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Abstract. We present a new language semantics for real-time concur-
rency. Its operational models are higher-dimensional timed automata
(HDTAS), a generalization of both higher-dimensional automata and
timed automata. We define languages of HDTAs as sets of interval-timed
pomsets with interfaces. As an application, we show that language inclu-
sion of HDTAs is undecidable. On the other hand, using a region con-
struction we can show that untimings of HDTA languages have enough
regularity so that untimed language inclusion is decidable.
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1 Introduction

In order to model non-interleaving concurrency, models such as Petri nets [46],
event structures [45], configuration structures [51,52], or higher-dimensional au-
tomata (HDAs) [26,47,48] allow several events to happen simultaneously. The
interest of such models, compared to other models such as automata or transition
systems, is the possibility to distinguish concurrent and interleaving executions;
using CCS notation [44], parallel compositions a || b are not the same as choices
a.b+b.a.

Semantically, concurrency in non-interleaving models is represented by the
fact that their languages do not consist of words but rather of partially ordered
multisets (pomsets). As an example, Fig. 1 shows Petri net and HDA models
which execute the parallel composition of a.c and b; their language is generated

by the pomset [*3’¢] in which there is no order relation between a and b nor
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Fig. 1. Petri net and HDA models for a.c || b.


hugo@lrde.epita.fr

2 Amrane, Bazille, Clement and Fahrenberg

Higher-dimensional
automata

Automata | Timed automata

Petri nets

Higher-dimensional timed automata

Fig. 2. Taxonomy of some models for time and concurrency

between b and c. However, these models and pomsets use logical time and make
no statements about the precise durations or timings of events.

When we consider models for real-time systems, such as for example timed
automata [3] which can model precise durations and timings of events, the dis-
tinction between concurrency and interleaving is usually left behind. Their lan-
guages are sets of timed words, that is, sequences of symbols each of which is
associated with a timestamp that records when the associated event took place.

In this article, our goal is to propose a language-based semantics for concur-
rent real-time systems. Our aim is to combine the two semantics above, timed
words for interleaving real time and pomsets for non-interleaving logical time.

Another such proposal was developed in [12], where, going back to [11], lan-
guages of time Petri nets [43] are given as sets of pomsets with timestamps on
events, see also [18-20, 34]. Nevertheless, this creates problems of causality, as
explained in [20] which notes that “/t/ime and causality [do] not necessarily blend
well in [...] Petri nets”.

We put forward a different language-based semantics for real-time concur-
rency, inspired by recent work on interval-order semantics of higher-dimensional
automata [5,26-28,32]. We use pomsets with interval timestamps on events, that
is, every event has a start time and an end time, and the partial order respects
these timestamps.

Our operational models for real-time concurrent systems are higher-dimen-
sional timed automata (HDTAs), a simultaneous extension of timed automata
[2,3] and higher-dimensional automata [26,47,48| (which in turn generalize (safe)
Petri nets [49]), see Fig.2. These have been introduced in [25], where it is shown
among other things that reachability for HDTAs may be decided using zones
like for timed automata. We adapt the definition of HDTAs to better conform
with the event-based setting of [26] and introduce languages of HDTAs as sets
of pomsets with interval timestamps.

This article is organised as follows. We begin in Sect. 2 by recalling timed
automata and expressing their language semantics using two perspectives: de-
lay words and timed words. In Sect. 3, we revisit higher-dimensional automata
and their languages, again focusing on two complementary perspectives, of step
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sequences and pomsets with interfaces. In Sect. 4 we recall the definition of
higher-dimensional timed automata and give examples.

The following sections present our proper contributions. In Sect. 5, we present
two formalisms for languages for real-time concurrency: interval delay words and
timed pomsets with interfaces, generalizing the dual view on languages of timed
automata and of HDAs and showing their equivalence. Then in Sect. 6, we define
languages of higher-dimensional timed automata using the formalisms previously
introduced, and prove two main results: language inclusion is undecidable for
higher-dimensional timed automata, but untimed language inclusion is decidable.

2 Timed automata and their languages

Timed automata extend finite automata with clock variables and invariants
which permit the modeling of real-time properties. For a set C (of clocks), #(C)
denotes the set of clock constraints defined as

@(C) S ¢1, @2 :::CNk‘|¢1/\¢2 (CEC,]{IEN,NE{<,S,Z,>}).

Hence a clock constraint is a conjunction of comparisons of clocks to integers.

A clock valuation is a mapping v : C — R>q, where R>¢ denotes the set of
non-negative real numbers. The initial clock valuation is v° : C' — Rxq given by
v0(c) =0 for all c € C. For v € RS, d € Rxg, and R C C, the clock valuations
v+ d and v[R < 0] are defined by

0 if ¢c € R,
(v+d)(c) =v(c)+d v[R + 0](c) = {v(c) ifeg R
For v € R, and ¢ € ¢(C), we write v = ¢ if v satisfies ¢.

A timed automaton is a structure (X,C,Q, L, T,I, E), where X is a finite
set (alphabet), C is a finite set of clocks, @ is a finite set of locations with initial
and accepting locations L, T C @, I : Q — ?(C) assigns invariants to states,
and £ C Q x ®(C) x ¥ x 2¢ x Q is a set of guarded transitions. We will often
take the liberty to omit 2’ and C' from the signature of timed automata.

Timed automata have a long and successful history in the modeling and
verification of real-time computing systems. Several tools exist such as Uppaal?
[13,14,41], TChecker*, IMITATORS? [6, 7], and Romeo® [35,42], some of which
are routinely applied in industry. The interested reader is referred to [1,16,40].

The operational semantics of a timed automaton A = (Q, L, T,I, E) is the
(usually uncountably infinite) transition system [A] = (S, S+, ST, ~), with ~ C

% https://uppaal.org/

4 https://www.labri.fr/perso/herbrete/tchecker/
® https://www.imitator.fr/

S https://romeo.1s2n.fr/
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S x (ZUR>g) x S, given as follows:

S={(a,v) € QxR |v = I(q)}
S+ (q,0°) | g € L} ST:SﬂTngO
~={((q,v),d,(qv+d)) |VO<d <d:v+d | I(q)}

((g;v),a, (¢, ") | (g, ¢, 0, R,¢') € E:v = 0" = v[R 0]}

{
{
{

(-

Tuples in ~» of the first type are called delay moves and denoted ~¢, tuples of
the second kind are called action moves and denoted ~>.

