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Abstract. In this paper we study finite higher-dimensional automata
(HDAS) from the logical point of view. Languages of HDAs are sets of fi-
nite bounded-width interval pomsets with interfaces (iiPoms<y) closed
under order extension. We prove that languages of HDAs are MSO-
definable. For the converse, we show that the order extensions of MSO-
definable sets of iiPoms<; are languages of HDAs. Furthermore, both
constructions are effective. As a consequence, unlike the case of all pom-
sets, the order extension of any MSO-definable set of iiPoms<j is MSO-
definable.

1 Introduction

Connections between logic and automata play a key role in several areas of
theoretical computer science — logic being used to specify the behaviours of
automata models in formal verification, and automata being used to prove the
decidability of various logics. The first and most well-known result of this kind is
the equivalence in expressive power of finite automata and monadic second-order
logic (MSO) over finite words, proved independently by Biichi [5], Elgot [10] and
Trakhtenbrot [37] in the 60’s. This was soon extended to infinite words [6] as
well as finite and infinite trees [8,32,34].

Finite automata over words are a simple model of sequential systems with a
finite memory, each word accepted by the automaton corresponding to an exe-
cution of the system. For concurrent systems, executions may be represented as
pomsets (partially ordered multisets or, equivalently, labelled partially ordered
sets). Several classes of pomsets and matching automata models have been de-
fined in the literature, corresponding to different communication models or dif-
ferent views of concurrency. In that setting, logical characterisations of classes
of automata in the spirit of the Biichi-Elgot-Trakhtenbrot theorem have been
obtained for several cases, such as asynchronous automata and Mazurkiewicz
traces [35,40], branching automata and series-parallel pomsets [3,29], step tran-
sition systems and local trace languages [21,30], or communicating finite-state
machines and message sequence charts [23].

Higher-dimensional automata (HDAs) [31,38] are another automaton-based
model of concurrent systems that matches more closely an interval-based view
of events. Initially studied from a geometrical or categorical point of view, the
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language theory of HDAs has become another focus for research in the past few
years [13]. The language of an HDA is defined as a set of interval pomsets with
interfaces (interval ipomsets) [15]. The idea is that each event in the execution
of an HDA corresponds to an interval of time where some process is active.

Examples with three activity intervals labelled a, b, and ¢ are shown in the
top of Fig. 1 below. These events are then partially ordered as follows: two
events are ordered if the first one ends before the second one starts, and they are
concurrent if they overlap. This gives rise to a pomset as shown in the middle of
Fig. 1. We allow some events to be started before the beginning (this is the case
for the a-labelled events in Fig. 1), and some events might never be terminated.
Such events are called interfaces, or respectively sources and targets.

In addition, if we shorten some intervals in one possible behaviour of the
HDA, we obtain another valid behaviour for the HDA. In terms of pomsets, this
means that the language of an HDA is closed under subsumption (called order
extension in [21]). In addition, it also has bounded width, meaning that each set
of pairwise concurrent events has size at most k for some k.

The interest of HDAs as a model for concurrency stems from their convenient
automata-theoretic and geometric properties. They provide a natural extension
of standard automata to higher dimensions and lend themselves to automata-
theoretic reasoning. Several theorems of classical automata theory have already
been extended to HDAs, including a Kleene theorem [14] and a Myhill-Nerode
theorem [17], and [1,12] provide an extension to higher-dimensional timed au-
tomata. On the other hand, the precubical sets on which HDAs are based have
been studied in geometry and algebraic topology for a long time [4, 25, 33]
and have led to interesting results for example about state-space reduction
[16, 18, 20, 41] or about behavioural equivalences [9, 11, 27, 28], see [19] for a
recent overview.

The automata-theoretic closure properties of HDAs were studied in [2]. In
particular, their languages are not closed under complement, but they are closed
under bounded width complement: the subsumption closure of the complement
of the language restricted to interval ipomsets of bounded width.

In this paper, we explore the relationship between HDAs and MSO. We
prove that a set of interval ipomsets is regular if and only if it is simultaneously
MSO-definable, of bounded width, and downward-closed for subsumption. The
latter two assumptions are necessary as it is possible to define in MSO sets with
unbounded width or sets that are not downward-closed.

The HDA-to-MSO direction is proved similarly to the original Biichi-Elgot-
Trakhtenbrot theorem. We use one second-order variable for each upstep (start-
ing events) or downstep (terminating events) of the HDA. The main difference
with words is that each upstep or downstep involves several events. We rely on
the existence of a canonical sparse step decomposition for any interval ipomset.
We prove that this decomposition can be effectively “defined” in MSO.

