A Blockchain-based Certificate Revocation Management and Status
Verification System

Yves Christian Elloh Adja*, Badis Hammif, Ahmed Serhrouchni*, Sherali Zeadally;t
*Telecom Paristech, France
ello.adja, ahmed.serhrouchni@telecom-paristech.fr
TEPITA Engineering School, France
badis.hammi@epita.fr
tUniversity of Kentucky, USA
szeadally @uky.edu

Abstract—Revocation management is one of the main tasks
of the Public Key Infrastructure (PKI). It is also critical to the
security of any PKI. As a result of the increase in the number
and sizes of networks as well as the adoption of novel paradigms
such as the Internet of Things and their usage of the web,
current revocation mechanisms are vulnerable to single point of
failures as the network loads increase. To address this challenge,
we take advantage of blockchains’ power and resiliency in
order to propose an efficient decentralized certificates’ revocation
management and status verification system. We use the extension
field of the X509 certificate’s structure to introduce a field that
describes to which distribution point the certificate will belong
to if revoked. Each distribution point is represented by a Bloom
filter filled with revoked certificates. Bloom filters and revocation
information are stored in a public blockchain. We developed
a real implementation of our proposed mechanism in Python
and the Namecoin blockchain. Then, we conducted an extensive
evaluation of our scheme using performance metrics such as
execution time and data consumption to demonstrate that it can
meet the needed requirements with high efficiency and low cost.
Moreover, we compare the performance of our approach with
two of the most well-known/used revocation techniques which
are Online Certificate Status Protocol (OCSP) and Certificate
Revocation List (CRL). The results obtained show that our
proposed approach outperforms these current schemes.

Index Terms—Authentication, Blockchain, Bloom filter, Cer-
tificate, Revocation, Decentralization, PKI, Security, X509

I. INTRODUCTION

Since the emergence of the Internet in the world, it has
been changing the way people live, interact, and conduct
businesses. Today the Word Wide Web has become an integral
part of our daily tasks and environment and is involved
in huge amounts of data transfers every day. Most of the
exchanged data is sensitive and should be protected for users’
privacy. In addition, numerous communications and requested
services require authentication to be accepted or accessed.
To handle these security requirements, multiple mechanisms
were proposed, and the most common solution is the Public
Key Infrastructure (PKI). Indeed, the Secure Sockets Layer
(SSL) and Transport Layer Security (TLS) protocols, coupled
with a Public Key Infrastructure provides authentication via
certificate chains and private communication via encryption.

A public key infrastructure (PKI) is a set of authorities,
policies, and procedures needed to manage public-key mech-
anisms. It is a set of authorities and protocols that binds

public keys with respective identities of entities. The binding
is established through a process of registration and issuance
of certificates. Thus, a PKI creates, manages, distributes, uses,
stores, and revokes these defined certificates [1].

The ability to revoke previously-issued certificates is critical
to the security of any PKI, that is, to invalidate a certificate
before it expires [2] due to many reasons such as the cer-
tificate’s private key compromise or the fraudulent behavior
of the certificate’s owner. Certificate revocation is essential to
authentication/authorization mechanisms that use certificates
and their absence in the authentication process/cycle can lead
to disastrous consequences [3]. For example, when the Heart-
bleed SSL/TLS vulnerability was announced [4], more than
80,000 SSL certificates were revoked in the week following
the publication [5]. The Heartbleed bug made it possible for
remote attackers to steal private keys from vulnerable servers.
Most web server access logs are unlikely to show any evidence
of such a compromise. Even if the certificate is replaced, the
secure site could still be vulnerable if the vulnerable certificate
has not been revoked. Indeed, a compromised certificate will
remain usable by an attacker until its natural expiry date,
which could be years away. A correctly positioned attacker,
with knowledge of the old certificate’s private key and the
ability to intercept a victim’s Internet traffic, can use the old
certificate to impersonate the target site (e.g. using phishing
techniques). Another example is described by [6] where a
security incident related to certificate revocation checking
made headlines. It was discovered that a legitimate website
was hosting a malicious Java application that installed malware
on the computers of people who visited the site. It was found
out that the certificate of the website used in the attack had
indeed been revoked and the infected victims did not verify
the revocation status of the certificate.

There exist numerous revocation methods and systems such
as Certificate Revocation Lists (CRL), Online Certificate Sta-
tus Protocol (OCSP), Certificate Revocation Tree (CRT), and
so on. Nonetheless, each of the existing techniques suffers
from some different issues such as scalability support, financial
and additional computational costs, users’ privacy exposure,
and so on [7].

Main research contributions of this work

We believe, like many researchers [8][9][10][11][12], that
blockchains represent a very promising technology for the
development of decentralized and resilient security solutions.
We summarize the main contributions of this work as follows:

o Relying on the power and resiliency advantages of
blockchains, we propose an efficient decentralized cer-
tificates’ revocation management and status verification
system.

e We use the extension field of the X509 certificate’s
structure to introduce a field that describes to which distri-
bution point the certificate will belong to if revoked. Each
distribution point is represented by a Bloom filter filled
with revoked certificates. Bloom filters and revocation
information are stored in a public blockchain.

o Using bloom filters we drastically minimize the time
needed to obtain the revocation information compared to
the existing works.

e We propose an approach fully compatible with the cur-
rent web standards. The approach does not require any
modification to be implemented in a web context.

o We present an implementation of our approach based on
the public blockchain Namecoin.

« We conducted an extensive evaluation of our proposed
revocation system and the results (using performance
metrics such as time and data consumption) obtained
demonstrate that it can meet the needed security and
performance requirements.

o We compare the performance of our approach with two
of the most well-known revocation techniques which are
OCSP and CRL and the results show that our proposed
approach outperforms these current schemes.

The remaining of the manuscript is organized as follows:
Section II describes the existing works and techniques regard-
ing certificate revocation. Then, Section III describes our re-
vocation and status verification approach. Afterwards, Section
IV describes our implementation and presents a performance
evaluation of our proposed approach as well as the results
obtained. Finally, Section V concludes the paper and points
out future research perspectives.

II. RELATED WORK

There exist numerous schemes and proposals that manage
and improve certificates revocation mechanism. In this section,
we describe some of the most well-known ones, that are
deployed by actual systems and standards.

A. Main certificate revocation mechanisms

Certificate Revocation List A Certificate Revocation List
(CRL) [13][14] contains the list of revoked certificates, dated
and signed by a Certification Authority (CA) and is period-
ically published. To check the validity of a certificate, the
verifier must send a request to the publication server hosting
the corresponding CRL, with argument the identifier of the
CA in charge of the certificate; it then receives the last CRL
generated by the CA; it must then check the CRL signature

and its validity, and then searches for the certificate in the
CRL.

The advantage of the CRL is its simplicity, its wealth of
information and its low risk. However, the size of the CRL
is its major disadvantage, because the bandwidth required for
the update and verification is very high, which greatly limits
its extensibility.

To ensure its freshness, the CRL contains the date of the
next update (of the CRL). As a result, users who require
fresh revocation information will want to retrieve the new
CRL, all at the same time. This may cause an implosion of
CRL requests which can add additional load on the server
distributing the CRL, making it a possible single point of
failure.

There are other variants, which represent extensions and
enhancements to the CRL method. Next, we describe some of
the most well-known ones.

Delta-CRL scheme [13] represents a list that contains all
the non-expired certificates that have been revoked since the
last CRL was published. Delta-CRL was designed as a solution
to address the scalability issue of downloading CRLs. Indeed,
the client does not have to download the entire CRL each
time. However, the revocation information can only be used
after the association of the Delta-CRL with the main CRL. The
Delta-CRL represents only a fraction of the CRL. Thus, if the
CRL size increases, the time and computation complexity of
the revocation verification increases also.

CRL Distribution Points (CRL-DP) [13] represents an-
other proposal to address scalability. Its main idea is the
fragmentation of the CRL into small fragments. Each fragment
is associated with a CRL distribution point which can be
located on different hosts or on different directories of the
same host. Each certificate has a pointer to the CRL-DP to
which it will belong if revoked. Hence, there is no need to
either search through the distribution points or have a prior
knowledge of revocation information location [15]. The Delta-
CRLs can also be used in the CRL-DP.

However, this solution has one main drawback: the non-
uniform growth of the fragments. More specifically, when a
certificate is established, it is decided in which fragment it
will belong if revoked. Thus, it suffers from an unbalanced
load on the distribution points because (1) some distribution
points have more revocations than others; and (2) some CRL
segments are requested more than the others [15]. Moreover,
when CRL-DP technique is used, the CRL segmentation is
permanently fixed for the lifetime of the certificates involved.
Thus, the CA is required to define a static fragmentation
before issuing the certificates which, represents an additional
difficulty.

Dynamic CRL Distribution Points [16][17] also called
Enhanced CRL Distribution Point [18] provides a solution
to the CRL Distribution Points non-uniform growth issue.
In this technique, two CRL extensions are defined: (1) CRL
Scope Field which allows scope statements' to be defined
and associated with CRL distribution points; and (2) Status

'a scope statement represents a range of certificates covered by a CRL

partition.

Referral Fields which can be used to modify the partitioning
for CRL Distribution Points by using the scope statements
to refer to a CRL Distribution Point [15]. If an end entity
wants to verify the validity of a certificate it can obtain a
CRL which contains a Status Referral Extension when the
certificate’s enhanced CRL distribution point is referenced.
This extension may include a scope that covers the verified
certificate and a pointer to a new location for the CRL for the
certificate in question [15].