The definition of ~» ensures that actions are immediate: for any (¢, ¢, a, R,q’) €
E, then A passes from (q,v) to (¢’,v") without any delay. Time progresses only
during delays (g, v) ~ (¢, v+d) in locations. A path 7 in [A] is a finite sequence
of consecutive moves of ~:

™= (lo,’Uo) ~ (ll,’Ul) i aas (ln_l,vn_l) ~ (ln,’Un) (1)

It is accepting if (lp,vo) € S* and (I, v,) € ST.

The language semantics of timed automata is defined in terms of timed words.
There are two versions of these in the literature, and we will use them both.
The first, which we call delay words here, is defined as follows. The label of
a delay move 6 = (q,v) ~ (¢,v + d) is ev(d) = d. That of an action move
o= (l,v) ~ (I',v') is ev(o) = a. Finally, the label ev(r) of 7 as in (1) is

ev((lg,vo) ~ (l1,v1)) - ev((ln—1, vn—1) ~ (In,vn)).

Delay words are elements of the quotient of the free monoid on X' U R>g
by the equivalence relation ~ which allows to add up subsequent delays and to
remove zero delays. Formally, ~ is the congruence on (X UR>)* generated by
the relations

dd' ~d+d', 0~e (2)

The delay language L(A) of the timed automaton A is the set of delay words
labeling accepting paths in [A]:

L(A) = {ev(r) | m accepting path in [A]} C (¥ UR>0)"/~

Any equivalence class of delay words has a unique representative of the form
doapdyay . ..apdy4+1 in which delays d; € R>o and symbols a; € X alternate.

The second language semantics of timed automata is given using words with
timestamps, which we will call timed words here. In the literature [1, 16, 40]
these are usually defined as elements of the free monoid on X x R>( in which
the real components form an increasing sequence. Formally, this is the subset
TW' C (X x Rsq)* given as

TW':{w: (ao,to)...(an,tn) |Vi=0,...,n—1:ti Sti+1}~

The notions of delay words and timed words do not match completely, as
delay words allow for a delay at the end of a run while timed words terminate
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with the last timestamped symbol. In order for the language semantics to better
match the operational semantics, we prefer to allow for these extra delays. Let
TW C (X x R>0)* R>¢ be the subset

TW = {w = (ag,to) ... (@n,tn) tns1 | Vi=0,...,n:t; < tiy1}.

Concatenation in TW is defined by shifting timestamps.
For w = (ao,t0) ... (Gn,tn) tag1, w' = (ag, tg) ... (ay,, 1) 1,1 € TW:

n’'n
ww' = (ag, o) - - . (An, tn)(ah, tng1 +10) - - - (any, b1 + t7,) (b1 + 1)

The monoids (¥ UR>g)*,~ and TW are then isomorphic via the mapping

d0a0d1a1 Ce andn+1 —
(ao,do) (al, do + dl) ‘e (an_l, d() + -+ dn) (do + -+ d7L+1)7

and the timed language of a timed automaton A is the image of its delay language
L(A) under this isomorphism.

3 Higher-dimensional automata and their languages

Higher-dimensional automata (HDAs) extend finite automata with extra struc-
ture which permits to specify independence or concurrency of events. We focus
in this section on the languages of HDAs and refer to [26,32] for more details.

3.1 Higher-dimensional automata

An HDA is a set X of cells which are connected by face maps. Each cell has
a list of events which are active, and face maps permit to pass from a cell to
another in which some events have not yet started or are terminated.

We make this precise. A conclist (concurrency list) over a finite alphabet X
is a tuple U = (U, --», \), consisting of a finite set U (of events), a strict total
order --» C U x U (the event order),” and a labeling A : U — X. Let [J denote
the set of conclists over X.

A precubical set on a finite alphabet X,

X =(X,ev, {64 p,64p |U€O,ACU}),

consists of a set of cells X together with a function ev: X — . For U € J we
write X[U] = {# € X | ev(z) = U}. Further, for every U € O and A C U there
are face maps 09 1,0} ; : X[U] = X[U \ A] which satisfy

62,U6%,U\A =0 04,0\ B (3)

for ANB = () and v, u € {0,1}.% The upper face maps ¢ transform a cell z into
one in which the events in A have terminated; the lower face maps §4 transform

7 A strict partial order is a relation which is irreflexive and transitive; a strict total
order is a relation which is irreflexive, transitive, and total. We may omit the “strict”.
8 We will omit the extra subscript “U” in 0A,r from here on.
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x into a cell where the events in A have not yet started. (3) expresses the fact
that these transformations commute for disjoint sets of events.

A higher-dimensional automaton (HDA) A = (X, X, L, T) consists of a finite
alphabet X' a finite precubical set X on X, and subsets L, T C X of initial and
accepting cells. The dimension of A is dim(A) = max{|ev(x)| | z € X }.

3.2 Pomsets with interfaces

The language semantics of HDAs is defined in terms of ipomsets which we define
now; see again [26, 32| for more details. First, a partially ordered multiset, or
pomset, over a finite alphabet X is a structure P = (P, <,--»,\) consisting of
a finite set P, two strict partial orders <,--+ C P x P (precedence and event
order), and a labeling A : P — X, such that for each x # y in P, at least one of
r<y,y<mz, x-->y,ory -+ holds.®

A pomset with interfaces, or ipomset, over a finite alphabet X is a tuple
(P,<,--+,5,T,\) consisting of a pomset (P,<,--+,\) and subsets S, C P
of source and target interfaces such that the elements of S are <-minimal and
those of T" are <-maximal. Note that different events of ipomsets may carry the
same label; in particular we do not exclude autoconcurrency. Source and target
events are marked by “¢” at the left or right side, and if the event order is not
shown, we assume that it goes downwards.

An ipomset P is interval if its precedence order <p is an interval order [33],
that is, if it admits an interval representation given by functions 0=, 0" : P -+ R
such that o= (z) < o (z) for all z € P and z <p y iff oF(2) < 07 (y) for all
x,y € P. We will only use interval ipomsets here and hence omit the qualification
“interval”. The set of (interval) ipomsets over X is denoted iPoms.

For ipomsets P and ) we say that Q) subsumes P and write P C @ if there
is a bijection f : P — @ for which

(1) f(Sp)=Sq, f(Tp) =Tg, and Ag o f = Ap;
(2) f(x) <q f(y) implies x <p y;
(3) z £py,y £p x and x --»p y imply f(z) --»¢q f(y).

That is, f respects interfaces and labels, reflects precedence, and preserves es-
sential event order. (Event order is essential for concurrent events, but by transi-
tivity, it also appears between non-concurrent events. Subsumptions ignore such
non-essential event order.)

