the quality of interface ex-
plainability models. Section 4 presents the datasets used and the implementa-
tion. Section 5 provides the evaluations and Section 6 discusses the significance
of obtained results. Section 7 concludes this work.

2 State of the art

2.1 Trusted AI

Definition of Trusted AI According to the High-Level Expert Group on Al
[AI19a], appointed by the European Commission, Trusted Al refers to artificial
intelligence systems that meet specific properties and are developed and utilized
in a transparent, ethical, and responsible manner.
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Properties of Trusted AI In April 2019, the High-Level Expert Group on Al
[AI19a] released Ethics Guidelines for Trustworthy Artificial Intelligence, which
outlines seven key properties that Al systems should meet to be considered trust-
worthy. These properties include respecting human autonomy and fundamental
rights, ensuring system robustness and safety, protecting the privacy and data
governance, promoting transparency, avoiding bias and discrimination, consider-
ing societal and environmental well-being, and holding Al systems accountable
for their outcomes. Moreover, the guidelines offer a specific assessment list to
verify compliance with each property. This list includes measures such as fun-
damental rights impact assessments, cybersecurity testing, privacy protection,
transparency and explainability, non-discrimination and fairness, and impact
assessment tools.

Explainability for Trusted AI The High-Level Expert Group on Al [AI19a]
emphasizes that incorporating transparency and explainability into Al systems is
essential for ensuring their trustworthiness and promoting wider societal accep-
tance. By promoting a greater understanding of how Al systems make decisions
and producing more trustworthy outcomes, transparency and explainability in-
crease the social acceptance of Al and mitigate concerns related to issues such
as bias, discrimination, and privacy.

2.2 Explainable AI

Definition of Explainable AI Arrieta [Arr+20] has defined Explainable Ar-
tificial Intelligence (xAI) in the context of ML models as follows:" Given an
audience, an explainable Artificial Intelligence model produces details or rea-
sons to make its functioning clear or easy to understand."

Artefacts for Explainability in the Data Analysis Process The data
analysis process in ML involves five key components, as identified by Arrieta
[Arr+20]: input data, model, output, user interface, and the human element. In-
put data refers to the information provided to the ML model to produce results.
The user interface includes explanations or visualizations that allow humans to
interact with and understand how the model works and how the results are de-
rived. The human element involves the people who use the model and interpret
the results by making decisions based on the insights generated from the data
analysis. To achieve transparency in the data analysis process, Arrieta high-
lights the importance of incorporating five key artifacts of explainability: trace-
ability, understandability, comprehensibility, explainability, and interpretability
[Arr+20]. Traceability ensures the ability to track the origin and lineage of data
used to train a model [Mor+21]. Understandability refers to the characteristic
of a model to make its function understandable to humans without any need
to explain its internal structure [Mur+19]. Comprehensibility is the ability of a
learning algorithm to represent its learned knowledge in a way that is under-
standable to humans [Fer+19|. Explainability is the property of an AI system
that enables it to provide an interface between humans and a decision-maker



4 Amani Abou Rida, Rabih Amhaz, and Pierre Parrend

that accurately represents the decision-making process while being understand-
able to humans [Fer+19]. Interpretability is the ability to explain or provide
meaning in understandable terms to a human [DK17].