Another alternative to CRL scheme is the Certificate Re-
vocation Status Directory (CRS Directory) [19][20]. In a
system that adopts the CRS technique, the certificate structure
is extended with two additional fields of 100 bits each [15].
Every day, the CA sends signed statements to the CRS
Directory about the status of single issued certificates. There
are signed statements for every non-expired certificate.

When a user inquires about a certificate revocation status,
the CRS Directory replies with information which the user
can use to verify the requested status. The CRS approach
decreases the communication load between the server and
end entities which makes it achieve an overall performance
gain compared to CRL approach. However, it considerably
increases the communication load between the server and the
CA.

Certificate Revocation Tree (CRT) [21] is commonly a
Merkle hash tree which represents all certificate revocation
information of a given PKI domain where a set of statements
about certificate serial numbers are provided in the leaves.
More specifically the leaves are ordered by certificate serial
number in a logical order where two adjacent certificates
Cert; and Cert; are revoked certificates, but no certificate
number between them is revoked. Thus, it provides the in-
formation whether a certificate is revoked or not. Indeed, the
path from the root to the appropriate leaf represents the proof
about the state of a requested certificate.

The main advantage of this approach is that we do not
need the entire CRL in order to provide a certificate verifi-
cation. Nonetheless, its main weakness is its update since any
change in the set of revoked certificates may result in the re-
computation of the entire CRT which results in a continuous
workload [22].

The Online Certificate Status Protocol (OCSP) [23] is an
online revocation system which relies on a request/response
mechanism. The revocation information is available on a
server called the OCSP responder which receives it directly
from the CA. The OCSP mechanism is designed to check and
request exclusively the revocation status. The mechanism relies
on a third party. Indeed, the OCSP responses are not signed
by the CA. Hence, the revocation server must be trusted by
the CA. If an end entity wants to verify the status of one
or more certificates, it sends an OCSP request to the OCSP
responder. The latter checks the revocation status information
of the certificate(s) and replies with an OCSP response. The
latter must be signed by the responder server.

The OCSP approach addresses the problem of low timeli-
ness as well as the problem of revocation information update.
However, its suffers from some drawbacks, mainly, (1) since
the approach is centralized, the OCSP server represents a

single point of failure [15]; (2) the OCSP responder verifies the
revocation status of a certificate without checking the validity
of its serial number and if it belongs to the CA. Thus, a
malicious user can flood the server with verification requests
for certificates that do not belong to the CA, making the
server work intensively which can cause its denial of service;
(3), it was proven that OCSP lookups are costly, especially
in time [24][25], which increases the client side latency; (4)
OCSP is an on-line scheme which makes it ineffective for
offline systems. (5) OCSP may provide real-time responses to
revocation queries, however it is unclear whether the responses
actually contain updated revocation information. Some OCSP
responders may rely on cached CRLs on their backend [25].
Finally, (6) the OCSP approach introduces a privacy risk.
Indeed, the OCSP responders know which certificates are
being verified by end users and they can therefore track the
sites a user is visiting [25].

To resolve the OCSP approach’s drawbacks, the OCSP
stapling [26] approach was proposed. In this solution, the
web server itself requests OCSP validation which it passes
as a response to inquiring clients. Stapling removes the la-
tency involved with OCSP validation because the client does
not need an additional round trip to communicate with the
OCSP responder to check the certificate’s validity [25]. It
also addresses the privacy issue since the OCSP responder
does not have access to knowledge about a web site’s visitors.
Nonetheless, it does not resolve the problem of scalability due
to the single point of failure.

The Simple Certificate Validation Protocol (SCVP) [27]
is a more general request/response scheme than OCSP because
it handles the entire certificate verification process rather than
the sole verification of the the revocation status [15]. However,
since it relies on a centralized server, it suffers from almost
all the drawbacks described for OCSP.

B. Comparison of certificate revocation mechanisms

Table I presents a comparison of the different revocation
schemes. The comparison is based on five metrics:

1) Scalability: describes how the approach behaves if the
number of users or/and the revocation rate increases. We
define three levels: Low level states that the approach is
(or will soon) unable to face the current systems require-
ments; Medium level states that the approach can meet
current requirements, but cannot overcome the system’s
evolution especially considering IoT requirements [28];
High level states that the approach is able to meet current
and future requirements.

2) Connectivity: describes the connectivity status (on-
line/offline) that the relying party must adopt in order
to ensure the reliability.

3) List type: describes the type of the list used such as
blacklist, whitelist or a combination of both.

4) Real-time Service: defines the capacity of the approach
to give real-time information to the end-user.

5) Additional cost: indicates if the described approach is
more costly in computational cycles than the CRL ap-
proach relying on the related works and their results. We

[Approach [Scalability [Connectivity | List type | Additional cost | Real-time service | Privacy exposure |
CRL Low offline, online Blacklist / No No
Delta-CRL Low offline, online Blacklist No No No
CRL distribution points Medium offline, online Blacklist No No No
Dynamic CRL distribution Points Hight offline, online Blacklist Yes No No
CRS Low offline, online | Blacklist, Whitelist Yes No Yes
CRT Low offline, online | Blacklist, Whitelist Yes No Yes
OCSP Medium Online Blacklist Yes Yes Yes
OCSP Stapling Medium offline Blacklist Yes Yes No
SCVD Low offline, online Blacklist Yes Yes Yes

Table I: Summary of revocation solutions for X509 certificates

chose to define CRL approach for comparison because
it represents the most well-known used technique.
Privacy exposure: indicates if the approach uses a
responder that can know which certificates are being
verified by end users and it can therefore track the sites
a user is visiting [25].

6)

From Table I, we note that the majority of existing tech-
niques incur additional costs and they do not provide real
time information. Moreover, except for the Dynamic CRL
Distribution Points approach [16], all the existing approaches
cannot meet the future scalability requirement. Additionally,
most of the techniques work in both offline and online mode.
From this comparison we can conclude that none of these
techniques can meet all the required needs for a resilient
revocation mechanism.

Thus, it is necessary to design a decentralized revocation
mechanism that avoids the single point of failure and supports
networks scalability. Moreover, it must provide real time
revocation information. Also, it must respect users privacy and
resolve the problem of users’ privacy exposure

C. Blockchain based revocation proposals

The distributed, event-recording and non-reproducibility
features of the blockchain technology make it a desirable
technology for PKI design and deployment [8][9]. Indeed,
blockchain features help in meeting the major challenges
of traditional PKI infrastructures: (1) since the blockchain-
based PKI solutions are distributed; they have no centralized
point of failure. (2) The trust is built based on the majority
vote of the miners; Hence, there is no single trusted third-
party and it does not require prior trustworthiness in the
system. And (3), The blockchain technology has several open-
source implementations which helps in building cost-effective
solutions [8]. Next, we describe several blockchain-based PKI
approaches. We focus on their revocation management.

Certcoin [29], is a completely decentralized PKI that lever-
ages the consistency offered by Namecoin blockchain [30][31]
to provide a strong identity retention guarantee. Certcoin uses
five functions: registration, update, lookup, verification and
revocation. During the registration, a user generates its own
private and public keys locally. Then it submits a transac-
tion of the public key and its signature to the blockchain.
The blockchain network verifies the transaction signature and
checks if this ownership was not registered before in the
system. If the verification is successful, the (ID, public key)
tuple is added to the blockchain; otherwise, it is dropped.

Certcoin defines a PKI scheme that addresses some of the
problems discussed earlier. However, it still suffers from
numerous shortcomings such as the high costs in mining and
public keys lookups and verifications [8]. Moreover, there is
no real verification of the ID linkability to a registered public
key. Finally, since we are interested in revocation techniques
in this work, in Certcoin, an owner of an identity ID can
revoke its public key simply by posting a transaction to the
blockchain. Thus, the revocation process is completely handled
by the owner himself/herself which can lead to different
shortcomings such as: (1) It can be a difficult task for a user
to handle the revocation by himself/herself because it needs
some knowledge about how to proceed. Moreover, a user could
not know about if his/her keys have been compromised. (2)
A malicious user will not revoke his/her keys because he/she
is acting maliciously. (3) To verify a certificate’s status, the
mechanism must first ensure that the certificate is not revoked
by verifying the revoked certificates that are published in the
blockchain, which implies browsing the blockchain. However,
it is well known that searching in the blockchain can be very
costly in terms of time.

Axon et al. proposed a Privacy-Aware Blockchain-Based
PKI (PB-PKI) [32], an adaptation of Certcoin to make it
privacy-aware. PB-PKI, does not publicly link identity with
a public key. Rather, it provides unlinkable short-term key up-
dates and user-controlled disclosure wherein a user’s identity
and previously used public keys can be disclosed either by
the user himself/herself, or through consensus of a network
majority. However, the revocation mechanism is still the same
as in Certcoin. Hence, it inherits all its shortcomings.

Leiding et al. proposed Authcoin [33]. Authcoin is similar
to Certcoin. However, it combines a challenge response-based
validation and authentication process for domains, certificates,
email accounts and public keys with the advantages of a
blockchain-based storage system. As a result, Authcoin does
not suffer from the weaknesses of existing solutions and it is
much more resilient to sybil attacks. But Authcoin uses the
same revocation mechanism as Certcoin and therefore also
inherits the same shortcomings.