Isomorphisms of ipomsets are invertible subsumptions, i.e., bijections f for
which items (2) and (3) above are strengthened to

(2) f(2) <q fly) iff z <py;
(3") z £pyand y £p x imply that x --»p y iff f(z) --2¢g f(y).

Due to the requirement that all elements are ordered by < or --+, there is at most
one isomorphism between any two ipomsets. Hence we may switch freely between
ipomsets and their isomorphism classes. We will also call these equivalence classes
ipomsets and often conflate equality and isomorphism.

9 The event order is needed to identify concurrent events, see [26,32] for details.
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Serial composition of pomsets [37] generalises to a gluing composition for
ipomsets which continues interface events across compositions and is defined as
follows. Let P and @ be ipomsets such that Tp = Sg,  -—»p y iff 2 -2 ¥y
for all z,y € Tp = Sg, and the restrictions Apir, = Aq|s,, then P x Q =
(PUQ,<,--+,58p,Tg, \), where

—z<yifz<py,z<gy,orxe€P\Tpandyec Q\ Sg;
— --» is the transitive closure of --+p U --2¢;
— AMz) =Ap(z) if z € Pand A(z) = A\g(z) if z € Q.

Gluing is, thus, only defined if the targets of P are equal to the sources of @ as
conclists.

An ipomset P is a word (with interfaces) if <p is total. Conversely, P is
discrete if <p is empty (hence --»p is total). Conclists are discrete ipomsets
without interfaces. A starter is a discrete ipomset U with Ty = U, a terminator
one with Sy = U. The intuition is that a starter does nothing but start the
events in A = U — Sy, and a terminator terminates the events in B = U — Ty.
These will be so important later that we introduce special notation, writing 41U
and Ul g for the above. Discrete ipomsets U with Sy = Ty = U are identities
for the gluing composition and written idy. Note that idy = ¢tU = Uly. The
empty ipomset is idy.

3.3 Step sequences

Any ipomset can be decomposed as a gluing of starters and terminators [28,39].
Such a presentation is called a step decomposition. If starters and terminators
are alternating, the step decomposition is called sparse. [32, Prop. 4| shows that
every ipomset has a unique sparse step decomposition.

We develop an algebra of step decompositions. Let St, Te, Id C iPoms denote
the sets of starters, terminators, and identities over X, then Id = St N Te. Let
Sty =St \ Id and Tey = Te\ Id. The following notion was introduced in [5].

Definition 1. A word P; ... P, € (StUTe)* is coherent if the gluing Py *---x P,
is defined.

Let Coh C (StUTe)* denote the subset of coherent words and ~ the congru-
ence on Coh generated by the relations

I~e (I€ld),

4
S155 ~ 51 % 55 (51,52 € St), TiToy ~1Ty Ty (Tl,TQ S Te) ( )

Here, € denotes the empty word in (St U Te)*, not the empty ipomset idy € Id.

Definition 2. A step sequence is an element of the set SSeq = Id.Coh,_.1d.

The identities in the beginning and end of step sequences are used to “fix”
events in the source and target interfaces, i.e., which are already running in
the beginning or continue beyond the end. For example, «as.sae denotes an event
labeled a which is neither started nor terminated. Technically we only need these
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identities when the inner part (in (StUTe)*,.) is empty (and even then we would
only need one of them); but we prefer a more verbose notation that will be of
interest when we introduce time, see Def. 12.

Lemma 3. FEvery element of SSeq has a unique representative IogPy ... Pyl i1,
for m > 0, with the property that (P;, Piy1) € Sty X Ter U Tey X Sty for all
1<i<n-—1. Such a representative is called sparse.

Proof. Directly from [32, Prop. 4].

Concatenation of step sequences is inherited from the monoid (StUTe)* where
Ip.w.I, - I).w' I}, is defined iff I,, = Ij). Concatenations of sparse step sequences
may not be sparse.

Remark 4. SSeq forms a local partial monoid [29] with left and right units
idyidy, for U € O, and (UV)W = U(VW) when the concatenation is defined.
Local partial monoids may admit many units and are equivalent to categories:
here, the objects are the conclists in [J and the morphisms from U € O to V € O
are the step sequences idywidy. We refer to [29] for more details.

For a coherent word P; ... P, € Coh C (StUTe)* we define Glue(P; ... P,) =
Py x---x P, Tt is clear that for wy, ws # €, wy ~ wo implies Glue(w;) = Glue(ws).
That is, Glue induces a mapping Glue : SSeq — iPoms.

Lemma 5 (|32, Prop. 4]). Glue : SSeq — iPoms is a bijection.

See below for examples of step sequences and ipomsets.

3.4 Languages of HDAs

Paths in an HDA X are sequences o = (2o, ¢1,1,-- ., Tn—1, Pn, Tn) consisting
of cells x; of X and symbols ¢; which indicate face map types: for every i €
{1,...,n}, (i1, ¢, x;) is either

— (69 (), /4, 2;) for A C ev(x;) (an upstep)
— or (zi—1,\ua, 04 (z;-1)) for A Cev(z;_1) (a downstep).

Downsteps terminate events, following upper face maps, whereas upsteps start
events by following inverses of lower face maps.

The source and target of a as above are src(a) = zp and tgt(a) = z,. A
path « is accepting if src(a) € Lx and tgt(a) € Tx. Paths o and 8 may be
concatenated if tgt(a) = src(3). Their concatenation is written a3 or simply af.

The observable content or event ipomset ev(a) of a path « is defined recur-
sively as follows:

— if a = (z), then ev(a) = idey(a);

if a = (y /4 x), then ev(a) = afev(z);

if = (z\yay), then ev(a) = ev(x)] 4;

— if @ =aq *--- % ay is a concatenation, then ev(a) = ev(ay) x - - - x ev(ay,).
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l2 €4 a @

ex | b u b|es

lo o o I

Fig. 3. HDA of Example 7. The grayed area indicates that a and b may occur concur-
rently, i.e., there is a two-dimensional cell, v in this instance

Note that upsteps in « correspond to starters in ev(«) and downsteps correspond
to terminators.

For A C iPoms, Al = {P € iPoms | 3Q € A: P C @} denotes its subsump-
tion closure. The language of an HDA X is £(X) = {ev(a) | a accepting path
in X}. A language is regular if it is the language of a finite HDA. It is rational
if it is constructed from @, {idg} and discrete ipomsets using U, * and * (Kleene
plus) [27]. Languages of HDAs are closed under subsumption, that is, if L is
regular, then L] = L [26,27]. The rational operations above have to take this
closure into account.

Theorem 6 ([27]). A language is regular if and only if it is rational.