On the other hand, the usual approach for the MSO-to-automata direction,
which works by induction and relies on the closure properties of regular lan-
guages, does not work for HDAs, as they are not closed under complement.
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One could try to use the bounded-width complement instead, but the down-
ward closures present some difficulties. Instead, we rely on a known connection
[2] between regular languages of interval ipomsets and regular languages of step
decompositions. A step decomposition of an ipomset P is a sequence of dis-
crete ipomsets (that is, pomsets where all events are concurrent) such that their
composition is equal to P. We prove that for every MSO-definable language L of
width at most k, the language of all step decompositions of ipomsets in L, viewed
as words over a finite alphabet of discrete ipomsets, is regular. To do so, we give
an effective translation from MSO formulas over ipomsets to MSO formulas over
words with this new alphabet. It was shown in [14] that the downward closure
of L is then effectively regular.

The paper is organised as follows. Interval pomsets with interfaces and step
decompositions are defined in Section 2, and higher-dimensional automata in
Section 3. In Section 4, we introduce monadic second-order logic and state our
main result. Section 5 gives the proof for the MSO-to-HDA direction, and Sec-
tion 6 for the HDA-to-MSO one.

2 Pomsets with Interfaces

We fix a finite alphabet X' throughout this paper. A pomset with interfaces, or
ipomset, is a structure (P, <,--+,5,T, ) comprising a finite set P, a (strict) par-
tial order® < C P x P called the precedence order, an irreflexive and asymmetric
relation --+ C P x P called the event order, subsets S,T C P called source and
target sets, and a labelling A\: P — Y. We require the following properties:

— for all e # ¢’ € P, exactly one of e < €', ¢/ < e, e --» €/, or ¢/ --» ¢ holds;
— foralle; €5,e0€ P,and e3 €T, ea £ e1 and ez £ es.
That is, all points in P are related by precisely one of the orders, sources are
<-minimal, and targets are <-maximal. We may add subscripts “p” to the ele-
ments above if necessary. The source and target interfaces of P are the conclists
(S, --+15x5:Ms) and (T, --+17x1, M), where “” denotes restriction.
Ipomsets are a generalisation of standard pomsets (see for example [24])
obtained by adding interfaces and event order. Both are needed in order to
properly connect them with HDAs. In particular, event order is necessary in order
to define gluing composition, see below. Further, a central tool in the language
theory of HDAs (which we, however, do not need here) are so-called track objects,
which provide an embedding of ipomsets into HDAs which essentially needs the
event order; see [13] for details. In [13] and other works, a transitively closed event
order is used instead of the relation we use here; we find it more convenient to
use the non-transitive version which otherwise is equivalent.
An ipomset P is a word (with interfaces) if < is total and discrete if < = ().
P is a pomset if S =T = (), a conclist (short for “concurrency list”) if it is a
discrete pomset, a starter if it is discrete and T' = P, a terminator if it is discrete
and S = P, and an identity if it is both a starter and a terminator.

3 A strict partial order is a relation which is irreflexive, asymmetric and transitive.
We will omit the qualifier “strict”.
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Fig. 1: Activity intervals of events (top), corresponding ipomsets (middle), and
notation as a word over starters and terminators (bottom), cf. Ex. 1. Full arrows
indicate precedence order; dashed arrows indicate event order; bullets indicate
interfaces.

Figure 1 shows some simple examples. Source and target events are marked
by “s” at the left or right side. Precedence < and event order --» are intended
to order sequential and concurrent events, respectively. Another representation
that we will use is as words of starters and terminators. In this representation,
the ipomset is decomposed into a sequence of starters and terminators represent-
ing which events are in parallel and in which order. In the starter/terminator
representation, event order is omitted and always assumed to go downward.

Ipomsets P and Q) are isomorphic if there exists a bijection f: P — @ for
which

L. f(Sp) = Sq, f(Tp) =Tq, Ag o f = Ap, and
2. fle1) <q fle2) < e1 <pegand e; --+p ey < f(e1) --+¢ f(e2).

That is, f respects interfaces and labels and the two relations. Because of the
requirement that all elements are related by < or --», there is at most one
isomorphism between any two ipomsets [13]. That means that we may switch
between ipomsets and their isomorphism classes, and we will do so often in the
sequel.

An ipomset P is interval if <p is an interval order [22]; that is, if it admits
an interval representation given by functions f,g: (P,<p) — (R, <gr) such that
fle) <m g(e) for all e € P and e; <p eq iff g(e1) <g f(e2) for all e1,eq € P.
Given that our ipomsets represent activity intervals of events, any of the ipomsets
we will encounter will be interval, and we omit the qualification “interval”’. We
emphasise that this is not a restriction, but rather induced by the semantics, [39].
The width wid(P) of an ipomset P is the cardinality of a maximal <-antichain.

We let iiPoms denote the set of (interval) ipomsets and iiPoms<y = {P €
iPoms | wid(P) < k}. We write St, Te,Id C iiPoms for the sets of starters,
terminators, and identities and let {2 = St U Te. Further, for S € {St, Te, Id, 2},
Sgk =5nN iiPomsSk. Note that Id = St N Te and |d§k = Stgk N Te<y.
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Fig. 2: Gluing composition of ipomsets.