Interface Explainability Models Interface explainability models in ML en-
hance the interpretability and transparency of complex models by providing
insights into their decision-making processes. To achieve this, researchers have
developed various techniques such as impurity and permutation-based feature
importance analysis [AI19b; HMZ21|, as well as model-specific methods like
LIME |[RSG16] and SHAP [LL17]. In this section, we highlight the strengths
of these models and explore how they work. We also compare these techniques
according to the data they use, the ML models they work on, the type and level
of explanation they provide, and their limitations as shown in Table 1. Impurity
Feature Importance (FI) and Permutation Feature Importance (PFI) are metrics
used to measure feature importance in ML models. Their objective is to iden-
tify the most important features in the model’s predictions by evaluating their
impact on model performance. Impurity FI calculates the reduction in impurity
that occurs when a feature is used to split the data and selects the feature with
the largest decrease in impurity as the most important [AI19b]. PFI shuffles a
feature’s values to break its relationship with the target variable and measures
the decrease in the model’s score, with the feature having the largest drop in
score considered the most important [HMZ21]. LIME is a method used to ex-
plain black-box ML model predictions locally, by showing the contributions of
each feature to the prediction for a specific instance or a subset of the data. It
generates new instances by sampling a neighborhood around the instance being
explained and applies the model to it, weighting the generated instances based
on their distances to the instance being explained. This results in a linear model
that provides an understandable explanation of the black-box model’s behavior
for the instance being explained. The SHAP technique explains ML model out-
put by attributing the prediction to input features, providing a consistent way of
computing feature importance globally and locally. It uses Shapley values from
game theory to distribute the effect of a feature fairly among all input features,
resulting in a feature importance score. By repeating this process for all input
features, SHAP provides a final score indicating the relative importance of each
feature in the model’s prediction.

Metrics for Explainable AI Metrics are critical for assessing the effective-
ness of XAI systems [AI19a|. They allow for a meaningful comparison of how
well a model fits the definition of explainability. Arrieta [AI19a] highlights the
significance of metrics in evaluating the impact of explanations on the trust and
reliance of the audience, as well as the need for concrete tools to compare the
explainability between different models. Hoffman [Hof+18] emphasize the im-
portance of developing clear and effective measurement concepts for evaluating
the effectiveness of explainable systems. Although their framework identifies key
questions about measuring effectiveness, it does not include specific quantitative
measures or evaluation methods. Sovrano [Sov+22] provide a qualitative analysis
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Comparison

Impurity Feature Im-
portance (FI)

Permutation Feature
Importance (PFI)

LIME

SHAP

Data used

Trained model

Trained model

Any datapoint

Any datapoint

Model types

Only trees - Model spe-
cific

Only trees - Model ag-
nostic

Any - Model agnostic

Different explainer’s
types - Model agnostic

Explainability|Global Global Local Global and local

Level

Explainability|feature importance, vi-|feature importance, vi-|Simplification, visual-|feature relevance, visu-

Type sualization sualization ization alization

Limitations |Computed on training|Unsuitable to explain|Does not provide a|Cannot be used to
set statistics and there-|time series models or|complete picture of|make statements about
fore do not reflect the|when there are strongly|the model’s behavior|changes in prediction
ability of feature to be|correlated features|for the entire dataset|for changes in the input
useful to make predic-|(data), Do not provide|(local explanation)|(data and output),
tions that generalize to|information on how|(data and output), De-|Difficult to compare

the test set (data), Un-
suitable for linear mod-
els and for continuous
features (only suitable

the feature affects the
model’s predictions
for specific instances
or subsets of the data

pending on the number
of fake instances you
generate and the kernel
width you select this

explanations from dif-
ferent ml models (each
model requires a differ-
ent type of explainer)

for tree models) (ML |(global explanation) |introduces inaccuracies|(ML  model), Large

model) (data and output),|and leads to a loss of|computational time
Does not account for|information (data and|because the training
any interactions be-|output) time grows exponen-
tween features (feature tially with the number
relevance) of features (output)

Table 1: Compare Interface Explainability models in ML

of metrics for evaluating the quality of explainability in AI systems. However,
they do not provide specific quantitative measures or thresholds for each metric.

2.3 Explainability for Cybersecurity in IoT data

Detecting cyber attacks in IoT systems is crucial for maintaining the confiden-
tiality, availability, and integrity of information transmitted over the Internet.
ML algorithms are useful in handling the complexity of data generated from
various sources and adapting to changing attack patterns [SS20]. However, the
lack of explainability of ML algorithms has become a significant concern in the
cybersecurity community. As highlighted in [Sri+22|, explainability helps cy-
bersecurity experts understand the reasons behind cyber attacks and detect any
biases or vulnerabilities in their security systems. However, no research has com-
pared the effectiveness of different explainability models in achieving these goals.
Therefore, it is essential to identify and evaluate the most effective explainability
model to achieve intuitive explanations of ML models’ behavior in cybersecurity.