AL-Bassam et al. [34] proposed SCPKI: A Smart Contract-
based PKI and Identity System as an alternative PKI system
based on a decentralized and transparent design using a
web-of-trust model and a smart contract on the Ethereum
blockchain. The smart contract of SCPKI centers around the
entity, which publishes a set of attributes, signatures, and
revocations on the blockchain for its identity. Each entity is

Delegation of the
Implementable on current revocation task
Approach Issue(s) addressed web architecture? Time cost Blockchain used to the user
-Centralization of trust
Certcoin [29] -CA misbehavior No High Namecoin Yes
PB-PKI [32] User privacy No High Namecoin Yes
-Centralization of trust
Authcoin [33] -sybil attacks No Hight Namecoin Yes
SCPKI [34] Centralization of trust No Low Ethereum Yes
Any blockchain
-Centralization of trust with smart
Yakubov et al. [7] -CA misbehavior Yes High contract No
-Centralization of trust
Pemcor [7] -CA misbehavior No High Any blockchain No
IKP [35] -CA misbehavior No High Any blockchain Yes
-Centralization of trust
Blockstack ID [36] -CA misbehavior No Hight Namecoin Yes
-Centralization of trust
-CA misbehavior -
Cecoin [37] MITM attack No High Any blockchain Yes
-Certificate revocation
management -Certificate
Proposed approach status verification Yes Low Namecoin No

Table II: Summary of blockchain-based revocation solutions

represented by an Ethereum address. Publishing an attribute to
an entity’s identity binds the identity to the attribute. Finally,
a dedicated function allows entities to revoke their own signa-
tures and the keys revocation status can be checked directly in
the blockchain. We note that the SCPKI revocation technique
suffers from the same shortcomings as Certcoin because the
revocation task is provided by the owner himself/herself.

Yakubov et al. [7] proposed a blockchain-based PKI frame-
work to manage X.509 certificates. They extend the standard
X.509 certificate to be compatible with blockchain-based PKI
approach, thanks to X.509 extension fields that they used to
embed blockchain meta data. The main idea of the proposed
framework is that each CA has a dedicated smart contract
that executes the CA functions as in a traditional PKI. The
smart contract acts on two lists: a white list for the created
certificates and a black list for the revoked ones. Thus, when
revoked, the hash of the certificate is added to the blacklist.
Even if the revocation method is efficient, it forces browsing
the blacklist to verify if a given certificate is revoked or not for
each certificate’s status verification which can be very costly
knowing that it requires searching a hash in the blockchain
block by block.

Yakubov’s proposal [7] is very similar to Corella’s et al.
proposal that is called Pomcor [38][39]. In Pomcor, a CA
issues a certificate to a subject as usual, except that it does not
sign it. Instead, it stores a cryptographic hash of the certificate
in a blockchain store that it controls, dedicated to storing
hashes of issued certificates. If the certificate is compromised,
the CA revokes it by storing its hash in another blockchain
store that it controls, dedicated to storing hashes of revoked
certificates. Thus, when a subject presents the certificate to a
verifier, the latter acts exactly as in [7]. Hence, this approach
suffers from the same shortcomings as [7].

Matsumoto et al. proposed Instant Karma PKI (IKP) [35],
an automated platform for defining and reporting CA mis-
behavior that incentivizes CAs to correctly issue certificates

and detectors to quickly report unauthorized certificates. IKP
allows domains to specify policies that define CA misbehav-
iors, and CAs that sell insurance against misbehaviors. IKP
is very costly and is a complex implementation [8] because it
requires modeling the CA behavior. Furthermore, the proposed
solution solves mainly the problem of misbehaving CA, which
does happen very rarely.

Ali et al. proposed Blockstack ID [36], a Namecoin based
PKI implementation. Blockstack ID modifies Namecoin by
adding another name-value pair dedicated for the public keys.
Thus, the public key is the value and the name is the identity of
the owner. Blockstack implementation binds the user identity
to an elliptic curve public key. Blockstack is one of the most
popular blockchain-based PKI implementations [8]. However,
it suffers from numerous shortcomings such as how the system
handles public key updates, lookups, and revocations have not
been considered. Also, the identity retention problem has not
been addressed.

Qin et al. proposed Cecoin [37], a distributed blockchain-
based PKI. In Cecoin, the task to distribute and manage
certificates is accomplished by miners who separate the power
from CAs. Moreover, it provides services of multi-certificate
and identity assignment. Finally, it uses a structure of Merkle
Patricia tree to implement a distributed Certificate Library
which stores all valid certificates. However, Cecoin uses the
same revocation mechanism as Certcoin, which makes it
suffer from the same issues. Comparison of blockchain based
revocation proposals

Table II summarizes the different approaches we have
discussed above. It is worth noting that the existing approaches
suffer from three main issues: (1) the majority are not appli-
cable to the current X509 PKI standards and require a whole
new protocol, which makes their adoption more complex
and costly. It is therefore necessary to propose a revocation
mechanism that is compatible with current web standards and
can be directly adopted and implemented. (2) the blockchain

Fragment
(RS list)

Fragment
(RS! list)

Fragment
(RS list)

Rl ? ot

.()‘___,

Bloor Filter Bloarm Filter Bloorm Filter
1 1 -_I
paees) e ;
i
—
= e I
= N 3 N
Lot + 100 - + 100 Vo +
LA LA 901
Certificate Bitarray Cetificate Bitarray Certificate Bitarray

Infas Infos Infos

Figure 1: New Revocation information structure: The revoca-
tion records that are usually stored in a CRL will be stored in
bloom filters. Each filter represents a distribution point.

based solutions are very costly in time because of blockchain
browsing. Consequently, it is necessary that the proposed
revocation scheme optimizes the search in the blockchain and
avoids blind browsing.(3) In most approaches, the revocation
task is delegated to the certificate’s owner who can find the
task too complex or the user can misbehave without revoking
his/her own certificate. Consequently, we need to design a
revocation system that spares the users from such a task and
provides the legitimate revoker (which is the CA) with the
necessary means to ensure such a task.

III. PROPOSED APPROACH

The main goal of our approach is the proposal of a new
certificate revocation and status verification scheme. Our ap-
proach relies on a public blockchain to store and dissemi-
nate the revoked certificates information. More specifically,
in order to support scalability, our proposal uses the same
principles as CRL distribution points. We use the extension
field of the X509 certificate’s structure to introduce a field that
describes which distribution point the certificate will belong
to if revoked. Each distribution point is presented by a Bloom
filter filled with revoked certificates (See Figure 1). Bloom
filters and revocation information are stored in a blockchain.
Each time the CA revokes a certificate, it re-computes the
corresponding Bloom filter and provides a new transaction to
store it in the blockchain.

A. Background

Our approach relies mainly on (1) a blockchain and (2)
Bloom filters. In this section we provide a quick summary of
these concepts.

1) Blockchain: A blockchain is defined as a distributed
database (ledger) that maintains a permanent and tamper-
proof record of transactional data. A blockchain is completely
decentralized by relying on a peer-to-peer network. More
precisely, each node of the network maintains a copy of the
ledger to prevent a single point of failure. All copies are
updated and validated simultaneously [40].

Blockchain technology was created to solve the double
spending problem in crypto-currency [41]. However, currently,
numerous works [40][42][43][44] explore blockchain applica-
tions in multiple use cases and use them as a secure way to
create and manage a distributed database and maintain records
for digital transactions of all types.

The blockchain ledger is composed of multiple blocks,
each block is composed of two parts. The first contains the
transactions or facts (that the database must store), which can
be of any type such as monetary transactions, health data,
system logs, traffic information, and so on. The second is
called the header and contains information (e.g., timestamp,
hash of its transactions, and others) about its block, as well as
the hash of the previous block. Thus, the set of the existing
blocks forms a chain of linked and ordered blocks. The longer
the chain, the harder it is to falsify. Indeed, if a malicious user
wants to modify or swap a transaction on a block, (1) it must
modify all the following blocks, since they are linked with
their hashes. (2) Then, it must change the version of the block
chain that each participating node stores [40].

2) Bloom filter: A Bloom filter is a space-efficient prob-
abilistic data structure that supports set membership queries
[45]. A Bloom filter is used to represent a set S =
{s1, 82, ..., $n} of n elements through an array bit of m bits
and using k independent hash functions {h1, ..., hy } [46][47].
Bloom filters are useful for many different tasks that involve
lists and sets. The basic operations involve adding elements
to the set as well as querying for element membership in the
probabilistic set representation. The structure offers a compact
probabilistic way to represent a set that can result in false
positives but not false negatives [45].

False positive
tisk

Figure 2: Overview of a Bloom filter

For a better understanding of Bloom filters, we present the
following application example illustrated by Figure 2. In this

example:
o The set S = {x1, 22} is composed of two elements (n =
2).

 The Bloom filter is a bitstring of 10 bits (m = 10).

o We use two hash functions {hy, ho} (k = 2).

A hash function maps each item of the set S to a random
number uniform over the range {1,...,m}. Initially all the
bits in the filter are set to zero. Afterwards, when adding an
element x, the values of hj(z) and hg(z) (modulo 10) are
calculated for the element, and the corresponding bit positions
are set to one. After adding x; and x5, the Bloom filter has
positions 1, 3, 4 and 7 set to 1. To query the membership of an
element x the same hash functions are applied on the queried
element. Then, the bit positions corresponding to the results
obtained are examined. If the two bits corresponding to the
results of the hash functions after applying them to the element
are set to one, that element is assumed to be present. Thus,
if the membership of z; or zs is queried, the response will
always be positive. However, in the case of x3 membership
query (Figure 2), the position 5 is set to zero and therefore x5
is guaranteed not to be present in the Bloom filter.