We introduce special notation for starters and terminators and write 41U =
(U,0,--»,U\A,U,A\) and Ul = (U,0,--+,U,U\ B, \) (with --» and X induced
from U). The intuition is that the starter 41U does nothing but start the events
in A=U\ Sy and the terminator U] g terminates the events in B =U \ Ty .

Ipomsets may be refined by shortening activity intervals, potentially remov-
ing concurrency and expanding precedence. The inverse to refinement is called
subsumption. Formally, for ipomsets P and () we say that P refines @), or that
Q@ subsumes P, and write P C @ if there is a bijection f: P — @ for which

(1) f(SP) = SQ? f(TP) = TQ? and /\Q Of = Ap,
(2) f(el) <@ f(eg) — e1 <p €g, and e; --»p €3 —> f(el) -=*Q f(eg).

This definition adapts the one of [24] to event orders and interfaces. Intuitively,
P has more order and less concurrency than (). Note that isomorphisms are
precisely those subsumptions whose inverses are also subsumptions.

For a subset A C iiPoms we let

Al ={P €iiPoms |3Q € A: PC Q}

denote its closure under subsumptions. A language is a subset L C iiPoms
for which L| = L.

Example 1. In Fig. 1 there is a sequence of subsumptions from left to right. An
event e is smaller than ey in the precedence order if e is terminated before es
is started; e is smaller than es in the event order if they are concurrent and e
is above es in the respective conclist.

The gluing P * @ of ipomsets P and @ is defined if Tp = Sg = PN Q
as conclists (i.e., —=—>piTpxTp = ~~*Q1Sox5o and ApiT, = AQis,), and then
Px@Q=(PUQ,<,--+,5p,T,\), where < = <pU<qU (P\Tp) x (Q\ Sg),
= = (-—»pU--29)", and A = Ap U A\g. (Here * denotes transitive closure.)
Gluing is associative, and ipomsets in Id are identities for *. Figure 2 shows an
example.

Any ipomset P can be decomposed as a gluing of starters and terminators
P = Py x---x P, [15,26]. Such a presentation we call a step decomposition. If
starters and terminators are alternating, the step decomposition is called sparse.

Lemma 2 ([17]). Every ipomset P has a unique sparse step decomposition.

We will also use the following notion, introduced in [2]. A word P; ... P, € 2*
is coherent if the gluing P; * - - - % P, is defined. We denote by Coh C 2* the set
of coherent words and Coh<y = Coh N 27, .
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Fig. 3: A two-dimensional HDA H on X = {a, ¢, d}, see Ex. 3.

3 Higher-dimensional automata

Let [ denote the set of conclists. A precubical set
H= (Hvev7 {62},U75L,U | Uel,AC U})

consists of a set of cells H together with a function ev: H — O which to every
cell assigns a conclist of concurrent events which are active in it. We write
H[U] = {q € H | ev(q) = U} for the cells of type U. For every U € O and
subset A C U there are face maps 5%7(],5}4’[]: H[U] — H[U \ A] (we omit the
subscript U from now) which are required to satisfy 6% = 0/56% for ANB =0
and v, 1 € {0,1}. The upper face maps 6y terminate events in A and the lower
face maps 04 transform a cell ¢ into one in which the events in A have not yet
started. A higher-dimensional automaton (HDA) H = (H, Ly, Ty) is a finite
precubical set together with subsets Ly, Ty C H of start and accept cells. The
dimension of an HDA H is dim(#H) = max{|ev(q)| | ¢ € H} € N.

A standard automaton is the same as a one-dimensional HDA H with the
property that for all ¢ € Ly U Ty, ev(q) = 0: cells in H[}] are states, cells
in H[{a}] for a € X are a-labelled transitions, and face maps 5?(1} and (ﬁa}
attach source and target states to transitions. In contrast to ordinary automata
we allow start and accept transitions instead of merely states, so languages of
one-dimensional HDAs may contain words with interfaces.

Example 3. Figure 3 shows a two-dimensional HDA as a combinatorial object
(left) and in a geometric realisation (right). It consists of 21 cells: states Hy =

{v1,...,vg} in which no event is active (ev(v;) = ), transitions Hy = {t1,...,¢t10}
in which one event is active (e.g., ev(t3) = ev(t4) = ¢), squares Ha = {q1,q2, 43}
where ev(q1) = [¢] and ev(g2) = ev(gz) = [§]. The arrows between cells in the

left representation correspond to the face maps connecting them. For example,

Ug

Ve



Logic and Languages of Higher-Dimensional Automata 7

the upper face map &}, maps ¢ to vy because the latter is the cell in which the
active events a and ¢ of ¢; have been terminated. On the right, face maps are
used to glue cells, so that for example 6}.(q1) is glued to the top right of ¢;. In
this and other geometric realisations, when we have two concurrent events a and
c with a --» ¢, we will draw a horizontally and c vertically.