Ezxample 7. The HDA of Fig. 3 is two-dimensional and consists of nine cells:
the corner cells Xy = {lo, 11,102,153} in which no event is active (for all z € X,
ev(z) = (), the transition cells X; = {e1, €2, €3, €4} in which one event is active
(ev(e1) = ev(eq) = a and ev(es) = ev(esz) = b), and the square cell u where a
and b are active: ev(u) = [§]. When we have two concurrent events a and b with
a --+ b, we will draw a horizontally and b vertically. Concerning face maps, we
have for example 4}, (u) = I3 and 6%, (u) = lo.
This HDA admits several accepting paths, for example

a1 =1y /% u N I3, ar =1y /" er /P uN\y es \ua s,
az=1lop /" er N\ li ez N\ I3, as=1lo M es \ppla S eq \u I3,

where ev(ay) = [ ]*[ 2] = ev(an) = aex [ % |x[°F [*xea = [§], ev(az) = asxeax
bexeb = ab, and ev(ay) = bexebkaexea = ba. Its language is {[§ ]} = {[%], ab, ba}.

Observe that a; and as induce the coherent words wy = [§s][ %] and we =
eqe

ae [ %o ][ ofa] *b such that wy ~ we and s = idgw,idy is their corresponding sparse
step sequence with Glue(s) = [§].
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y>1;2+0 r>2Ay>1
r<4Ay>1
l2 €4 a @
y <3 r>2ANy<3
r<4Ny<3
+~0 - -
v ) ab Y
€2 €3
U
<4y« 0
lo o a l
z,y < 0 r>2;y<+0

Fig. 4. HDTA of Example 9.

4 Higher-dimensional timed automata

Unlike timed automata, higher-dimensional automata make no formal distinction
between states (0-cells), transitions (1-cells), and higher-dimensional cells. We
transfer this intuition to higher-dimensional timed automata, so that each cell
has an invariant which specifies when it is enabled and an exit condition giving
the clocks to be reset when leaving. Semantically, this implies that time delays
can occur in any n-cell, not only in states as in timed automata; hence actions
are no longer instantaneous.

Definition 8. A higher-dimensional timed automaton (HDTA) is a structure
(X,C,Q, L, T,inv,exit), where (X,Q, L, T) is a finite higher-dimensional au-
tomaton and inv : Q — &(C), exit : Q — 29 assign invariant and exit conditions
to each cell of Q.

As before, we will often omit X' and C from the signature.

The operational semantics of an HDTA A = (Q, L, T,inv, exit) is a (usually
uncountably infinite) transition system [A] = (S, S+, ST, ~), with the set of
transitions (moves) ~ C S x (StUTeUR>q) x S given as follows:

S:{ q,U)EQXRgo|U':inV(Q)}

(
(
(
(
(

St ={(¢,v°) | g€ L} ST:SOTXRSO
~ ={((¢,v).d,(q,v+d)) [VO<d <d:v+d [inv(g)}
U{((6%(), v), atev(q), (g,v") | A C ev(q),v" = v[exit(6%(q)) + 0] | inv(q)}
(

U{((g,v),ev(q)d 4, (64(q),v") | A C ev(q),v" = vlexit(q) < 0] |=inv(54(q))}

Note that in the first line of the definition of ~» above, we allow time to
evolve in any cell of Q). As before, these are called delay moves and denoted
~® for some delay d € R>g. The second line in the definition of ~+ defines the
start of concurrent events A (denoted ~~*) and the third line describes what
happens when finishing a set A of concurrent events (denoted ~-4). These are
again called action mowves. Exit conditions specify which clocks to reset when
leaving a cell.
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y>1;2+0 r2>22ANy>1Az2>1
r<bAy>1

l2 €4 a @

r>1ANy<3 l<z<4ny<3 r2>22Ny<3Nz2>1
z,2+0|b 2 0: ab blz+0
€2 ’ €3
U
r<4;y<+0
lo €1 a ll
T,y < 0 r>2Nz>1y+0

Fig. 5. HDTA of Example 10

Example 9. We give a few examples of two-dimensional timed automata. The
first, in Fig. 4, is the HDA of Fig. 3 with time constraints. It models two actions, a
and b, which can be performed concurrently. This HDTA models that performing
a takes between two and four time units, whereas performing b takes between
one and three time units. To this end, we use two clocks  and y which are reset
when the respective actions are started and then keep track of how long they
are running.

Hence exit(lp) = {z, y}, and the invariants z < 4 at the a-labeled transitions
e1, e4 and at the square u ensure that a takes at most four time units. The
invariants x > 2 at l;, e3 and I3 take care that a cannot finish before two time
units have passed. Note that x is also reset when exiting e; and 5, ensuring that
regardless when « is started, whether before b, while b is running, or after b is
terminated, it must take between two and four time units.

Ezxample 10. The HDTA in Fig. 5 models the following additional constraints:

— b may only start after a has been running for one time unit;
— once b has terminated, ¢ may run one time unit longer;
— and b must finish one time unit before a.

To this end, an invariant x > 1 has been added to the two b-labeled transitions
and to the ab-square (at the right-most b-transition x > 1 is already implied),
and the condition on = at the top a-transition has been changed to x < 5. To
enforce the last condition, an extra clock z is introduced which is reset when b
terminates and must be at least 1 when a is terminating.

Note that the left edge is now unreachable: when entering it, x is reset to
zero, but its edge invariant is x > 1. This is as expected, as b should not be able
to start before a. Further, the right b-labeled edge is deadlocked: when leaving it,
z is reset to zero but needs to be at least one when entering the accepting state.
Again, this is expected, as a should not terminate before b. As both vertical
edges are now permanently disabled, the accepting state can only be reached
through the square.
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1nterval delay words | i timed ipomsets

i3 1 4
step sequences % / ipomsets

delay words % timed words

Fig. 6. Different types of language semantics: below, for languages of timed automata;
middle, for languages of HDAs; top, for languages of HDTAs. Vertical arrows denote
injections, horizontal arrows bijections.

5 Concurrent timed languages

We introduce two formalisms for concurrent timed words: interval delay words
which generalize delay words and step sequences, and timed ipomsets which
generalize timed words and ipomsets. Figure 6 shows the relations between the
different language semantics used and introduced in this paper.

5.1 Interval delay words

Intuitively, an interval delay word is a step sequence interspersed with delays.
These delays indicate how much time passes between starts and terminations of
different events.

Definition 11. A word x1 ...z, € (StUTeUR>()* is coherent if, for all i < k
such that x;, x € StUTe and Vi < j < k: x; € Rxq, the gluing x;*x}, is defined.