Due to the limited space of the filter, the application of
hash functions on a non-existing element can provide results
that correspond to bit positions that are already set, leading
to a false positive. Hence, querying a membership can result
in false positives (claiming an element to be part of the set
when it was not inserted), but not false negatives (reporting
an inserted element to be absent from the set when it is not
absent). The probability of having false positives is equal to
the probability of having all positions of the Bloom filter set
to one, for the k£ hash functions, as described by Equation 1.

—kn

Prp=(l—e)k (1)

B. System’s architecture

Our approach includes four entities such as depicted by
Figure 3:

o Certificate Authority (CA): the CA is the entity that
revokes certificates. In our approach, for each certificate
revocation, the CA sends a transaction to the blockchain
to add the new record. In other words, each revocation
record added in the CRL implies a new transaction signed
by the CA to add it in the blockchain in order to share
the information.

o Blockchain (BC): the Blockchain represents the dis-
tributed ledger that stores the revocation information,
called Revocation Status Information (RSI). More pre-
cisely, since we use an approach similar to distribu-
tion points, the global CA’s CRL is summarized as
a set of RSIs. Each RSI is mainly represented by a
Bloom filter. Each filter is considered as a distribution
point. Reading and downloading blockchain’s records
(blocks/transactions) do not need additional permissions
and do not involve any costs. Thus, RSIs are visible to
any user.

o Server: represents the web server, part of the TLS
connection. In order to be authenticated, the server uses
a certificate issued by the CA.

CA-Blockehain

[;
3 5 N
-3 l Revocation Transaction | | I I
g g CA
Blockchain - Server
e P
- g5
v &1
¢ . D\
(\
| —— Server revocation status I|
i check /
L o P
L Client Server
Y = o

~— Cliemt-Server _—

Figure 3: Overview of the system’s architecture: the client
receives the RSI from the web server during the TLS hand-
shake. The sever downloads the RSI to which it belongs from
the blockchain. The CA stores the different RSIs into the
blockchain.

o Client: represents the entity that initiates the TLS con-
nection. Before fully opening a TLS session with the
server, the client must authenticate it using its certificate.
This authentication step includes the revocation status
verification. Without the revocation status verification, no
session will be established.

The four entities described above operate so as to build three
different sub-systems which work independently as described
in Section III-C (depicted in Figure 3). The sub-systems are:

1) CA - Blockchain.
2) Blockchain — Server.
3) Server — Client.

C. System operation

In this section we present a detailed description of the
operations of our system. To do so, we describe the functions
of each of the sub-systems.

1) CA - Blockchain: The CA decides on a time interval
when it disseminates and updates its revocation information.
For example, each hour it informs, through network com-
munications, about all the new revoked certificates. We refer
to this time interval as T, (update time). When the update
time arrives, for each revoked certificate the CA builds a data
structure called the Revocation Status Information (RSI) and
performs a blockchain transaction to disseminate each RSI.
More precisely, the CA calculates the Bloom filter, which
contains the old revoked certificates as well as the new revoked
one and disseminate it through a blockchain transaction (the
RSI corresponds to a CRL distribution point equivalent).

[Part 1 [Part 2 |
Data field Size Data field Size
(bytes) (bytes)
Bloom filter 350 Version 2
Hash 32 Crl ID 2
Issuer 20
Publication date 4
Last update 4
Next update 4
Certificate ID 20
Revocation date 4
Reserved 10
Signature algorithm 2
Signature 64

Table III: Revocation Status Information (RSI) structure (case
of Namecoin blockchain usage)

The RSI contains two main types of information: (1) the
new Bloom filter and (2) the identity of the new revoked
certificate (certificate added to the RSI). The bloom filter is
calculated on all revoked certificates, and recalculated for each
new addition of a revoked certificate. Table III depicts the
structure of an RSI (implemented on Namecoin blockchain).
The data structure is divided into two parts mainly to facilitate
the creation of another data structure called Lightweight
Revocation Status Information (LRSI) through the usage of
Merkle root hash (described in more detail in Section III-C3).
Part 1 : contains the following fields:

« Bloom filter: contains the Bloom filter which represents
the main data of the RSI. More precisely, each new
revoked certificate is hashed according to the chosen
algorithms. Next, each bit array corresponding to one
hash modulo m is set to 1 thereby adding the new
revoked certificate to the Bloom filter. When a certifi-
cate’s revocation status is required, the filter is verified to
check whether the bit arrays corresponding to the verified
certificate are set to 1 or not.

o Hash: contains the hash of the first part. This field is
not included when computing the Merkle root later. This
hash is used during the verification of the integrity and
authentication of the LRSI structure.

Part 2 : contains the following fields:

o Version: the version of the protocol in use.

o CRL ID: identifies the CRL distribution point.

o Issuer : the issuer of the CRL.

o Publication date: the publication date of the RSI.

o Next Update: the date of the next RSI update. When
verifying the revocation status, the client must ensure that
the current date is before this Next Update date to ensure
the freshness of the RSI. The next update is set according
to T,. For example, if the current RSI was published
in 2019-05-25T19:20+01:00 and T, = 60 minutes, the
next update field will be set at 2019-05-25T20:20+01:00.
Nonetheless, if the CA revokes more than one certificate
(e.g., the CA revokes n certificates with n > 1), then,
only the last RSI will have the next update corresponding
to the next T),. However, for the other n—1 RSIs, each of
them, will have in its Next Update field, the same value

as the Publication Date field of another RSI. Figure 4
presents a detailed example of this mechanism.

o Last Update: date of the precedent RSI update. When
verifying the revocation status, the client must ensure that
the current date is after this Last Update date to ensure
the freshness of the RSI (see Figure 4).

o Certificate ID: serial number of the new revoked certifi-
cate.

« Revocation Date: revocation date of the new added cer-
tificate.

In addition to these two main parts, another common part
completes the RSI structure. This part contains:

o Signature Algorithm: describes the signature algorithm
used by the CA (e.g., Elliptic Curve Digital Signature
Algorithm (ECDSA)).

o Signature: represents the signature applied by the CA
on the Merkel root (hash) obtained from the two parts
by using the chosen signature algorithm (e.g., ECDSA)
(Figure 5 describes how the signature is provided).

In addition, there is a Reserved field for future extensions of
the approach.

If no certificate is revoked in the T, period, then the CA
resends the last provided RSI after modifying the dates of the
related fields as well as the signature.

For the filter implementation, we note, as demonstrated by
[45] from Equation 1, that the false positive rate can be optimal
for:

k=in2.)
n

Hence, for a chosen false positive threshold, it is possible
to determine the optimal filter dimension, as described by
Equation 3:
n-lnp
" In2)2 ©)

2) Blockchain - Server: There are two types of blockchains:
public and private. A public blockchain is characterized by the
use of an unlimited number of anonymous nodes. Any actor
can read, write, and validate transactions in the blockchain.
In contrast, a private blockchain makes restrictions on the
consensus contributors. Only the chosen trustful actors have
the rights to validate transactions.

We have used a public blockchain due to its openness
because any node in the world can access the blockchain’s data
and traffic without necessarily belonging to the network. The
blocks and transactions transit clearly without any encryption,
and only integrity protection and immutability services are
performed on them. Moreover, generally a public blockchain
is maintained by a strong community which ensures its relia-
bility.

In our approach, the server must continuously check new
transaction provided by its CA. In other words, the server must
download each transaction related to its distribution point.
Hence it downloads the RSI which includes the new Bloom
filter of its distribution point. Moreover, for each downloaded
RSI, the server must generate a structure called Lightweight
Revocation Status Information (LRSI). The LRSI has the same
structure and data fields as the RSI, except that it does not

Last update:
2019-05-25T18:20+1:00

Publication Date:
2019-05-25T19:20+1:00

Next update:
2019-05-25T20:20+1:00

RSI

RSI

Last update:

Last update:
2019-05-25720:20+1:00

Last update:
2019-05-25720:21+1:00

2019-05-25T19:20+1:00
Publication Date:
2019-05-25720:20+1:00

Next update:
2019-05-25720:21+1:00

Publication Date:
2019-05-25T20:21+1:007

Next update:
2019-05-25T20:22+1:00

¢

Publication Date:
2019-05-25T20:22+1:00

Next update: |
2019-05-25T21:20+1:00

Last update:
2019-05-25720:22+1:00

Publication Date:
2019-05-25T21:20+1:00

Next update:
2019-05-25T22:20+1:00

Figure 4: Next update/Last update fields mechanism of the RSI

ECDSA(Merkle Root)

s

Root Hash / Merkle Root

Hash of Part 1

Hash of Part 2
RSI's Part 1 RSI's Part 2

Figure 5: Signature method of the RSI

include the Bloom filter. Indeed, the server just removes the
Bloom filter field and keeps all the others. The LRSI structure
will be used in case of further investigation from the client
side in order to detect false positives (more details of this
structure’s goal and usage are provided in Section III-C3).

Table IV shows the structure of the LRSI. As explained,
it is very similar to the RSI structure except that it does not
include the Bloom filter.

[Part 1 [Part 2 |
Data field Size Data field Size
(bytes) (bytes)
Hash 32 Version 2
Crl ID 2
Issuer 20
Publication date 4
Last update 4
Next update 4
Certificate ID 20
Revocation date 4
Reserved 10
Signature algorithm 2
Signature 64

Table IV: Light Revocation Status Information (LRSI) struc-
ture (case of Namecoin blockchain usage)

3) Client - Server: In order to open a communication
session with the server, the client initiates a TLS connection.
However, in the handshake phase, the server sends its certifi-
cate, as well as the last downloaded RSI (timestamped and
signed by the CA) to which it belongs. This way, the client
can directly check through this RSI the certificate’s revocation
status without the need to open another connection with a

another remote server such as OCSP. Furthermore, the client
does not need to download a large CRL. Figure 6 depicts the
modified TLS handshake steps.