Computations of HDAs are paths, i.e., sequences & = (qo, 1,41, -« Gn-1,
©n, qn) consisting of cells ¢; € H and symbols ¢; which indicate face map types:
for every i € {1,...,n}, (gi—1, i, qi) is either

— (6%(q:), 7, q;) for A C ev(g;) (an upstep)
— or (gi—1,\,04(gi—1)) for A C ev(qi_1) (a downstep).

Downsteps terminate events, following upper face maps, whereas upsteps start
events by following inverses of lower face maps. We denote by ups(H) and
downs(H) the finite set of upsteps and downsteps of H.

The source and target of « as above are src(a) = ¢o and tgt(a) = ¢,. A
path « is accepting if src(a) € Ly and tgt(a) € Ty. Paths o and 8 may be
concatenated if tgt(«) = src(f); their concatenation is written a * S.

Path equivalence is the congruence ~ generated by (q /4 r 78 p) ~ (
D), ®\ar\B q =~ (p\aus q), and yad ~ v35 whenever o ~ . This relation
allows to assemble subsequent upsteps or downsteps into one bigger step.

The event ipomset ev(a) of a path « is defined recursively as follows:

q /\AUB

— if a = (g), then ev(a) = idey(q);

~ifa= (g /4 p), then ev(a) = stev(p);

— if a=(p\ B q), then ev(a) = ev(p)!p;

— if e =aq % %, is a concatenation, then ev(a) = ev(ay) * - - - x ev(ay,).

Note that upsteps in « correspond to starters in ev(«) and downsteps correspond
to terminators. Path equivalence o ~ /3 implies ev(a) = ev(3) [14].

Ezample 4. The HDA H of Ex. 3 (Fig. 3) admits several accepting paths, for
example t3 /® ¢1 \c t2 /% g2 \a ts /'* g3 \aa Vs. Its event ipomset is

S

a——>a
oc —> (

el #[ele  Mal *[dla * Mal *[dHaa = l v

which is a sparse step decomposition. This path is equivalent to t5 /* g1 \.c t2 /¢
q2 \a ts /'® q3 \a t10 \ ¢ vg which induces the coherent word w; of Fig. 4 below.

The language of an HDA H is L(H) = {ev(a) | a accepting path in H}. A
language is regular if it is the language of a finite HDA. Languages of HDAs are
closed under subsumption, that is, if L is regular, then L| = L [13,14].

A language is rational if it is constructed from @, {idy} and discrete ipomsets
using U, * and T (Kleene plus) [14]. These operations have to take subsumption
closure into account; in particular,

Lyx Ly ={P*Q|Pe€L,Q¢€ La}].



8 Amazigh Amrane, Hugo Bazille, Uli Fahrenberg, and Marie Fortin

Theorem 5 ([14]). A language is regular if and only if it is rational.

The width of a language L is wid(L) = sup{wid(P) | P € L}. For k > 0 and
L CiiPoms, denote L<y = {P € L | wid(P) < k}.

Lemma 6 ([14]). Any regular language has finite width.

It immediately follows that the universal language iiPoms is not rational.

4 MSO

Monadic second-order (MSO) logic is an extension of first-order logic allowing
to quantify existentially and universally over elements as well as subsets of the
domain of the structure. It uses second-order variables X,Y ... interpreted as
subsets of the domain in addition to the first-order variables x,y, ... interpreted
as elements of the domain of the structure, and a new binary predicate x € X
interpreted commonly. We refer the reader to [36] for more details about MSO.

We interpret MSO over iiPoms. Thus we consider the signature S = {<, --»,
(a)gex, s,t} where < and --» are binary relation symbols and the a’s, s and ¢
are unary predicates (over first-order variables). We associate to every ipomset
(P,<,--+,5,T, ) the relational structure S = (P; <;--;(a)qecx;s;t) where <
and --» are interpreted as the orderings < and --» over P, and a(x), s(z) and
t(x) hold respectively if and only if A(z) = a, z € S and « € T. We say that a
relation R C P" x (2F)™ is MSO-definable in S if and only if there exists an
MSO-formula (x4, ..., zn, X1,...,Xm) over S which is satisfied if and only if
the interpretation of the free variables (x1,...,2Zn, X1,...,Xm) in S is a tuple
of R. The well-formed MSO formulas are built using the following grammar:

Yu=a(@) [s(@) [t@) [z<ylz-—ylereX
o | Vo op | IX P [ VX [y Ao | Y1 Vb | ¢

In order to shorten formulas we use several notations and shortcuts such as
Y1 = o. Wedefinex <y =z <yA-(Jz.x <2 <y).

