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Abstract. Petri nets and their variants are often considered through
their interleaved semantics, i.e., considering executions where, at each
step, a single transition fires. This is clearly a miss, as Petri nets are a
true concurrency model. This paper revisits the semantics of Petri nets
as higher-dimensional automata (HDAs) as introduced by van Glabbeek,
which methodically take concurrency into account. We extend the trans-
lation to include some common features. We consider nets with inhibitor
arcs, under both concurrent semantics used in the literature, and gener-
alized self-modifying nets. Finally, we present a tool that implements our
translations.

Keywords: Petri net, Higher-dimensional automaton, Concurrency, In-
hibitor arc, Generalized self-modifying net

1 Introduction

We revisit the concurrent semantics of Petri nets as higher-dimensional automata
(HDAs). In both Petri nets and HDAs, events may occur simultaneously, and
both formalisms make a distinction between parallel composition a∥b and choice
a · b+ b · a. However, Petri nets are often considered through their interleaving
semantics, annihilating this difference. As an example, Fig. 1 shows two Petri nets
and their HDA semantics (see below for definitions): on the left, transitions a and b
are mutually exclusive and may be executed in any order but not concurrently; on
the right, there is true concurrency between a and b, signified by the filled-in square
of the HDA semantics. In interleaving semantics, no distinction is made between
the two nets and both give rise to the transition system on the left. To take this into
account, concurrent step semantics has been introduced [19]. While it captures
executions that are impossible when only considering interleavings, it still misses
some possible behaviors, as shown later in the paper. Our goal is thus to introduce
a new semantics which encompasses concurrent step semantics and adds the execu-
tions that aremissed in this one. HDAs are natural candidates for this, andwe show
that HDA semantics encompasses concurrent step semantics but is more general.
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Fig. 1. Petri nets and HDAs for interleaving (left) and true concurrency (right).

The relations betweenPetri nets andHDAswere first explored by vanGlabbeek
in [32], where an HDA is defined as a labeled precubical set whose cells are hyper-
cubes of different dimensions.More recently, [14] introduces an event-based setting
for HDAs, defining their cells as totally ordered sets of labeled events. This frame-
work has led to a number of new developments in the theory of HDAs [4,6,15,17],
so here we set out to update vanGlabbeek’s translation to this event-based setting.

Petri nets are a powerful model that can represent infinite systems, and yet
preserve decidability of reachability [26] and coverability [24]. Despite their ex-
pressiveness, Petri nets miss some features that are essential to represent program
executions. In [18], the authors introduce inhibitor arcs, which allow preventing
a transition t from firing when a place connected to t by an inhibitor arc is not
empty. Obviously, this construction allows for the implementation of a zero test,
which makes Petri nets with inhibitor arcs Turing powerful.

We investigate the concurrent semantics of Petri nets with inhibitor arcs
(PNIs), showing that the a-posteriori semantics of [22] gives again rise to HDAs.
For the more liberal a-priori semantics (see again [22]) however, we need to intro-
duce partial HDAs in which some cells may be missing, mimicking the fact that
some serialisations of concurrent executions are forbidden. We further expand
our work to the generalized self-modifying nets of [12], giving their concurrent
semantics as ST-automata which themselves generalize partial HDAs.

We have developed a prototype tool which implements the translations from
Petri nets to HDAs and from PNIs to partial HDAs.4 Our implementation is able
to deal with standard, weighted and inhibitor arcs in a modular fashion.

This article is organised as follows.We begin in Sect. 2 and 3 by recalling HDAs
and Petri nets, focusing on their concurrent semantics which allows several transi-
tions to fire concurrently. The following sections present our proper contributions.
In Sect. 4, we introduce our translation from Petri nets to HDAs, based on [32].
To overcome the symmetry of the HDAs thus built, Sect. 5 introduces an event
order which avoids a factorial blow-up in the construction. We also give several
examples to illustrate finer points in HDA semantics.