Server

Client

ClientHello

Certificate*
ServerKeyExchange®

CertificateRecqueast®

ServerHalloDone

Certificate®
ClientEeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished

Ld

[ChangeCipherSpec]
Finished

Figure 6: Modified TLS Client-Server handshake

We assume that each client provides basic protocol primi-
tives to handle the modified TLS extension used and to treat
the RSI and LRSI structures. Such an API is depicted in
Algorithm 1. Algorithm 2 presents the details of the proposed
approach.

When the client receives the RSI (see Algorithm 2), it
verifies if the RSI corresponds to the certificate’s distribution
point. In other words, it verifies that the certificate will be
added to this RSI if revoked. Next, it extracts the Bloom
filter. Then, it applies the chosen hash functions on the server’s
certificate. Finally, it checks the bit positions in the filter which
correspond to the hashes modulo m. Two results are possible:

1) The Bloom filter gives a negative answer (at least one
bit array is set to 0). That is, the certificate is not
included in the filter. As described earlier, a Bloom filter
cannot indicate the presence of some data when it is
not included (no false negatives). Hence, in the case
of a negative response, the TLS session is established

Algorithm 1: Basic operations of the client

Function InitiateConnection (Node client, Node
server) : DataArray // Initiates a TLS
connection and allows the reception of the
server’s parameters e.g., Certificate, RSI,
etc.

Function getRSI (DataArray serverResponse) :
DataArray // Extracts the RSI from the
server’s response

Function get LRSI (Node client, Node server) : List of
DataArray // Allows the reception of the LRSI
list

Function getCertificate (DataArray
server Response) : Certificate // Extracts the
server’s certificate from the server’s
response

Function VerifyDistPoint (String crll D, Certificate
certificate) : Boolean // Verifies if the
received RSI corresponds to the distribution
point of the server’s certificate if
revoked.

Function getFilter (DataArray rsi) : BitArray
// Extracts the Bloom filter from the RSI
structure

Function requestMembership (Certificate certificate,
BitArray rsi) : Boolean // Requests the
membership of the certificate in the Bloom
filter by applying the hash functions needed

Function SortLrsiList (List of DataArray list Rsi):
List of DataArray // Sorts the different
received LRSI according to the "Publication
Date" field

Function VerifyLrsiList (List of DataArray listRsi) :
Boolean // verifies if an LRSI is missing
relying on the field "Last Update" (or Next
Update) as a pointer from one LRSI to
another.

Function Error (String errorMessage) : Void
// returns and error message

Function AbortConnection (Node client, Node
server) : Void // Aborts the TLS connection

Function ContinueTlsConnection (Node client,
Node server) : Void // The inquired certificate
is not revoked and the TLS connection can
continue its steps

because we have the assurance that the certificate has
not been revoked.

2) The filter provides a positive reply. In this case, since the
filter can generate false positives, further checks must be
made, as described below.

When the filter provides a positive reply, the client must ex-
ecute further operations to ensure if the reply stands for a false
positive or not. More specifically, the client asks the server to
transmit all the revocation information generated by the CA
to it. Thus, the server sends all the Light Revocation Status
Information (LRSI) it generated. As described previously, the
LRSI is a lightweight structure which is exactly the same as the
RSI except that it does not include the Bloom filter field (Table
IV depicts the structure of the LRSI). Indeed, the Bloom filter
represents more than 70% of the RSI total size. Using LRSI
instead of RSI achieves huge savings in terms of bandwidth
and transmission time. When the client receives the LRSIs,
it first verifies that the server has sent all the LRSI and did
not omit one. This verification is made by checking the next
update (or last update) field by following a pointer from one
LRSI to another. Thereafter, the client verifies their integrity

and authentication by verifying their signatures. Indeed, the
client must ensure that the LRSIs it received contains the same
exact data (generated by the CA) as the original RSIs and no
fields have been modified. To achieve such verification, the
client computes a Merkle hash of the LRSI by considering the
following as leaves for the Merkle tree: (1) the hash field of
the first part provided by the CA and (2) computing the hash
of the second part. Then, it compares this hash result with
the signature of the LRSI after its decryption using the CA’s
public key. Figure 7 shows the signature verification process.
Indeed, the client must ensure that the revocation information
is generated by the CA. However, the LRSI is generated by
the server. Since the LRSI owns all the data fields generated
by the CA except the Bloom filter, the hash field provided on
the first part of the RSI (including the Bloom filter) is also
provided by the CA. This hash is used as a leaf of the Merkle
tree. If any of the LRST’s fields is modified, the Merkle root
obtained will be different from the one computed by the CA,
which causes the non verification of the ECDSA signature
(that is applied on the Merkle root).

Finally, the client inspects, one by one, all the Certificate
ID fields of the LRSIs. If the Certificate ID of the server is
found, it means that the certificate was revoked and in this
case the TLS connection aborts with fatal error. Otherwise,
the TLS connection continues (because it was a false positive).
For optimization concerns, we consider that the Certificate ID
inspection is provided after the signature verification of each
LRSI (for each LRSI, we verify its signature, then the CRL
ID correspondance before verifying the next LRSI).

IV. IMPLEMENTATION AND EVALUATION
A. Implementation

To implement our approach, we used Namecoin blockchain
[30][31]. Namecoin is a fork of Bitcoin which aims to provide
a decentralized DNS. Indeed, it implements the top level
domain .bit, which is independent of the Internet Corporation
for Assigned Names and Numbers (ICANN)?. It uses the Proof
of Work (PoW) consensus system. Table V describes the main
features of Namecoin.

To implement our approach, any public blockchain can
be used because they all allow data storage (e.g., Bitcoin®,
Litecoin*, dash’ or any other). Our proposal does not require
the use of a blockchain that implements smart contracts.
However, such blockchains (e.g., Ethereum®, cosmos’, tezos®,
metahash® or any other) can be used. Each blockchain has its
own advantages and drawbacks to our approach. However, the
majority of the contract-less blockchains offer a limited space
to store information by transaction. Regarding the contract
based blockchains, they need the development of contracts
in order to read and write into the blockchain which adds

Zhttps://www.icann.org

3https://bitcoin.org/

“https://litecoin.org

Shttps://www.dash.org

Shttps://ethereum.org/
https://www.crypto-sous.fr/cosmos-network/
8https://tezos.com

9https://metahash.org

LRSI

Extraction of Hash field
of the LRSI's 1 part

_________ Computation of the hash
...... of the LRSI's 2 part

Signature Decryption of the

public key

-------- > Hash

o Signature with CA's = mm mm

Merkle Root (Hash)

________ .} Signature is

valid when Hash
values are equal

Figure 7: Signature verification of the LRSI structure

Algorithm 2: Proposed revocation status verification

rsi, lrsi . DataArray
IrsiList : List of DataArray
server Response : DataArray
bloomFilter : BitArray
client, server : Node // The client and server
involved in the TLS connection
certificate : Certificate
begin
server Response <~ InitiateConnection (client,
server);
certificate <—getCertificate (serverResponse);
rsi < getRSI (serverResponse);
if (VerifyDistPoint (rsi.crllD, certificate))
then
bloomF'ilter < getFilter (rsi);
if (requestMembership (certificate,
bloomF'ilter)) then
Irsilist < getLRSI (client, server);
Irsilist < SortLrsiList (Irsilist);
if (VerifyLrsiList (IrsiList)) then
for each lrsi in lrsiList do
if certificate.ID == Irsi.CertificateID
then
Error ("Revoked certificate");
AbortConnection (client,
server);
Break;
ContinueTlsConnection (client,
server);
else
Error ("Missing LRSI");
AbortConnection (client, server);
| Break;

else
| ContinueTlsConnection (client, server);

else
Error ("CRL ID mismatch");
| AbortConnection (client, server);

L end
[Data field [Feature |
Type Public blockchain
Feature Fork of Bitcoin
Average transaction fee 0.00028 $
Block time 12 minutes 19 seconds

Transaction average /h 23

Blockchain dimension 6.29 GB

Table V: Namecoin features (02/12/2020)

unnecessary complexity to our approach. Moreover, contracts
incur additional latency during their execution. Thus, we opted
for Namecoin because of the following three reasons:

1) It allows data storage in the form of key/value pair,
which is a suitable solution for our approach. Users are
able to store keys along with their values which are 520
bytes in size.

2) The daily volume of transactions is relatively small
which facilitates the data search in the blockchain.

3) Transactions fees are very low (the average transaction
fee is about $0.00028 USD (accessed on 02/12/2020))'°

As described earlier, in order to support scalability, we use
an approach similar to distribution points. Each distribution
point is represented by a distinct RSI. Considering the RSI
structure described earlier, the fields (without considering
the Bloom filter field) need 170 bytes of storage. Since in
Namecoin values are limited to 520 bytes, our Bloom filter
will have a size of 350 bytes (2800 bits).