Let ¥(z1,...,2n, X1,...,X;m) be an MSO formula whose free variables are
X1yeeey Ty X1, .., X and let P € iiPoms. The pair of functions v = (vq, 1)
where vy: {z1,...,7,} — P and vo: {X1,..., X} — 2F is called a valua-

tion or an interpretation. We write P =, 1, or, by a slight abuse of nota-
tion, P w(y(xl), oo v(T), v(Xy), .. .,1/(Xm))7 if 4 holds when z; and X;
are interpreted as v(x;) and v(X;). A sentence is a formula without free vari-
ables. In this case no valuation is needed. Given an MSO sentence 1, we define
L(y) = {P € iiPoms | P = ¢}. Note that this may not be closed under sub-
sumption, hence not a language in our sense. A set L C iiPoms is MSO-definable
if and only if there exists an MSO sentence v over S such that L = L(v)).

Ezample 7. Let ¢ = 3z Jy.a(x) Aby) A ~(z < y) A =(y < z). That is, there
are at least two concurrent events, one labelled a and the other b. L(y) is not
width-bounded, as ¢ is satisfied, among others, by any conclist which contains
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at least one a and one b, nor closed under subsumption, given that [§] = ¢ but
ab, ba = . Note, however, that L(¢)<gl is a regular language for any k.

We will also use MSO over words of 2%,. (Note that, up to isomorphisms,
2<}, is a finite set.) The definitions above can be easily adapted to this case by
considering a word of £2%, as a structure of the form (W, <, \: W — 2<;): a
totally ordered set W labelled by 2<j, and the signature {<,(D)pep_, }: the
atomic predicates are D(x) for D € Q<, * < y and © € X, with first-order
variables ranging over positions in the word and second-order variables over
sets of positions. We denote by MSO’}Z the set of MSO formulas over (2%, . For
example the following MSO%, formula where P; € f2<5 stands for the ith discrete
ipomset of w; in Fig. 4 is satisfied only by w;.

@ =Fy, ..., yr. /\ Pi(yi) Nyr < -+ < yr A VY. \/ Y=Y
1<4i<7 1<:i<7

The main result of this paper is the following:
Theorem 8. For all L C iiPoms,

1. if L is MSO-definable, then L<yl is reqular for all k € N.
2. if L is regqular, then it is MSO-definable.

Moreover, the constructions are effective in both directions.

Corollary 9. For all k € N, a language L C iiPoms<y, is reqular if and only if
it is MSO-definable.

The next two sections are devoted to the proof of Thm. 8. For the first
assertion we effectively build an HDA H from a sentence ¢ and an integer k
such that L(H) = L(¢)<kd. Since emptiness of HDAs is decidable [2], asking,
given a formula ¢ such that L(p) = L(p)<kl, if there exists P € iiPoms such
that P |= ¢ and if L(H) C L(p) for some HDA H are decidable.

Corollary 10. For MSO sentences ¢ such that L(p) = L(p)<kl, the satisfia-
bility problem and the model-checking problem for HDAs are both decidable.

Actually, looking more closely at our construction which goes through finite
automata accepting step sequences, we get the same result for MSO formu-
las even without the assumption that L(y) is downward-closed (but still over
iiPoms<y, and not iiPoms). This could also be shown alternatively by observ-
ing that iiPoms<; has bounded treewidth (in fact, even bounded pathwidth),
and applying Courcelle’s theorem [7]. In fact our implied proof of decidability is
relatively similar, using step sequences instead of path decompositions.

For the second assertion of the theorem, we show that regular languages
of HDAs are MSO-definable, again using an effective construction. Thus, using
both directions of Thm. 8 and the closure properties of HDAs, we also get the
following:

Corollary 11. For all k € N and MSO-definable L C iiPoms<y, L] is MSO-
definable.

Note that this property does not hold for the class of all pomsets [21].
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5 From MSO to HDAs

Given an MSO sentence ¢ over iiPoms we effectively build an HDA # such that
L(H) = L(¢)<kd- The first step is to define an MSO-interpretation of interval
ipomsets of width at most k into words of Q;k, so that:

Lemma 12. For every MSO sentence ¢ over iiPoms and every k there exists
@ € MSO%, such that for all Py ... P, € (2<;,\ {idg})*, we have P ... P, = @
if and only if P = Py % ---x P, is well-defined and P |= .

We will treat the case of the empty ipomset idy separately afterwards. Prior
to proving the lemma, we introduce key concepts and provide an overview. In-
formally speaking, we want a word P ... P, of (2<; \{idy})™ to satisfy @ if and
only if the gluing composition P = P; * --- * P, is a model for . Thus ¢ must
accept only coherent words. This is MSO’;Z—deﬁnable by:

Cohy :=VaVy.z <y = \/ Pi(2) A Pa(y).
Plpgecohgkﬁ.()%k

That is, discrete ipomsets of {2<), at consecutive positions x and y may be glued.