Let tCoh C (StUTe UR>()* denote the subset of coherent words. Let ~ be
the congruence on tCoh generated by the relations

dd ~d+d, O~e TI~e (I€Id),
5152 ~ Sl * SQ (51,52 S St), TT5 ~ T % Ty (Tl,TQ S Te).

Again, € denotes the empty word in (St U Te UR>()* above. That is, successive
delays may be added up and zero delays removed, as may identities, and suc-
cessive starters or terminators may be composed. Note how this combines the
identifications in (2) for delay words and the ones for step sequences in (4).

Definition 12. An interval delay word (idword) is an element of the set

IDW = Id.tCoh....Id

Lemma 13. Every element of IDW has a unique representative IgdyPid; . ..
PodpIuq1, for n > 0, with the property that for all 1 < i < n, P; ¢ Id and for
alll <i<n-—1,ifd; =0, then (P;, P;y1) € Sty x Tey UTey x Sty. Such a
representative is called sparse.
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Fig. 7. Tipomsets T1 (left) and T> (right) of Ex. 15

This is analogous to Lem. 3, except that here, we must admit successive
starters or terminators if they are separated by non-zero delays (see Ex. 21
below for an example).

With concatenation of idwords inherited from the monoid (St U Te UR>g)*,
IDW forms a partial monoid (successive identities are composed using ~). Con-
catenations of sparse idwords are not generally sparse. The identities for con-
catenation are the words idyidy ~ idy 0idy for U € 0.

5.2 Timed ipomsets

Timed ipomsets are ipomsets with timestamps which mark beginnings and ends
of events:

Definition 14. Let P be a set, 0~ ,0" : P — R>g, 0 = (¢7,0"), and d € R>y.
Then P = (P,<p,--+,5,T,\,0,d) is a timed ipomset (tipomset) if

— (P,<p,--+,5,T, ) is an ipomset,

— forallz € P,0<o (z) <ot (z)<d,

— forallz €S, o7 (x) =0,

— forallz €T, ot (z)=d, and

— forallz,y € P, o (z) <o (y) = z<py = ot (z) <o (y).

The activity interval of event z € P is o(z) = [0~ (z), 0T (z)]; we will always
write o(x) using square brackets because of this. The untiming of P is its under-
lying ipomset, i.e., unt(P) = (P, <p,--+,5,T, ). We will often write tipomsets
as (P,o,d) or just P.

Ezxample 15. Figure 7 depicts the following tipomsets:

— T1 = ({.’E17$27$3}, <1,--2, {$1,£E3},{.’E1}7>\1,O'1,3) with
o <y ={(ws,22)}, ——> = {(21,22), (21, 23)},
e \i(x1) =a, M(x2) =d, M\(z3) = ¢, and
(] 01((51) = [0,3],0’1(1’2) = [1.573],01(1'3) = [0,15}
— T2 = ({x4,x57:r6}, <9,T4 —-—* T5 —-* Tg, {1’4},@, A2,02,4) with
o <o =10, Na(z4) = a, Ma(z5) = b, Aa(x6) = ¢, and
o 0a(24) = [0,2], 0 (x5) = [0.5, 3.5, 0 () = [1,3].
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Fig. 8. Gluing T1 * T5, see Ex. 17

Note that in 77, the d-labeled event x5 is not in the terminating interface as
it ends exactly at time 3. Further, the precedence order is not induced by the
timestamps in 7} : we have o (z3) = o] (2) but x3 <; x2; setting <; = () instead

would also be consistent with the timestamps. For the underlying ipomsets,

a
unt(7Ty) = LC’Z d] , unt(7) = | b
c

We generalize the gluing composition of ipomsets to tipomsets.

Definition 16. Given two tipomsets (P,op,dp) and (Q,0q,dq), the gluing
composition P x Q is defined if unt(P) x unt(Q) is. Then, P x Q = (U, oy,dy),
where

- U=P=xQ anddU:dp—i—dQ,
—oy(®) =o0p(x) ifv € P and o (x) = o (z) + dp else,
— ofi(z) —O'Q( z)+dp if v € Q and oy(z) = of(z) else.

The above definition is consistent for events x € Tp = Sg: here, o, (x) =
op(z) and o () = O'Q( x) +dp.

Example 17. Continuing Ex. 15, Fig. 8 depicts the gluing of 71 and 7%, which is
the tipomset T = ({x1, z2, 23,75, T}, <,--*,{1,23},0, A, 0,7) with

— <={(z3,22), (22, 75), (3, 25), (22, %6), (¥3,%6) },

- = {(xlﬂxQ) ($1,$3),(1‘1,$r) (.’1,'5,.%'6) ( L1, )}

— AMz1) = a, Ma2) =d, Mz3) = ¢, AN(zs) =D, /\( 6) = ¢,

- o(x1) = [0,5], o(z ) = [1.5,3], o(z3) = [0,1.5], o(z5) = [3.5,6.5], and
o(xg) = [4,6].

In this example, events x; and x4 have been glued together. Thus
unt(7T) = unt(77) * unt(Tz) = | *c —d—*b

Here, dashed arrows indicate event order, and full arrows indicate precedence
order.
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The next lemma, whose proof is trivial, shows that untiming respects gluing
composition.

Lemma 18. For all tipomsets P and Q, P * Q is defined iff unt(P) * unt(Q)
is, and in that case, unt(P) x unt(Q) = unt(P * Q). O

Definition 19. An isomorphism of tipomsets (P,op,dp) and (Q,0q,dqg) is an
ipomset isomorphism f : P — @Q for which op = ogo f and dp = dg.

In other words, two tipomsets are isomorphic if they share the same activity
intervals, durations, precedence order, interfaces, and essential event order. As
for (untimed) ipomsets, isomorphisms between tipomsets are unique, hence we
may switch freely between tipomsets and their isomorphism classes.

Remark 20. Analogously to ipomsets, one could define a notion of subsumption
for tipomsets such that isomorphisms would be invertible subsumptions. We
refrain from doing this here, mostly because we have not seen any need for it.
Note that as per Ex. 27 below, untimings of HDTA languages are not closed
under subsumption.

5.3 Translations

We now provide the translations shown in Fig. 6. First, the bijection between
idwords and tipomsets. Let IodyPid; ... Phd,I,4+1 be an interval delay word in
sparse normal form. Define the ipomset P = Py x...* P, and let dp = Y7 d;.
In order to define the activity intervals, let x € P and denote

first(x) = min{i |z € P,V € I;}, last(z) = max{i |z € P,V z € I;}.

If first(x) = 0, then let o~ (x) = 0, otherwise, o~ (z) = Z?:(t)(m)_l d;. Similarly,

if last(z) = n + 1, then let o (z) = dp; otherwise, o (z) = S0~ ¢, Using

Lem. 13, this defines a mapping tGlue from idwords to tipomsets.