In our implementation, the Bloom filter must be able to
represent a maximum number of revoked certificates as well as
being able to keep a reasonable probability of false positives.
Thus, in order to define the optimal number of hash functions
(k) we need to consider the number of revoked certificates (n)
to be represented by one Bloom filter as well. We computed the
false positive probability of the filter responses as described
by Equation 1 by varying k& and n by considering the filter
size m = 2800. Figure 8 depicts the results obtained. It is
worth noting that when n = 100 or n = 250, the false
positive rate is always considerably low. However, the number
of the revoked certificates we need to represent is also low.
Considering these n values incurs the use of numerous Bloom
filters which can be detrimental for the issuance/revocation
ecosystem. Additionally, when n = 1000, the false positive
probability is always over 26%, which represents a high
probability, especially that, in this case, the system will check
the certificate revocation through LRSI mechanism so often,
leading to additional time and increased computation costs.
Consequently, we argue that by considering the parameters
k = 3 with n = 500 or n = 750 we can achieve the best
compromise. Indeed, when n = 500, Pf, = 7% and when
n = 750, Py, = 18%. Hence, one of these values can be
chosen according to the use case.

10https://bitinfocharts.com/namecoin/

1.0

— & n=100

+ n=250 O/O/O*D/O ©
n=500 Lo~ v

v n=750 .0 vV

O n=1000 .° v

0.8

0.6
Il
AN
o
<

False positive probability (Ps)
0.4
AN
AN
<
AN

N
B U U R
T 1T T T 7T T T T T T T T T T T T T T T T

1234567891011 13 15 17 1920

0.0

Number of hash functions (k)

Figure 8: Evolution of false positive rate according to the
number of hash functions (k) and the number of revoked
certificates to consider (n)

B. Evaluation framework

To evaluate our system, we use a real implementation
of our approach. To achieve this goal, we developed using
Python language prototypes for the Server, the Client and
the CA by relying on the openSSL 1.0.2g library [48]. We
considered k = 3 where we used Python mmh3 library which
includes a set of fast and robust hash functions!!. Regard-
ing the blockchain implementation, we used Multichain'? to
simulate the Namecoin blockchain. Multichain is an open
source blockchain platform which helps in the building and
deployment of blockchain applications. It is fully configurable
according to the user’s needs and therefore it can be setup to
reproduce the same functions as any other blockchain. We
used this feature to simulate a Namecoin blockchain. Each
entity (Client, Server and CA) was implemented on a different
machine. Each machine was connected to the Internet through
the provision with a different public IP address. Each of the
Server and the CA hosts a copy of the blockchain. Table VI
describes the technical features of the different machines used
in our testbed.

CPU CPU CPU
Node architec- operation max Operation
type ture mode speed RAM System
core
i7-3770, Ubuntu
Server X86_64 64 bits 3.4 GHz 8 GB 16.04
Core i5- Kali
5300u, Linux
CA x86_64 64 bits 2.3GHz 8 GB 4.19
Core i5- Kali
5300u, Linux
Client x86_64 64 bits 2.3GHz 8 GB 4.19

Table VI: Technical features of the testbed’s machines

https://pypi.org/project/mmh3/
12https://www.multichain.com

In this evaluation we study the time needed to obtain
the revocation information as well as the quantity of data
transmitted to fulfill this goal. These two parameters are among
the most important ones for a revocation mechanism. Indeed,
(1) the time needed to obtain a revocation information is
responsible for the latency of connections which has an impact
on the quality of service provided. (2) the amount of data
needed must be the most optimal to minimize congestions on
the network. For both indicators (time and data quantity) there
are two possible scenarios that we analyzed separately:

1) The Bloom filter provides a negative membership re-
sponse which means that the certificate is not revoked.

2) The Bloom filter provides a positive membership re-
sponse. Knowing that the filter can generate false pos-
itives, further checks must be done using LRSI as
described by Section III-C3.

In current PKI systems, the number of valid certificates is
by far greater than the number of revoked certificates, which
makes the probabilities of occurrence of the last two scenarios
(positive or negative response of the filter) very different.
Table VII depicts some statistics retrieved from [2] about the
most well-known and largest CAs. According to the statistics
presented, in average 5.3% of the certificates issued by a CA
are revoked. This result includes the consideration of GoDaddy
CA (26%) entry. However, this value is clearly an outlier
regarding the set of the data depicted in Table VII. Indeed,
by removing this entry, the average value is equal to 2.72%
which represents a low percentage. In order to be fair in this
evaluation, for the remainder of this paper, we consider that
the average revocation ratio of certificates to be 5.3%.

CA Unique Certificates Avg. CRL | Rate
CRLs Total | Revoked | size (KB) %

GoDaddy 322 1,050,014 | 277,500 1,184 26
RapidSSL 5 626,774 2,153 34,5 0.3
Comodo 30 447,506 7,169 517.6 1.6
PositiveSSL 3 415,075 8,177 441.3 1.97
GeoTrust 27 335,380 3,081 12,9 0.91
VeriSign 37 311,788 15,438 205.2 4.95
Thawte 32 278,563 4,446 254 1.59
GlobalSign 26 247,819 24,242 2,050.0 9.78
StartCom 17 236,776 1,752 240.5 0.73
Total rate 5.3

Table VII: Statistics on CRLs and Certificates of the most
well-known CAs

Let us denote ep to be the event describing the occurrence
of a revocation status request where the Bloom filter provides
a positive answer and en to be the event describing the
occurrence of a revocation status request where the Bloom
filter provides a negative answer. We define P,, the probability
that the event en occurs which leads to the first scenario
where the client obtains a very fast response informing it
that the certificate is not revoked. We define P, to be the
probability that the event ep occurs, which leads to the second
scenario wherein additional verifications using LRSI structures
are provided to decide about the validity of the corresponding
certificate. We can calculate, with a certain accuracy, the oc-
currence probabilities (P, and P,) of these possible scenarios.

[Symbol] Description [[Symbol| Description
Number of elements in
S Set of n elements n the set S
Size of the bloom filter Number of hash
m in bits k functions used
The probability of Update interval of the
Prp having false positives Tu revocation information
The event describing The event describing
the occurrence of a the occurrence of a
revocation status revocation status
request where the request where the
Bloom filter provides a Bloom filter provides a
ep positive answer en negative answer
The probability that the The probability that the
Py, event en occurs Pp event ep occurs
The probability that a the false positive rate
requested certificate is corresponding to the
Py, valid Pr total number of requests
The probability that a
requested certificate is
P revoked

Table VIII: Notations table

Let us consider an equiprobable scenario where all the CA’s
certificates have the same probability of being requested. Let
us denote P, to be the probability that a requested certificate
is revoked, which is on average 5.3% (P, = 0.053) of the
revocation status requests cases. Consequently, the probability
(denoted P,) that a requested certificate is valid (not revoked)
is calculated by Equation 4:

Pv:?rzl_Pr

“4)
=1-0.053 = 0.947

The probability that a filter provides a false positive re-
sponse (providing a positive response while the certificate is
still not revoked) is Py, = 0.07 when n = 500 or Py, = 0.18
when n = 750 (according to Equation 1). Nonetheless, these
Py, rates correspond to the sole revocation status requests
that should provide a negative response. In other words, the
false positive rate is 7% of the set of 94% of the revocation
status requests that are provided on non-revoked certificates
(P, = 0.947). Hence, according to Equation 5, the false
positive rate corresponding to the total number of requests
(denoted by Pr) is equal to Pr = 0.947%0.07 = 0.066 when
n = 500 and Pr = 0.947 % 0.18 = 0.17 when n = 750.

Pp =P, x Py, (5)

Finally, the probability that the Bloom filter provides a
positive response, which forces additional verifications using
LRSI structures, as described by Equation 6 is equal to
P, = 0.119 when n = 500 and P, = 0.223 when n = 750.

P, =P, + Pp (6)

As a result, the probability that the Bloom filter provides a
negative response, as described by Equation 7 is equal to P,, =
0.881 when n = 500 and P,, = 0.777 when n = 750.

P,=P,=1-P,)

To compare the performance of our proposed approach with
existing revocation management systems, we re-executed the

<Or . O RSI
A OCSsP
+ CRL
+ _ +
T+ "
8 -
n
E
~ o
o Y
£
£
o
A——A— A A A——— A
O———o O————o0 o o
o
T T T T T T
20 100 250 500 750 1000

Number of revoked certificates

Figure 9: Time needed to provide a response on the revocation
status of a non-revoked certificate

same experiments used on our approach by considering a re-
vocation system relying on: (1) OCSP and then on (2) a CRL.
The implementations were achieved by using the OpenSSL
1.0.2g Library. For each of the experiments, we considered
the number of revoked certificates based on the value of n. In
other words, if we executed 100 experiments where n = 500,
we also executed 100 experiments by considering a revocation
system that relies on OCSP where 500 certificates are revoked,
as well as 100 experiments by considering a revocation system
that relies on a CRL that contains 500 entries. We chose to
compare our approach with OCSP and CRL because they
represent the main methods used for certificates revocation
and status verification.

C. Numerical results and discussion

As described above, we have evaluated our approach ac-
cording to the two possible scenarios: (1) the filter member-
ship request provides a negative response and (2) the filter
membership request provides a positive response.

1) Time consumption:

Negative response scenario

Figure 9 shows the results obtained with our implementation
regarding the time needed to provide a response on the revo-
cation status of a non-revoked certificate. More precisely, the
time measured includes all the connection steps, namely (1)
the client request for a connection, (2) the server reply and the
RSI download time and (3) the RSI treatment duration by the
client side. Each result presented represents the average com-
puted on the results obtained from 100 experiments. During
these experiments we requested the status of certificates that
would not trigger a false positive causing the filter to provide
a negative response. The standard deviations calculated on
the results of each of the 100 experiments are very low
(< 0.08ms).