Hence, $ will be the conjunction of Cohy and an MSO% formula ¢’ which
we will build by induction on ¢. Therefore, we have to consider formulas ¢ that
contain free variables. We will construct ¢’ so that its free variables will be all the
free first-order variables of ¢ and second-order variables X7, ..., X} for every free
second-order variable X of . In addition, we make sure during the construction
that when P = ¢ then for every w = Py ... P, such that P, *---x P, = P,
when the free variable x is interpreted as some event e of P in ¢ it is interpreted
in ¢’ as some position in w where e occurs, and X; will contain positions of w
having as ith event according to --+ the interpretation of some element of X
(see Ex. 13).

More formally, let w = P;... P, € Coh<;, and P = Py *--- % P,. Let E =
{1,...,n} x{1,...,k}. Our construction is built on a partial function evt: E —
P defined as follows: if Py consists of events e; --+ - -- --+ e,., then for every i < r,
evt(£,1) = e;. We sometimes abuse notation and write evt(P, ). Since e € P may
oceur in consecutive P within w, one must determine when evt(¢,1) = evt (', j).
This can be done in MSOIFZ when ¢/ = ¢ + 1 as follows. For all 7,7 < k, let
Mi,j = {P1P2 S ‘Qik | evt(l,i) = 6Ut(2,j)} Then

glue, ;(z,y) =z <yA \/ Pi(z)APay).
Py PeM,;

More generally, let us define the equivalence relation ~ on F generated by (¢, 1) ~
(¢',i") if and only if glue; ; (¢,€) holds. Then for all (¢1,1), (¢2,7) € E, ({1,i) ~
(f2,7) if and only if evt(£y,7) = evt(fs, j). The relation ~ is MSO%-definable:

(z,1) ~ (y,7) =VXy,..., Xg. (z € Xi NN <k VT, Y-

r € Xi A (glue; j(z,y) V glue,; ;(y,x)) = y € Xj> = yeX;.
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La a’ 1 2 3 4 5 6 7
V‘ _ ae (e e(Le® o ae LYo R
I e[ ) ) )
Fig. 4: Ipomset and corresponding coherent word (numbers indicate positions).

As mentioned before, we want a free first-order variable x to be interpreted in
¢ as a position P; € 2« of a coherent word P ... P, where the interpretation
e € Py x---% P, of x in ¢ occurs. That is there exists ¢ such that evt(l,i) = e.
Precisely, we construct a formula ¢ relative to a function 7 which associates
with every free first-order variable x of ¢ some 7(x) € {1,..., k}. We sometimes
leave 7 implicit. Our aim is to have the following invariant property at each
step of the induction: P =, ¢ if and only if w =, ¢ for any valuations v, v/
satisfying the following:

1. evt(v'(z),7(x)) = v(z) and
2. Ui {evt(ed) | e € V'(Xi)} = v(X).

Ezample 13. Figure 4 displays an ipomset P and the coherent word w; =
Py ... P; such that Py % ---x P, = P. Let eq,...,e4 be the events of P labelled
respectively by the left a, the right a, ¢, and d and let py, ..., py the positions on
wy from left to right. Assume that P |=, ¢(x, X) for some MSO-formula ¢ and
the valuation v(x) = e; and v(X) = {e2,es}. Then, w; =, @EIHH (x, X1, X3)
when, for example, v/'(z) = pa, V' (X1) = {ps} and v'(X2) = {ps3} since this
valuation satisfies the invariant property. For ~ we have (p1,1) ~ -+ ~ (pq4, 1),
(p172) ~ (p272)a (p372) o (p672) ~ (p77 1) and (p5a ]-) ~ (p67 1) In particu-
lar (p1,1) # (ps, 1) since neither glue; ;(pa, ps) nor glue, ; (pa, ps) hold.

We are now ready to prove Lem. 12.
Proof (of Lem. 12). First, we let ¢ := Cohy A ¢’ and we build ¢’ by induction
on ¢ as follows. When ¢ is 91 V 1o or —p, then we let ¢’ be 9] V o5 or =)/,
respectively. For ¢ = 3X ¢ we let ¢’ := 31X, ..., X;.9)'". The function 7 emerges
in the case ¢ = Iz ¢, where we let 7 ==\, sz/}EIHﬂ. When ¢ =z € X,
we let
Sﬁl[gc._n] = \/1§j§k Jy (z,1) ~ (y,5) Ny € X;
For ¢ = s(z), we let ¢, 1 = Ni<j<x V¥ (2,9) ~ (y.4) = s(y,j), where
s(y, j) is defined as the disjunction of all D(y) where evt(D,j) € Sp. We define
Lp’[gm_n.] similarly when ¢ = t(x). For ¢ = z < y we let

Plasiysj] ::Algi’,j’gkvx/ay/'((x/’i/) ~ (i) A YL G ~ (y,)) = 2l <y
For p = x --+» y we let
Plosigsj] = Vicicjr<r3z (2:0) ~ (2,0) A (2,5") ~ (y, )

Finally, when ¢ = a(z), then we let cpszi] be the disjunction of all D(z) where
evt(D, 1) is labelled by a. O
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As a consequence, we obtain:

Proposition 14. Let ¢ be an MSO sentence over iiPoms, k € N, and L = {P €
iPoms<y | P |= ¢}. Then L is effectively regular.