Ezxample 21. Tipomset T of Ex. 17 is the translation of the following sparse
interval delay word:

[220) 15 (22010182 ) 15 (280105 [*52] 0.5 [ 162 | 1 [ 3 [ 1200054605 idy
Lemma 22. The mapping tGlue is a bijection between idwords and tipomsets.

Lemma 23. The vertical mappings i1,...,i4 of Fig. 6 are injective and com-
mute with the horizontal bijections.
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0 2 4 6 8 10 12
[ a ]
& ]

Fig. 9. Tipomset of accepting path in HDTA of Ex. 27

6 Languages of HDTAs

We are now ready to introduce languages of HDTAs as sets of timed ipomsets.
Let A= (X,C,L, L, T,inv,exit) be an HDTA and [A] = (S, S*+,ST,~). A path
7 in [A] is a finite sequence of consecutive moves 1 ~> S ~» -+ ~» §,, where
each s; ~ s;41 is either s; i Sit1, Si U Si41 O S; ~»y ;41 for d; € R>o and
U € 0. As usual, 7 is accepting if s; € S+ and s, € ST.

Definition 24. The observable content ev(w) of a path 7 in [A] is the tipomset
(P,<p,--+p,Sp,Tp,Ap,0p,dp) defined recursively as follows:

—ifm = (l,v), then (P,<p,--+p,Sp,Tp,\p) = idey(y, op(x) = [0,0] for all
z € P, and dp = 0;

—ifm = (I,v) % (I,v+d), then (P,<p,--+p,Sp,Tp,A\p) = idev(), op(x) =
[0,d] for all x € P, and dp = d;

— ifﬂ' = (ll,vl)WU(lg,Ug), then (P,<P, ——->p,Sp,Tp,)\p) = UTeV(lg), Up(l’) =
[0,0] for all x € P, and dp = 0;

- if?T = (ll,vl)WU(lg,Ug), then (‘P,<p7 ——->p,Sp,Tp,)\p) = ev(ll)iU, O'p(.’l?) =
[0,0] for all x € P, and dp = 0;

— if m = mma, then ev(mw) = ev(m) * ev(ma).

Observe that by definition of [A], the first item above is a special case of the
second one with d = 0.

Definition 25. The language of an HDTA A is
L(A) = {ev(m) | ® accepting path of A}.

Remark 26. With a few simple changes to Def. 24 above, we can define the
observable content of an HDTA path as an idword instead of a tipomset. (By
Lem. 22 this is equivalent.) If we define ev((l,v) ~? (I,v +d)) = d in the second
case above and use concatenation of idwords instead of gluing composition in
the last case, then ev(r) € IDW. Thus, the language of an HDTA can be seen as
a set of tipomsets or as a set of idwords.

Example 27. We compute the language of the HDTA A of Fig. 5. As both vertical
transitions are disabled, any accepting path must proceed along the location
sequence (g, e1,u, eq,l3). The general form of accepting paths is thus

™= (lo, ’UO) sl (107’00 + dl) @ (61,’02) b2 (617’02 + d2)
> (u,v3) % (u,v3 + d3) ~p (e4,04)

w84 (g, 04 4 dy) v (I3, 05) ~ (13,05 + ds).
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z<0 z<0

z<+0

Fig.10. Two HDTAs pertaining to Rem. 28

There are no conditions on dy, as both clocks = and y are reset when leaving
lp. The conditions on x at the other four locations force 1 < dy < 4, 1 <
do +d3 <4, and 2 < dy +ds +dy <5. As y is reset when leaving e, we must
have 1 < d3 < 3 and 1 < d3 + dy4, and the condition on z at I3 forces 1 < d4. As
there are no upper bounds on clocks in I3, there are no constraints on ds.

To sum up, £(A) is the set of tipomsets

({xlva}a (Z)vxl > X2, 07 (Z)a )‘7 g, dl + -+ d5)

with A(l‘l) = a, )\(Ig) = b, 0'(131) = [dl, dl —+ -4 d4] and O’(Ig) = [dl + dg, d1 +
ds + ds], or equivalently the set of idwords

id@ d1 ae d2 [.él,.] d3 [:él,] d4 'b d5 idg),
in which the delays satisfy the conditions above. As an example,

™= (l()v (07 07 0)) ~P (107 (57 5a 5)) 7 (617 (0’ 07 5)) ~? (617 (27 21 7))
st (u7 (27 0, 7)) ot (u7 (37 1, 7)) b (647 (3, 1, O))
1 ey, (4.5,2.5,1.5)) ~q (I3, (4.5,2.5,1.5)) ~22 (I3, (7,5,4))

is an accepting path whose associated tipomset is depicted in Fig. 9. Its interval
delay word is
idgbae2[ % ][] 1.5b4.51dy

Note that unt(L£(A)) = {[%#]} which is not closed under subsumption.

Remark 28. We can now show why the precedence order of a tipomset cannot
generally be induced from the timestamps. Figure 10 shows two HDTAs in which
events labeled a and b happen instantly. On the left, a precedes b, and the
language consists of the tipomset ab with duration 0 and o(a) = o(b) = [0, 0].
On the right, a and b are concurrent, and the language contains the tipomset
[%#] with the same duration and timestamps.

6.1 Language inclusion is undecidable

[25] introduces a translation from timed automata to HDTAs which we review
below. We show that the translation preserves languages. It is not simply an
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embedding of timed automata as one-dimensional HDTAs, as transitions in HD-
TAs are not instantaneous. We use an extra clock to force immediacy of transi-
tions and write idw(w) for the idword induced by a delay word w below.

Let A = (X,C,Q,L1,T,I,E) be a timed automaton and C’ = C W {cr},
the disjoint union. In the following, we denote the components of a transition
€ = (Ge, ey ley Re, q.) € E. We define the HDTA H(A) = (L, L, T,inv,exit) by
L=QWE and, for g e Q and e € FE,

ev() =0, ev(e)={t}, G(e)=q, d.(e)=q,
inv(q) = I(q), exit(e) = R, inv(e) = ¢ Aer <0, exit(q) = {er}.

Ezample 29. The HDTA on the left of Fig. 10 is isomorphic to the translation of
the timed automaton with the same depiction. (Because of the constraint < 0
in the accepting location, the extra clock ¢r may be removed.)