3 DMetrics for evaluating the quality of Interface
Explainability Models

Reliability between different Interface Explainability Models Reliabil-
ity is a crucial aspect of interface explainability models, which refers to the
consistency and similarity of feature importance scores across different models.
If the output of various interface explainability models is consistent and similar,
the user can have more confidence in the explanations provided by these models.
Conversely, if they are inconsistent or differ widely between models, users may
have difficulty interpreting the results and identifying the important features. We
propose two metrics to measure the reliability of interface explainability models.
The first metric is Top5Ratio, measures the similarity between the top 5 most
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important feature scores generated by different interface explainability models
and is represented according to this formula:

| Tops (score(x, m,iexp)) N Tops(score(z, m,iexp’))| (1)
5

This metric indicates the similarity between important features across dif-
ferent interface explainability models. The Top5Ratio metric is calculated by
identifying the top 5 important features that consistently appear in the top 5
across all interface explainability models based on their feature scores, where z
is the data, m is the ML model, iexp and iexp’ are different interface explain-
ability models. The topbRatio metric produces results between 0 and 1, where 1
represents complete agreement between interface explainability models in terms
of the top 5 important features and their scores, and 0 represents no agreement.
To further assess the consistency of the feature scores across different models,
we propose the average reliability metric according to this formula:

Top5Ratio =

N
Average Reliability = % Z |score;(x, m,iexp) — score;(x,m,iexp’)|  (2)
i=1
This metric gives a measure of how much the feature importance scores differ
between the two models. Then, computing the absolute distance between the
average reliability scores, gives us a measure of how consistent the two models
are in terms of their overall reliability. A lower absolute distance between the
average reliability of interface explainability models indicates greater consistency,
meaning that the two interface explainability models are more similar in terms of
their reliability scores. A higher absolute distance indicates that the two models
are less reliable.

Latency between different Interface Explainability Models In the con-
text of providing explainability for cyber-attack models, latency refers to the
amount of time it takes for the interface explainability model to generate ex-
planations. The objective of the latency metric is to evaluate the efficiency of
the explanation model in generating explanations for cyber-attacks. The metric
aims to balance the need for quick and accessible explanations with the need for
accurate and comprehensive explanations. It measures the time required for the
explanation model to generate an explanation, with the time measured in units
such as seconds. Local explanations, such as LIME [RSG16], provide insights
into the model’s decision-making process for each individual data entry in the
dataset by analyzing the features that are most important for the model’s de-
cision for that specific data entry. The latency metric measures the time taken
to generate a local explanation for each data entry in the dataset. The formula
below computes the average time taken per instance over the dataset.

N
1
Latency = N Z(Tend — Tstart) (3)
i=1
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where N is the number of instances in the dataset, and T,,,q and Ty are
the end and start times for generating the explanation for instance 1.

For global explanations, we calculate the time taken to generate the expla-
nation for the entire dataset, given by the formula: Latency = Teng — Tstart

This metric measures the average time taken by the interface explainability
model to generate explanations for cyber-attacks. A lower value of Latency in-
dicates that the explanation model generates explanations more quickly, while a
higher value of Latency indicates slower explanations.

4 Datasets and Implementation

Datasets To evaluate the explainability of cyber-attacks in ML, we used three
datasets created by the Cyber Security Research Group at the University of
New South Wales [Boo+21; Kor+19; MS16]. These datasets include Ton-IoT
[Boo+21], BoT-IoT [Kor+19|, and UNSW-NB15 [MS16], and contain both nor-
mal traffic and various types of cyber-attacks with varying sizes and features.

Implementation To implement explainability for cyber-attacks in ML, we uti-
lize Jupyter Notebook running on the Larry server of HPE DL385 generation
10+. The server is equipped with two AMD EPYC 7552 48-Core Processors and
3 TB of RAM, providing sufficient computing power to perform the required
analyses.