Then we consider Petri nets with inhibitor arcs in Sect. 6, both under a-
posteriori and a-priori semantics, and generalized self-modifying nets in Sect. 7.
Section 8 presents our implementation. We refer to the long version [5] for proofs
of our results.

4 See https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-caissier/pn2hda.

https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-caissier/pn2hda
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2 Higher-Dimensional Automata

Higher-dimensional automata (HDAs) extend finite automata with extra struc-
ture which permits to specify independence or concurrency of events. They consist
of cells which are connected by face maps. Each cell has a list of events which are
active, and face maps permit to pass from a cell to another in which some events
have not yet started or are terminated.

Wemake this precise.A conclist (concurrency list) over an alphabetΣ is a tuple
(U,99K,λ), consisting of a finite set U (of events), a strict total order 99K⊆U×U
(called the event order), and a labeling λ : U → Σ. Conclists represent labeled
events running in parallel. If no confusion may arise, we will often refer to con-
clists by their underlying set only, writing U instead of (U,99K,λ), and do the same
for other algebraic structures defined throughout. Let □=□(Σ) denote the set of
conclists over Σ.

Conclists (U1,99K1,λ1) and (U2,99K2,λ2) are isomorphic if there is a mapping
φ : U1 → U2 such that a 99K1 b iff φ(a) 99K2 φ(b) and λ2 ◦φ= λ1. Isomorphisms
between conclists are unique [14], so we may switch freely between conclists and
their isomorphism classes in the sequel without mention.

Remark 1. The event order 99K is important as a book-keeping device but oth-
erwise carries no computational meaning (see also Sect. 5 below). It plays a key
role in distinguishing between events with the same label (autoconcurrency) and
is needed for uniqueness of conclist isomorphisms. Conclists without event order
are simply multisets, so conclists are multisets totally ordered by the event order,
hence lists or words of Σ∗; but we often write them vertically to emphasize that
the elements are running in parallel. Event order goes downwards if not indicated.

A precubical set
(
X,ev,{δA,B;U |U ∈□,A,B⊆U,A∩B=∅}

)
consists of a set of

cells X together with a function ev :X→□. For a conclist U we writeX[U ]={x∈
X |ev(x)=U} for the cells of type U . Further, for every U ∈□ and A,B⊆U with
A∩B=∅ there are face maps δA,B;U :X[U ]→X[U \(A∪B)] which satisfy

δC,D;U\(A∪B)δA,B;U =δA∪C,B∪D;U (1)

for every U ∈□, A,B⊆U , and C,D⊆U \(A∪B).
We will omit the extra subscript “U” in the face maps and further write

δ0A = δA,∅ and δ1B = δ∅,B . The upper face maps δ1B transform a cell x into one
in which the events in B have terminated; the lower face maps δ0A transform x
into a cell where the events in A have not yet started. Every face map δA,B can
be written as a composition δA,B = δ0Aδ

1
B = δ1Bδ

0
A, and the precubical identity (1)

expresses that these transformations commute.
We write Xn={x∈X | |ev(x)|=n} for n∈N and call elements of Xn n-cells.

The dimension of x∈X is dim(x)= |ev(x)| ∈N; the dimension of X is dim(X)=
sup{dim(x) |x∈X}∈N∪{∞}. For k∈N, the k-truncation of X is the precubical
set X≤k={x∈X |dim(x)≤k} with all cells of dimension higher than k removed.

A higher-dimensional automaton (HDA) A= (Σ,X,⊥) consists of a finite al-
phabet Σ, a precubical set X on Σ, and a subset ⊥⊆X of initial cells. (We will
not need accepting cells in this work.) An HDA may be finite or infinite, or even
infinite-dimensional.
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Fig. 2. A two-dimensional HDA X on Σ={a,c,d}, see Ex. 2.