Proof. Let K = {P €iiPoms<y | P = ¢}. By Lem. 12, L' = {P; ... P, € (2<x \
{idg})T | P %---% P, € K} is effectively MSO%-definable, and thus so is L” =
{Pi...P, € 2%, | PLx---% P, € K}. Indeed, whether idy satisfies ¢ is decidable
and so is whether idg is in L”. By the standard Biichi and Kleene theorems, L is
obtained from () and {2<j, using U, - and T. By replacing concatenation of words
by gluing composition, L is rational and thus effectively regular by Thm. 5. O

6 From HDAs to MSO

In this section we prove the second assertion of Thm. 8. The proof adapts
the classical construction, encoding accepting paths of an automaton, to the
case of HDAs. Our construction relies on the uniqueness of the sparse step de-
composition (Lem. 2) and the MSO-definability of the relation: “an event is
started /terminated before another event is started/terminated” in a sparse step
decomposition (Lem. 17 below).

More formally, let P € iiPoms, then P admits a unique sparse step decompo-
sition P = Py *---x P,. Given e € P\ Sp, we denote by St(e) the step where e is
started in the decomposition, i.e., the minimal ¢ such that e € P;. For e € P\Tp,
we similarly denote by Te(e) the step where e is terminated. For z € Sp we let
St(x) = —oo and for x € Tp, Te(x) = +o0. Then P; contains precisely all e € P
such that St(e) < ¢ < Te(e), that is all events which are started before or at
P; (or never) and are terminated after or at P; (or never). In particular, if P,
is a starter, then it starts all e such that St(e) = 4, and if it is a terminator, it
terminates all e such that Te(e) = i. Note that St(e) < Te(e) for all e € P.

Ezample 15.  Proceeding with Ex. 13,let wo = Py ... Ps = [0 ][22 ] ["de] [vd. ]
[eae] [eg] be the sparse step decomposition of P (see also Ex. 4). We have
St(ez) = —o0,St(e1) = 1,St(eq) = 3 and St(ez) = 5. Also, Te(es) = 2, Te(e1) =4
and Te(ez) = Te(eq) = 6. Further, P; contains e; since St(e;) = 1 and ez be-
cause St(ez) < 1 < Te(es); Py contains e; since Te(e;) = 4 and ey because
St(eq) <4 < Te(eyq).

The example above will be continued in Ex. 19 at the end of this section. It
will be pertinent in particular for the next lemma describing the existence of an
accepting path inducing a sparse step decomposition as the existence of labellings
pr and py mapping each started or terminated event of P to the upstep or
downstep of the HDA performing it.

Lemma 16. Let H be an HDA and P € iiPoms \ |d whose sparse step de-
composition is Py % --- x P,. We have P € L(H) if and only if there exist
pr: P\ Sp — ups(H) and p\: P\ Tp — downs(H) such that, for all e1,eq € P:
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1. if St(e1) = St(ea) then pr(e1) = py(ea);

2. if Te(er) = Te(ez) then p\ (e1) = p\ (e2);

3. if St(ea) = Te(e1) + 1 then src(py(e2)) = tgt(py (e1));
4o if Te(ea) = Stler) + 1 then srclpy (e2)) = tat(pr (e1));
5. if prler) = (p, /', q) then

A=(U = {e|St(e) =St(e1)},~—*p,ys APy ),
ev(q) =(V = {e | St(e) < St(e1) < Te(e)}, --2pv, Apyy );
6. if py(e1) = (p, \a, q) then
A=(U = {e| Te(e) = Te(e1)}, -2P,ys APy ),
ev(p) =(V = {e | St(e) < Te(e1) < Te(e)}, -=2py, Apyy);

7. if St(e1) =1 then src(py(e1)) € Lu;
8. if Te(er) =1 then src(p\ (e1)) € Lu;
9. if St(e1) = n then tgt(py(e1)) € Tu;
10. if Te(e1) = n then tgt(px(el)) €Ty

As P ¢1d, p; or p, must be defined for at least one element of P above.