Lemma 30. For any q1,q2 € Q and v1,vs : C — Rxq, (q1,v1) ~ (g2, v2) is an
action move of [A] if and only if (q1,v]) ~2 (e,v") and (e,v") ~, (g2, vh) are
moves of [H(A)] such that

— forallce C, vi(c) =v'(c) = v
— vi(er) € Rsg and v'(er) = vh(er) = 0.

In addition, idw(ev((qi,v1) % (42,02))) = ev((qu, v}) ~ (e,0') =4 (42, v})-

Lemma 31. For any a € X and d,d’ € R>q, dad’ is the label of some path in
[A] if and only if das0sad’ is the label of some path in [H(A)].

Theorem 32. For any timed automaton A, L(H(A)) = {idw(w) | w € L(A)}.

By the above theorem, we can reduce deciding inclusion of languages of timed
automata to deciding inclusion of HDTA languages. It follows that inclusion of
HDTA languages is undecidable:

Corollary 33. For HDTAs Ay, A, it is undecidable whether L(A1) C L(A3).

6.2 Untimings of HDTA languages are (almost) regular

We revisit the notions of region equivalence and region automaton from [25] in
order to study untimings of languages of HDTAs. For d € R>( we write |d| and
(d) for the integral, respectively fractional, parts of d, so that d = [d] + (d).

Let A = (X,C,L, Ly, T, inv,exit) be an HDTA. Denote by M the maxi-
mal constant which appears in the invariants of A and let = denote the region
equivalence on Rgo induced by A. That is, valuations v, v’ : C — R are region
equivalent if -

v'(z)] or v(x),v'(z) > M, for all x € C, and
i , for all z € C, and
< (v'(y)) for all z,y € C.

==
—~
C\
—~
8
o~
S~
I
S~— O
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[25] introduces a notion of untimed bisimulation for HDTA and shows that
2 is an untimed bisimulation. An immediate consequence is the following.

Lemma 34. Let t = (I1,v1) ~ (l2,v2) be a transition in [A]. For all vi =2 v
there exists a transition t' = (I1,v}) ~ (la,v}) such that v = vs. O

As usual, a region is an equivalence class of Rgo under =. Let R = Rgo /2
denote the set of regions, then R is finite [3].

Definition 35. The region automaton of A is the transition system R(A) =
(S, 8+, 8T, ) given as follows:

S={(,rye LxR|rC[inv(D]}U{(%,{°}) [1° € L}
SE={9,{"Y|1°c L} ST=8NTy, xR
19, {v°}), ideyoy, (I°,{0°})) 1 10 € L}
L), idevy, (I,7")) | Jv € 0" €1/,d € R : (1,v) »* (1L,v)),v' = v+ d}
L), otev(l)), (') | v erv er : (I,v)~Y (I',0)}
l ) ()lva( ; /))‘H’UET,UIET/Z(l,U)WU(l/,UI)}

Extra copies of start locations are added in order to avoid paths on the empty
word e. This construction is similar to the construction of an ST-automaton from
an HDA [5]. The region automaton of A is a standard finite automaton whose
transitions are labeled by elements of St U Te. Its language is a set of coherent
words of (StU Te)* [5].

Lemma 36. A path (I°,vp) ~ -+ ~ (Ip,vp) is accepting in [A] if and only if
(19 ,70) = (1% 70) = - — (Lp,rp) with v; € 7; is accepting in R(A).

Theorem 37. For any HDTA A, L(R(A)) = unt(L(A)).

By the Kleene theorem for finite automata, £(R(A)) is represented by a
regular expression over St U Te. Since Py * Py % --- % P, is accepted by A if
and only if the coherent word unt(Fp) unt(Py)...unt(P,) is accepted by R(A),
Theorems 6 and 37 now imply the following.

Corollary 38. For any HDTA A, unt(L(A))| is a regular ipomset language.

In [5] it is shown that inclusion of regular ipomset languages is decidable. Now
untimings of HDTA languages are not regular because they are not closed under
subsumption, but the proof in [5], using ST-automata, immediately extends to a
proof of the fact that also inclusion of untimings of HDTA languages is decidable:

Corollary 39. For HDTAs Ay and As, it is decidable whether unt(L(A;)) C
unt(L(Asz)).
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7 Conclusion and Perspectives

We have introduced a new language-based semantics for real-time concurrency,
informed by recent work on higher-dimensional timed automata (HDTAs) and
on languages of higher-dimensional automata. On one side we have combined the
delay words of timed automata with the step sequences of higher-dimensional
automata into interval delay words. On the other side we have generalized the
timed words of timed automata and the ipomsets (i.e., pomsets with interfaces)
of higher-dimensional automata into timed ipomsets. We have further shown
that both approaches are equivalent.

Higher-dimensional timed automata model concurrency with higher-dimen-
sional cells and real time with clock constraints. Analogously, timed ipomsets
express concurrency by partial orders and real time by interval timestamps on
events. Compared to related work on languages of time Petri nets, what is new
here are the interfaces and the fact that each event has two timestamps (instead
of only one), the first marking its beginning and the second its termination.
This permits to introduce a gluing operation for timed ipomsets which gen-
eralizes serial composition for pomsets. It further allows us to generalize step
decompositions of ipomsets into a notion of interval delay words which resemble
the delay words of timed automata.

As an application, we have shown that language inclusion of HDTAs is un-
decidable, but that the untimings of their languages have enough regularity to
imply decidability of untimed language inclusion.

Perspectives. We have seen that unlike languages of higher-dimensional au-
tomata, untimings of HDTA languages are not closed under subsumption. This
relates HDTASs to partial higher-dimensional automata [23,31] and calls for the
introduction of a proper language theory of these models.

Secondly, higher-dimensional automata admit Kleene and Myhill-Nerode the-
orems [27,32], but for timed automata this is more difficult [8]. We are wondering
how such properties will play out for HDTAs.

Timed automata are very useful in real-time model checking, and our language-
based semantics opens up first venues for real-time concurrent model checking
using HDTAs and some linear-time logic akin to LTL. What would be needed
now are notions of simulation and bisimulation—we conjecture that as for timed
automata, these should be decidable for HDTAs—and a relation with CTL-type
logics. One advantage of HDTAs is that they admit a partial-order semantics,
so partial-order reduction (which is difficult for timed automata [15,36]) should
not be necessary.

Finally, a note on robustness. Adding information about durations and tim-
ings of events to HDTAs raises questions similar to those already existing in
timed automata. Indeed, the model of timed automata supports unrealistic as-
sumptions about clock precision and zero-delay actions, and adding concurrency
makes the need for robustness in HDTAs even more crucial. It is thus pertinent to
study the robustness of HDTAs and their languages under delay perturbations,
similarly for example to the work done in [17,21,22].