We note that the time needed by our approach is very stable
with 1.2 milliseconds (ms) on average and does not vary with

O RSI o
A OCSsP
+ CRL

150

100
|

Time (ms)

+

A

20 100 250 500 750 1000

Number of revoked certificates

Figure 10: Time needed to provide a response on the revoca-
tion status of a revoked certificate

the number of the revoked certificated covered by the filter.
Indeed, since the filter provides a negative response, no further
verifications are needed. We recall that this performance
occurs in most cases. Indeed, it occurs in more than 88% of
the revocation status request cases when n = 500 and occurs
in more than 77% of the cases when n = 750.

Figure 9 also depicts the performances of OCPS and a
CRL-based systems. Both of these systems provide a sta-
ble time needed for a response: OCSP needs a time be-
tween [6.35ms,6.55ms] with a standard deviation between
[0.960ms, 1.34ms]. The CRL-based system needs a time
between [31.68ms,34.2ms] with a standard deviation be-
tween [2.81ms, 4.65ms]. Thereupon, based on these results,
we conclude that our approach significantly outperforms the
traditional systems in most cases.

Positive response scenario

Figure 10 shows the results obtained with our approach,
OCSP and CRL-based implementations for the time needed
to provide a response on the revocation status where the filter
provides a positive response. OCSP and CRL-based systems
kept their last stable results. Nonetheless, the time needed by
our approach increases with n. In fact, each time the filter pro-
vides a positive response, additional verifications are provided
as described in Section III-C3. Therefore, when the number of
revoked certificates considered by the filter increases, the time
needed for additional verifications increases. For example,
when n = 500 the time needed to provide a response is on
average equal to 60.24ms. We recall that this use case scenario
occurs only in less than 12% of the cases.
2) Quantity of transmitted data:

Negative response scenario

In this section we measure the data amount needed to exchange
in order to ensure the revocation verification task. Since OCSP
relies on a request/response mechanism, the amount of data
exchanged is constant and is limited to request and response
packets’ sizes which makes them negligible. Hence, in this

section we only compare the performance of our approach
with the CRL-based approaches.

40

—1© RsI
+ CRL +

Data needed (kbytes)
20
I

o |t o o o o o
T T T T T T
20 100 250 500 750 1000

Number of revoked certificates (n)

Figure 11: Amount of data needed to exchange to provide a
response on the revocation status of a non-revoked certificate

Figure 11 depicts the amount of data needed by our ap-
proach and by CRL based approaches in order to provide a
response on the revocation status where the filter provides a
negative response. As with OCSP, in this case, our approach
relies on a simple request with one response that contains
the RSI structure (520 bytes). This performance does not
change when the number of certificates (n) considered by
the filter increases because the latter will provide a negative
response. Nevertheless, CRL based approaches exchange more
data when the number of the revoked certificates considered
by the CRL increases. In fact, CRLs contain one entry for each
certificate that is revoked. Thus, the size of the CRL (in bytes)
is expected to correlate with the number of entries. According
to [2], on average, each entry is 38 bytes.

Thus, our approach largely outperforms the CRL based
approaches by exchanging a low amount of data to ensure
the revocation status verification. Furthermore, in this case,
the amount of data needed by our approach is very similar to
the amount needed by OCSP [49], regardless of the value of
n. We recall that this case occurs in most cases such as in
more than 88% of the revocation status requests cases when
n = 500 and also occurs in more than 77% of the cases when
n = 750.

Positive response scenario

Figure 12 depicts the amount of data needed by our approach
and by CRL-based approaches in order to provide a response
on the revocation status when the filter provides a positive
response. It is worth noting that our approach achieves the
worst performance. Indeed, it must first download the RSI
structure. When the filter extracted from the latter provides
a positive response, the system must ensure whether it is a
false positive or not. Hence, additional verification using LRSI
structures is needed. This phase requires the downloading of
all the LRSI structures. There are as many LRSIs as revoked
certificates and each LRSI is 170 bytes. For example, when

n = 500, our approach needs 80.52 Kbytes to provide a re-
sponse. However, we recall that this use case scenario happens
only in less than 12% of the cases. Moreover, systems that
have sufficient computational ressources may apply cashing
techniques in order to not download the set of LRSIs each
time as well as to optimize the verification process to decrease
the time and data needed to provide a response.

150

o RSl ©
-+ CRL /

Data needed (kbytes)
o

o 4 ¢—+

20 100 250 500 750 1000

Number of revoked certificates (n)

Figure 12: Amount of data needed to exchange to provide a
response on the revocation status of a revoked certificate

3) Evaluation of security requirements : In this section we
show how our approach satisfies the security and performance
requirements discussed earlier in Section II-B and Section
II-C.

Scalability: our system relies on a public blockchain, which,
in turn, relies on a peer-to-peer network. It is well-known that
peer-to-peer networks are one of the best scalable solutions
[50]. Moreover, the client does not need to download the
entire CRL. Instead it downloads the lightweight data structure
directly from the connection’s server which saves the time of
the connection with the CA.

Connectivity: a mechanism such as OCSP cannot work
without a stable Internet connection and continuous access
to the CA. This is an important issue because most of the
current browsers open only a security warning dialog to the
user, or even worse, they do not alert the user when they
cannot reach the OCSP responder and establish the connection
with the server. Our approach overcomes this vulnerability
because of its ability to work in an offline mode. Indeed,
the servers host a copy of the blockchain that contains the
revocation information. Thus, they can access this data without
a connection to the CA.

Privacy: as described above, the OCSP responders know
which certificates are being verified by end users and they can
therefore track the sites a user is visiting [25], which represents
a privacy breach that can be exploited. In our approach there
is no communication with a third party responder. Each server
sends to the client the RSI that may contain its certificate if
it has been revoked. Then the verification is provided by the
client side. Thus, there is no information exposure.

Authentication/RSI message substitution: since all
RSI/LRSI are signed, if an attacker alters or substitutes a
structure, it will be quickly detected at the client level because
the signature will not correspond to the CA’s public key.

Availability/DDoS protection: the highly decentralized
architecture of blockchains makes them robust against
DoS/DDoS attacks. Indeed, services are duplicated and dis-
tributed over different network nodes. That is to say, even if
an attacker manages to block a node, it cannot block all the
other nodes.

Revocation information falsification: In addition to the
CA’s signature, the RSI structures and thus the revocation
information are protected through the blockchain architecture
design. Indeed, if a malicious user wants to modify or swap a
transaction on a block, first, it must modify all the following
blocks because they are linked with their hashes. Then, sec-
ond, it must change the version of the blockchain that each
participating node stores which is almost impossible.

4) Cost evaluation: Our approach relies on a public
blockchain which incurs costs that depend on the cryptocur-
rency used by the blockchain system. However, we argue that
each security service provided incurs a cost which as long as
it remains below the cost of potential damages, the security
solution is worth implementing. Moreover, existing approaches
such as OCSP and CRL are also costly.

One of the reasons we have used Namecoin is because
of its low cost. Based on the low revocation rate, we can
conclude that the certificate’s revocation activity is also low.
Thus, our approach requires a small number of transactions, at
least one transaction each T),. For example, if we consider (1)
T., = 60 minutes, and (2) there are two certificate revocations
per hour: based on the current average transaction fee'> which
is 0.00028 $, our system would need on average 0.40 $ per
month. Furthermore, a blockchain is a fully autonomous sys-
tem, which offers the advantage of removing the infrastructure
maintenance cost compared to other approaches. With these
low costs, we believe that our approach is significantly less
costly than the other current systems, especially OCSP which
needs the availability and maintenance of an infrastructure on
a continuous basis.

We are aware that cryptocurrencies may vary a lot. Nonethe-
less, according to studies such as [51] and [52], the evolution
of the cryptocurrencies rates will get more stable over time.

V. CONCLUSION

The certificates revocation management remains to be a
recurring issue that continues to grow especially with the
current evolution and openness of networks and their contin-
uous adoption of new paradigms such as Internet of Things,
cloud computing and so on. The current existing revocation
management techniques suffer from some drawbacks such as
(1) the centralization which leads to single point of failures,
(2) financial and additional computational costs, (3) users’
privacy exposure and many others. Thus, considering the
evolution of networks and the openness/connection of the

3In this example we consider the current Namecoin average transaction
fee applied on the date of 2% of December 2020

different use-cases, these drawbacks will lead to the incapacity
of the existing approaches in ensuring a correct revocation
management.

Blockchain based approaches resolve some of these issues.
However, the proposed solutions are not compatible with the
current X509 standards and their implementations require a
whole new architecture of the web to be deployed.

In this context, we proposed a novel revocation management
and status verification system that meets all the requirements
and yields strong performance results. Our approach relies on
a blockchain which makes it very resilient and completely
decentralized in order to meet the evolution of networks
as well as their scalability. Moreover, it is fully compatible
with the current web standards and does not require any
modification to be implemented, which to the best of our
knowledge, such an approach has not been proposed yet.
In addition, previously proposed blockchain based revocation
mechanisms suffer from high time delays due to the time
costs incurred by the blockchain browsing to find the needed
transaction. We propose a mechanism that relies on bloom
filters which drastically optimize the time needed to provide
the revocation information. More precisely, our proposal uses
the same principles as CRL distribution points. Each distribu-
tion point is presented by a Bloom filter filled with revoked
certificates. Then, Bloom filters and revocation information are
shared and disseminated using a public blockchain.

We implemented and evaluated our approach on a real
testbed. This evaluation shows clearly the ability of our revo-
cation system to meet the needed security and performances
requirements as well as its capacity to outperform the existing
approaches (OCSP and CRL-based systems).