Our goal is to show that the conditions given by Lem. 16 can be expressed
in MSO. We want to define a formula 3X; ...3X,,.3Y;...3Y,,. ¢ with one X,
(resp. Y;) for each upstep (resp. downstep) of the HDA. Intuitively, each X; (Y;)
will contain all the events started (terminated) by performing the corresponding
upstep (downstep). The sentence ¢ expresses that each event belongs to exactly
one X; (unless it is a source, in which case it belongs to none) and one Y; (unless
it is a target), and that the resulting labellings p, and p\ satisfy the conditions
of the lemma. Hence, identity events do not belong to any X; or Y;. Nevertheless,
conditions 5 and 6 ensure that they are consistent with the encoded path.

Let us first prove that the relations used in Lem. 16 are MSO-definable.

Lemma 17. For f,g € {St, Te} and < € {=, <, >}, the relations f(x) < g(y),
min(f) and max(f) are MSO-definable.

Proof. We first define Te(x) < St(y) as the formula z < y, together with St(z) <
Te(y) := —(Te(y) < St(x)). Because starters and terminators alternate in the
sparse step decomposition, we can then let

St(x) < St(y) := 3z.St(x) < Te(z) A Te(z) < St(y),
St(x) = St(y) := ~(St(z) < St(y)) A ~(Sty) < St(x)) A —s(z) A —s(y)
min(St(z)) := —s(x) A —Jy. Te(y) < St(z)
(z)

max(Te(z)) := —t(z) A =Ty. St(y) > Te(z).

The other formulas are defined similarly. a0

We can also define St(y) = Te(x) + 1 and Te(y) = St(z) + 1 using standard
techniques. Observe that Te(z) < St(y) implies —¢(x) A —s(y), given that the
end of the z-event precedes the beginning of the y-event. As a consequence
St(x) < St(y) implies —s(y). On the other hand St(z) < Te(y) holds in particular
when z or y are interpreted as identities.
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Proposition 18. Given an HDA H, one can effectively construct an MSO sen-
tence ¢ such that L(H) = {P € iiPoms | P = ¢}.

Proof. We define
¢ = (Jz.-s(x) Vt(z)) = IXq,..., X IV, Yo Ay 109

A (VY. s(y) Aty) = \/peL(H)%H Y15 Ylew(p) V(D) (Y15 - Yjer(p)])-
ev(p

where g checks that the X;’s and Y;’s define labellings p, and p\ as in Lem. 16,
that is, each event belongs to at most one X; (is associated with at most one
upstep) and one Y;, and to no X; iff it is a source and to no Y; iff it is a target.
The other formulas ¢; check condition i of Lem. 16. The second line of ¢ is
satisfied by all non-empty identities accepted by H. Thus L(p) = L(H) \ {idg}.
If idg € L(H) then L(H) = L(e V —3x. true). O

Ezxample 19. Let H be the HDA of Fig. 3 and P the ipomset of Fig. 4. Recall
that P is accepted by H by (among others) the path

t3 7" q1 \eta 7" g2 \a ts 7 G3 \ad s
which induces the sparse step decomposition

[aea]* [Se7]* ["@] = [Cae ] * [de] = [22]-
Let

prler) =t3 /% qi, prlea) =ts /" q3, pyles) =ta ] qo,
p(er) =q2 \ats, py(e2) = py(es) = q3 \ad V3, py(€3) = @1 \c Lo

These definitions of p, and p\ satisfy the conditions of Lem. 16. Likewise, let
o3 be the MSO sentence built from #H as in Prop. 18. Then P = ¢y, since the
following interpretation satisfies A,_, 10Pi

thf“lh = {61}, thfsz) = {64}7 thf“qS = {62}7
Yth\atz = {63}’ Yqzxats = {61}5 YIZS\/adWS = {62764}’

and the other X,,, Yy for u € ups(#) and d € downs(#) are empty. Note that p,
is not defined for e3 since it is a source for P. For the same reason es does not
belong to any interpretation of X, for any u € ups(H).

7 Conclusion

This paper enriches the language theory of higher-dimensional automata with
a Biichi-Elgot-Trakhtenbrot-like theorem. We have shown that the subsumption
closures of MSO-definable subsets of iiPoms<;, are regular and that regular lan-
guages of HDAs are MSO-definable, both with effective constructions. Also, the
MSO theory of iiPoms<j, and the MSO model-checking for HDAs are decidable.
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Theorem 8 induces also a construction, for an MSO sentence ¢ over iiPoms<y,

of | such that L(p|) = L(p){. This property fails when we consider non-interval
pomsets. However, the construction of ¢ is not efficient, as the current workflow
is to transform ¢ to an HDA and then get ¢|. We are wondering whether a more
direct construction is possible.

Our work could be continued by considering logics weaker than MSO. For ex-

ample, the study of the expressive power of first order logic over iiPoms<;, would
be useful for model-checking purposes. In this regard, another operational model
that would naturally arise is a class of w-HDAs: HDAs over infinite ipomsets.
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