5 Evaluation

Comprehensibility of Output Performance Comprehensibility of output
performance is essential in building trust in ML models, as end-users are more
likely to trust and accept the results when they can understand and interpret the
output of the model. To ensure the performance output is easily comprehensible,
we utilized a range of metrics to evaluate the performance of various multi-
classification models, including CART, Random Forrest, XGBoost, and MLP,
on the datasets mentioned in Section 4. These metrics comprised unbalanced
accuracy, MCC, accuracy, precision, recall, F1 score, True Negative Rate (TNR),
loss, and multi-classification fit and pred time. Our evaluation revealed that
XGBoost achieved the highest accuracy in detecting cyber-attacks in the Ton-
IoT and UNSW-NB15 datasets, while CART is the most accurate model for
the BoT-IoT dataset. Additionally, CART exhibit the shortest prediction time
among all the models evaluated, for all the datasets as shown in Table 2.

Interface Explainability Models To increase trust in the model’s predictions
of XGBoost, we used four different interface explainability models: FI, PFI,
LIME, and SHAP as shown in Fig 1. The FI and PFI models provided feature
importance scores that contributed to XGBoost’s predictions, while the LIME
model simplified individual predictions to highlight the most important factors
in predicting "MITM" attacks and reveal insights into the model’s decision-
making process. In contrast, the SHAP model presented a summary plot of the
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Dataset [Ton-IoT (45 features) UNSW (45 features) num BoT-IoT Nbl5 (46 fea-

num of classes = 10 of classes = 10 tures) num of classes = 4
Learning|Random XGBoost |[CART MLP Random XGBoost |CART MLP Random XGBoost|CART MLP
Models |Forest Forest Forest
Precision0.61369[0.99991 [0.99981 [0.65621[0.72632|0.87941 |0.85395 [0.50275[0.999890.99999 |1 0.92654
Recall 0.77512]0.99991 |0.99981 [0.0484 [0.73545|0.87858 [0.84999 [0.52941|0.99989[0.99999 |1 0.84948
TNR 0.16053[0.99798 |0.99581 |0 0 0.02264 [0.01893 |0 0.99987[0.99999 |1 0.82715
Accuracy]0.77512[0.99991 [0.99981 |0.0484 [0.73545|0.87858 |0.84999 [0.52941[0.999890.99999 |1 0.84948
F1 score |0.68192(0.99991 [0.99981 [0.01446|0.66093|0.87161 |0.85185 |0.46165|0.99986(0.99999 |1 0.86858
Balanced|0.38676(0.99984 [0.99973 [0.10115[0.29817|0.62515 [0.59959 [0.23236(0.79865(0.99999 |1 0.48904
Accu-
racy
Mcc 0.55888(0.99984 |0.99967 |0.02514|0.69429|0.84705 [0.81028 (0.41077(0.99953[0.99997 |1 0.62287
loss 0.55888|0.00008 |0.00018 [0.95159(0.26454[0.12141 [0.15001 [0.41077]0.00011[0.000005 [0 0.15051

Fit time|12.4332|483.81 0.00008(84.0137(0.25997|1081.45 |[1.6835 [53.4782|26.661 [104.101 |0.98176|134.22
sec

Pred 0.93504|0.06234 |0.01611(0.23403(0.41471(0.056119 [0.01842(0.10782|0.73737[0.047371 [0.02597(0.25997
time sec

Table 2: Comprehensibility of output performance for CART, Random Forrest,
XGBoost, and MLP models for different datasets

most important features ranked in descending order based on their impact on
the prediction for each attack class. These models provided different perspectives
on XGBoost’s behavior.

Metrics for evaluating Interface Explainability Models

Reliability To evaluate the reliability of different interface explainability mod-
els, we first calculate the top5b ratio to determine the similarity of the five most
important features in the Ton-IoT dataset, as shown in Fig. 2a. The results in-
dicate that SHAP has a higher ratio compared to FI and PFI, indicating greater
feature intersection among the most important features. We further analyze the
reliability of these features by calculating the average reliability for each feature
across all models, as illustrated in Fig. 2b. When comparing the reliability of
different interface explainability models, we calculated the average difference be-
tween each model and the rest. The results show that SHAP has the smallest
average difference of 0.02 compared to the other interface explainability models,
indicating higher reliability. On the other hand, FI has an average difference of
0.116, PFI has an average difference of 0.134, and LIME has an average differ-
ence of 0.142 when compared to the other interface explainability models. These
findings are depicted in Figure 3.