For future works, we plan to focus on the worst case
scenario of our solution, that is, when the filter provides a
positive response. Indeed, we work to provide an alternative
solution that avoids the downloading of all the LRSIs from
the server.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable com-
ments which helped us improve the content, organization, and
presentation of this paper.

REFERENCES

[1] Jean Philippe Monteuuis, Badis Hammi, Eduardo Salles, Houda Labiod,
Remi Blancher, Erwan Abalea, and Brigitte Lonc. Securing pki requests
for c-its systems. In 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pages 1-8. IEEE, 2017.

[2] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin,
Bruce Maggs, Alan Mislove, Aaron Schulman, and Christo Wilson. An
end-to-end measurement of certificate revocation in the web’s pki. In
Proceedings of the 2015 Internet Measurement Conference, pages 183—
196. ACM, 2015.

[3] Liang Zhang, David Choffnes, Dave Levin, Tudor Dumitrag, Alan
Mislove, Aaron Schulman, and Christo Wilson. Analysis of ssl certificate
reissues and revocations in the wake of heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference, pages 489—-502.
Association for Computing Machinery, 2014.

[4] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,
Michael Bailey, et al. The matter of heartbleed. In Proceedings of the
2014 conference on internet measurement conference, pages 475-488.
Association for Computing Machinery, 2014.

[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Paul Mutton. Certificate revocation: Why browsers remain affected by
Heartbleed. Technical report, Netcraft, April 2014.

Wayne Thayer. The Importance of Revocation Checking. Technical
report, CA Security Council, March 2013.

Alexander Yakubov, Wazen Shbair, Anders Wallbom, David Sanda, et al.
A blockchain-based pki management framework. In The First IEEE/IFIP
International Workshop on Managing and Managed by Blockchain
(Man2Block) colocated with IEEE/IFIP NOMS 2018, Tapei, Tawain 23-
27 April 2018, 2018.

Tara Salman, Maede Zolanvari, Aiman Erbad, Raj Jain, and Mohammed
Samaka. Security services using blockchains: A state of the art survey.
IEEE Communications Surveys & Tutorials, 21(1):858-880, 2018.
Xiaoyang Zhu and Youakim Badr. Identity management systems for
the internet of things: a survey towards blockchain solutions. Sensors,
18(12):4215, 2018.

Konstantinos Christidis and Michael Devetsikiotis. Blockchains and
smart contracts for the internet of things. IEEE Access, 4:2292-2303,
2016.

Ana Reyna, Cristian Martin, Jaime Chen, Enrique Soler, and Manuel
Diaz. On blockchain and its integration with iot. challenges and
opportunities. Future Generation Computer Systems, 88:173-190, 2018.
Achraf Fayad, Badis Hammi, and Rida Khatoun. An adaptive authenti-
cation and authorization scheme for IoT’s gateways: a blockchain based
approach. In 2018 Third International Conference on Security of Smart
Cities, Industrial Control System and Communications (SSIC), pages
1-7. IEEE, 2018.

David Cooper, Stefan Santesson, S Farrell, Sharon Boeyen, Rusell Hous-
ley, and W Polk. RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. Internet
Engineering Task Force (IETF), May, 2008.

P Yee AKAYLA. RFC 6818: Updates to the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
Internet Engineering Task Force (IETF), January, 2013.

Andre Arnes, Mike Just, Svein J Knapskog, Steve Lloyd, and Henk
Meijer. Selecting revocation solutions for PKI. In Fifth Nordic Workshop
on Secure IT Systems (NORDSEC 2000), pages 1-16. Citeseer, 2000.
ISO/TEC ITU. Final proposed draft amandment on certificate exten-
sions. pages 1-12, April 1999.

X.509 ITU-T RECOMMENDATION. Information technology—open
systems interconnection—the directory: Public-key and attribute certifi-
cate frameworks. SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY, pages 1-254, 2016.

P Hallam-Baker and W Ford. Internet X.509 Public Key Infrastructure
ENHANCED CRL DISTRIBUTION OPTIONS. PKIX Working Group,
Internet Draft, Internet Engineering Task Force (IETF), August, 1998.
Silvio Micali. Efficient certificate revocation, February 26 2008. US
Patent 7,337,315.

Moni Naor and Kobbi Nissim. Certificate revocation and certificate
update. [EEE Journal on selected areas in communications, 18(4):561—
570, 2000.

Paul C Kocher. On certificate revocation and validation. In International
Conference on Financial Cryptography, pages 172-177. Springer, 1998.
Adam Slagell, Rafael Bonilla, and William Yurcik. A survey of
PKI components and scalability issues. In 2006 IEEE International
Performance Computing and Communications Conference, page 64.
IEEE, 2006.

Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani,
Slava Galperin, and Carlisle Adams. RFC 6960: X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol - OCSP. Internet
Engineering Task Force (IETF), June, 2013.

Emily Stark, Lin-Shung Huang, Dinesh Israni, Collin Jackson, and
Dan Boneh. The case for prefetching and prevalidating tls server
certificates. In Network and Distributed System Security Symposium
(NDSS), volume 12, 2012.

Emin Topalovic, Brennan Saeta, Lin-Shung Huang, Collin Jackson, and
Dan Boneh. Towards short-lived certificates. Web 2.0 Security and
Privacy, 2012.

Yngve Pettersen. RFC 6961: The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension. Internet Engineering Task
Force (IETF), June, 2013.

Trevor Freeman, Russell Housley, Ambarish Malpani, David Cooper,
and William Polk. RFC 5055: Server-Based Certificate Validation
Protocol (SCVP). Internet Engineering Task Force (IETF), December,
2007.

Badis Hammi, R Khatoun, Sherali Zeadally, Achraf Fayad, and Lyes
Khoukhi. Internet of Things (IoT) Technologies for Smart Cities. IET
Networks, 2017.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[51]

[52]

Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. A decen-
tralized public key infrastructure with identity retention. JACR Cryptol.
ePrint Arch., 2014:803, 2014.

Kraft Daniel, Castellucci Ryan, Rand Jeremy, Roberts Brandon, Bisch
Joseph, Colosimo Andrew, Conrad Peter, Bodiwala Ahmed, and Dam
Lola. Namecoin. https://namecoin.org/, 2020.

Harry A Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau,
and Arvind Narayanan. An empirical study of namecoin and lessons for
decentralized namespace design. In WEIS. Citeseer, 2015.

LM Axon and Michael Goldsmith. Pb-pki: A privacy-aware blockchain-
based pki. 2016.

Benjamin Leiding, Clemens H Cap, Thomas Mundt, and Samaneh
Rashidibajgan. Authcoin: validation and authentication in decentralized
networks. arXiv preprint arXiv:1609.04955, 2016.

Mustafa Al-Bassam. Scpki: a smart contract-based pki and identity
system. In Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts, pages 35-40, 2017.

Stephanos Matsumoto and Raphael M Reischuk. Ikp: Turning a
pki around with decentralized automated incentives. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 410-426. IEEE, 2017.
Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J Freedman. Block-
stack: A global naming and storage system secured by blockchains. In
2016 {USENIX} annual technical conference ({USENIX}{ATC} 16),
pages 181-194, 2016.

Bo Qin, Jikun Huang, Qin Wang, Xizhao Luo, Bin Liang, and Wenchang
Shi. Cecoin: A decentralized pki mitigating mitm attacks. Future
Generation Computer Systems, 107:805-815, 2020.

F Corella. Implementing a pki on a blockchain. Pomcor Research in
Mobile and Web Technology, 2016.

Karen Lewison and Francisco Corella. Backing rich credentials with a
blockchain pki. Tech. Rep., 2016.

Mohamed Tahar Hammi, Badis Hammi, Patrick Bellot, and Ahmed
Serhrouchni. Bubbles of Trust: A decentralized blockchain-based
authentication system for IoT. Computers & Security, 78:126-142, 2018.
Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
Minhaj Ahmad Khan and Khaled Salah. Iot security: Review, blockchain
solutions, and open challenges. Future Generation Computer Systems,
82:395-411, 2018.

Arshdeep Bahga and Vijay K Madisetti. Blockchain platform for
industrial internet of things. J. Softw. Eng. Appl, 9(10):533, 2016.
Seyoung Huh, Sangrae Cho, and Soohyung Kim. Managing iot devices
using blockchain platform. In Advanced Communication Technology
(ICACT), 2017 19th International Conference on, pages 464—467. IEEE,
2017.

Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz.
Theory and practice of bloom filters for distributed systems. [EEE
Communications Surveys & Tutorials, 14(1):131-155, 2012.

Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans-
actions on Networking (TON), 10(5):604-612, 2002.

Andrei Broder and Michael Mitzenmacher. Network applications of
bloom filters: A survey. Internet mathematics, 1(4):485-509, 2004.
OpenSSL Cryptography SSL/tLs toolkit: Welcome to OpenSSL. https:
/Iwww.openssl.org/, 2020.

Michael Myers and Hannes Tschofenig. RFC 4806: Online Certificate
Status Protocol (OCSP) Extensions to IKEvV2. Internet Engineering Task
Force (IETF), February, 2007.

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven
Lim. A survey and comparison of peer-to-peer overlay network schemes.
IEEE Communications Surveys & Tutorials, 7(2):72-93, 2005.

Kenji Saito and Mitsuru Iwamura. How to make a digital currency on a
blockchain stable. arXiv preprint arXiv:1801.06771, pages 1-15, 2018.
Ousmene Jacques Mandeng. Cryptocurrencies, monetary stability and
regulation. Technical report, 2018.