Languages of Higher-Dimensional Timed Automata 21

Robustness may be formalized using notions of distances and topology, see

for example [9,10,24,30,38]. Distances between timed words need to take permu-
tations of symbols into account [9], and it seems promising to use partial orders
and timed ipomsets to formalize this.
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Appendix: Proofs

Proof (of Lem. 13). If two words of the form of the lemma are equivalent, then
they are equal. This proves uniqueness. To show existence, first note that by
using the equivalences

dd' ~d+d, 0~ e,

any element of IDW may be rewritten to a word (not necessarily unique)
TIodoPrdy -+ PpdpInyy (5)

with n > 0 and Py,..., P, € StU Te.

Next we prove by induction on n that any word w of the form (5) is equivalent
to one as in the lemma. The case n = 0 is trivial.

Now let n > 1 and suppose the property holds up to index n — 1. If w is not
of the form (5) at index n, then this may be for two reasons.

— There is 1 < k < n — 1 such that d, = 0 and (P, Py+1) ¢ Sty x Tey U
Tey x Sty. In this case, PydiPri1 ~ Py * Pyrq € StUTe, and w ~ w' =
IodoPrdy -+ dy—1 (P % Pyg1)dgq1 - PrdpIng.

— There is 1 < k < n such that P, € |d. Then dy_1Pdy ~ di_1 + d, and
w e~ w' = lodoPrdy - -+ Pe—1(dp—1 + di) Peg1dit1 - - - Prdplnia.

In both cases, applying the induction hypothesis to w’ finishes the proof.

Proof (of Lem. 22). To see injectivity, let w = IpdoPydy ... PpdyIp4q and w' =
IydyPidy ... Pd; I, . be sparse idwords such that P = tGlue(w) = tGlue(w").
By Lem. 3, n = m and (lo, Po, ..., Py, Int1) = (Iy, Py, ..., Py, 1I;, . 1). Hence
also first(x) = first'(z) and last(z) = last'(z) for all + € P, and by induction,
d; = dj for all 4.

To show surjectivity, let P be a tipomset, P = P; % --- x P, its unique
sparse decomposition given by Lem. 3, and I, = idsp17 Iy = idry - Again
by induction, we can use first and last to define the delays dy, ..., d,, and then
P = tGIue(IOd0P1d1 ce Pndnln-‘rl)-

Proof (of Lem. 23). For i1, let w = dpayd; ...and, be a delay word, then w is
translated to the idword i1 (w) = idg dg a;e0eay dy . .. a0 +a, d, idy, alternating
starts and terminations of actions with 0 delays in-between (and the original
delays between different actions).

Similarly for iy, a sparse step sequence IgP; ... P,I, 1 is translated to the
(sparse) idword In0P;0...0 P, 01,41, inserting 0 delays between all elements.

For i3, let w = (ag,to) ... (an, tn) tnt1 be a timed word. This is translated to
the tipomset ({z1,...,2,},<,0,0,0,0,\,d) with z; < z; < i< j, o(z;) =
[ti,ti], )\(Z‘Z) = Q;, and d = tn+1.

Finally, an ipomset P is translated to a tipomset (P, o, d) by setting o(x) =
[0,0] for all z € P and d = 0.

Injectivity of these four mappings (up to isomorphism) is clear, as is the fact
that they commute with the horizontal bijections.
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Proof (of Lem. 30). By construction, (q1, ¢, a, R, g2) € E if and only if there exist
q1,q2,¢ € L such that 62(e) = q1, 0L(e) = qa, ev(e) = a, inv(q) = I(q), inv(e) =
¢ Aer <0, exit(q) = {cr}, and exit(e) = R. Let us denote by ~»4 and ~>p the
set of transitions of [A] and [H(A)], respectively. Then {((¢1,v1), a, (g2, v2)) |
v1 E ¢,va = v1[R + 0]} C ~~4 if and only if

{((qu,v1), (e,v) [V =vlfer < Ol =g Aer <0} €~y

and
{((e;v"), (g2,v3)) | v5 = V'[R 0] F I(g2)} € ~p-

This proves the first part of the lemma. The second part is obtained directly
from the definitions.

Proof (of Lem. 31). From Lem. 30 we know that a is the label of a path in [A]
if and only if idw(a) = as0+a is the label of some path in [H(A)]. We conclude
by noting that by construction, time evolves in H(A) only in 0-dimensional
locations and exactly as it evolves in A.

Proof (of Thm. 32). From Lem. 31 we know that dad’ is the label of some path
in [A] if and only if idw(d a d') is the label of some path in [H(A)]. Now for any
two delay words w, w’, idw(ww’) = idw(w)idw(w’), so the theorem follows by
induction on paths and from L g4y = L4 and Ty = Ta.

Proof (of Lem. 36). The direction from left to right follows directly from the
definition of — in Def. 35. For the other direction we proceed by induction on
p. For the base case p = 0 we have (1%, {v°}) in [A].
Assume now that the lemma is true for p— 1, that is we have a path (I, vg) ~
-~ (lp—1,vp—1) In [A] satisfying the lemma. By construction the presence
of a transition ({,—1,7p—1) = (Ip,7p) in R(A) is due to the existence of some
transition (l,—1,v,_1) — (lp,v,) in [A] with v, _; € r,1 and v, € r,. Since

2
~Y ! :
Up—1 = Up_q, We can conclude by using Lem. 34.

Proof (of Thm. 37). From Lem. 36 we know that for all n > 0, a path = =
(1% v9) ~ -++ ~ (ln,v,) in [A] is accepting if and only if 7/ = (I%9,ry) —
(19 7rg) = -+ — (In, ) With v; € 7; is accepting in R(A). Let Py = ev((I°,vp))
and P; = ev((l;—1,vi—1) ~ (l;,v;)) for all 1 < i <n.Thenev(r) = Py *---* P, =
Py« Py %% P,.

Notice that by construction of R(A), unt(Pp) is the label of (19 ,79) — (1%,70)
and for all 1 < i < n, unt(F;) is the label of (I;_1,7r;—1) — (l;, ;) regardless of the
type of the move ~». Thus the label of 7’ is unt(Pp) unt(Py)...unt(P,). Hence
Py * Py % ---x P, is accepted by A if and only if unt(FPp) unt(Py)...unt(P,) is
accepted by R(A). We conclude:

L(R(A)) = {unt(Py) * unt(Py) * - - xunt(Py,) | Py * Py *---x P, € L(A)}
={unt(Py*« Py*---*xP,) | Ppx Pyx---x P, € L(A)} (Lem. 18)
= unt(L(A))



	Languages of Higher-Dimensional Timed Automata