Latency To compare the latency of different interface explainability models, we
present a 3D plot that shows the tradeoff latency, accuracy, and time perfor-
mance. Fig.4 illustrates this tradeoff by showing the latency of the four interface
explainability models, with respect to the accuracy and fit time for the four
multi-classification models.

6 Discussion

Comprehensibility of Output Performance The evaluation of the compre-
hensibility of output performance revealed that XGBoost can accurately detect
a large proportion of actual attacks while minimizing false positives, which refer
to non-attacks being wrongly classified as attacks. While XGBoost showed supe-
rior accuracy, CART was faster and achieved comparable accuracy to XGBoost.



Metrics for Interface Explainability Models in Cybersecurity 9

sre_px

000 005 010 015 020 025 0000 0025 0050 0075 0100 0125
Feature Impartance XGB Permutation Importance XGB

Feature Value

e
erc_port 43530.00 mean(sHAP value) (verage impact on
doation 000

LIME XGB SHAP XGB

Fig. 1: Interface Explainability Models using XGBoost multi-classification model
on Ton-IoT dataset

This highlights the significance of striking a balance between accuracy and time
against cyber-attacks.

Interface Explainability Models The examination of various interface ex-
plainability models has provided distinct perspectives on how XGBoost pre-
dicts results. While FI and PFI models offer a global explanation of the overall
model performance, they do not provide any insights into the classification of
specific classes. On the other hand, LIME provides a local explanation of how
the "MITM" class is classified for a particular instance, but not for the entire
dataset. In contrast, SHAP provides an XGBoost summary plot that highlights
the feature relevance scores. The visualization indicates that the feature "dst
port", which is situated at a high level in the plot, resulted in the classification
of "Ransomware" more frequently than the other class types. This demonstrates
that the feature relevance scores and visualization provided by SHAP offer valu-
able insights into the model’s predictions.

Metrics for evaluating Interface Explainability Models

Reliability Despite the variations in methodology and algorithms used by dif-
ferent interface explainability models, we can obtain similar important features
when comparing them. This should provide users with confidence in the explain-
ability model they choose. The top5Ratio metric shows that SHAP produces
similar most common important features, even though it works differently to
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Bar graph showing difference of important feature scores

Histogram Comparing Top 5 Feature Importance Scores between different Interface Explainability Models
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Fig.2: Interface Explainability Model Comparison for XGBoost Multi-
Classification on Ton-IoT dataset: Top 5 Ratio and Average Reliability Analysis

Feature names

Fig.3: Average Reliability Comparison of Feature Scores for different Interface
Explainability Models

compute them. We further analyzed the difference in features between the dif-
ferent models and found that SHAP consistently performed better, indicating
that we can rely on it for cybersecurity explanations.

Latency Given the time-sensitive nature of cyberattacks, the tradeoff between
latency, accuracy, and time performance is crucial for classifying and explaining
attacks. While XGBoost has the best accuracy, its latency for detecting an attack
is slower compared to other approaches. Similarly, SHAP has a slower latency
for providing explanations compared to FI and LIME. It is essential to balance
these factors to quickly and accurately classify and explain an attack, allowing
incident responders to take appropriate actions in a timely manner.

7 Conclusions and Perspectives

The reliability and latency metrics proposed in this paper serve as a strong foun-
dation for evaluating interface explainability models in detecting cyber-attacks.
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Fig. 4: Latency of different Interface Explainability Models using different multi-
classification models on Ton dataset

These metrics ensure transparency and trust by demonstrating consistency and
similarity in feature scores across various models, and highlighting the tradeoff
between accuracy, latency, and time performance. However, to comprehensively
evaluate interface explainability models, additional metrics need to be devel-
oped in the data analysis process, such as stability when data changes, similarity
across ML models with different parameters, and clarity for human interpretabil-
ity. Moreover, we plan to enhance the data visualization and dashboard for our
metrics and provide a more detailed methodology for the training and testing
process to facilitate a better understanding of the results and make our research
transparent and easily reproducible for other researchers.
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