Computations of HDAs are paths, i.e.,sequences

α=(x0,φ1,x1,...,xn−1,φn,xn) (2)

consisting of cells xi of X and symbols φi which indicate which type of step is
taken: for every i∈{1,...,n}, (xi−1,φi,xi) is either

– (δ0A(xi),↗A,xi) for A⊆ev(xi) (an upstep)
– or (xi−1,↘A,δ

1
A(xi−1)) for A⊆ev(xi−1) (a downstep).

Intuitively, a downstep terminates events in a cell, following an upper facemap.
This is why downsteps require that A⊆ev(xi−1), i.e., events that are terminated
belong to the cell. Similarly, an upstep starts events by following inverses of lower
face maps. The constraints on upsteps require that A⊆ ev(xi), i.e., the initiated
events belong to the next cell after the step. Both types of steps may be empty.

A cell x ∈ X is reachable if there exists a path α from an initial cell to x,
i.e.,x0 ∈⊥ and xn = x in the notation (2) above. The essential part of X is the
subset ess(X)⊆X containing only reachable cells. It is not necessarily an HDA,
as some faces may be missing.

Example 2. Figure 2 shows a two-dimensional HDA as a combinatorial object
(left) and in a geometric realisation (right). It consists of 21 cells: states X0 =
{v1,...,v8} in which no event is active (ev(vi)= ∅); transitions X1= {t1,...,t10} in
which one event is active (e.g.,ev(t3) = ev(t4) = c); and squares X2 = {q1,q2,q3}
with ev(q1)=[ac] and ev(q2)=ev(q3)=[ad].

The arrows between cells in the left representation correspond to the face maps
connecting them. For example, the upper face map δ1ac maps q1 to v4 because the
latter is the cell in which the active events a and c of q1 have been terminated.
On the right, face maps are used to glue cells, so that for example δ1ac(q1) is glued
to the top right of q1. In this and other geometric realisations, when we have two
concurrent events a and c with a99Kc, we will draw a horizontally and c vertically.
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The HDA X of Fig. 2 admits several paths, for example t3 ↗a q1 ↘c t2 ↗d

q2 ↘a t8 ↗a q3 ↘ad v8. Note that ess(X) = X \ {v1,t1,v3} is not an HDA, and
X=X≤k for all k≥2.

Remark 3. We often abuse notation and denote conclists by their labels instead of
their events, writing for example [ac] for the conclist ({e1 99Ke2},λ : (e1 7→a,e2 7→c)).
(We have already done so in the example above.) As long as there is no autoconcur-
rency, this abuse of notation is safe andbrings no ambiguity; but if we need to assign
the same label to several events, we will make events and their labeling explicit in
our representation of conclists, writing for instance

[
e1 7→a
e2 7→c

]
for the above example.

3 Petri Nets

A Petri net N =(S,T,F ) consists of a set of places S, a set of transitions T , with
S∩T =∅, and a weighted flow relation F :S×T ∪T×S→N. A marking of N is a
function m :S→N. Such marking is k-bounded if m(s)≤k for every place s. It is
bounded if there is a value k∈N such that m is k-bounded.

Let X be any set. A function f :X→N is a multiset, i.e.,an extension of sets
allowing several instances of each element of X. We introduce some notation for
these. We write x∈ f if f(x)≥ 1. Given two multisets f1,f2 over X we will write
f1 ≤ f2 iff f1(x)≤ f2(x) for every element x∈X. If f(x)∈{0,1} for all x, then f
may be seen as a set, and the notation x ∈ f agrees with the usual one for sets.
The multisets we use will generally be finite in the sense that

∑
x∈X f(x) <∞,

and in that case we might use additive notation and write f =
∑

x∈Xf(x)x. This
notation easily applies to markings of Petri nets, and we will write for instance
m=2p1+p4 for a marking such that m(p1)=2,m(p4)=1, and m(pi)=0 for any
other place pi∈S\{p1,p4}.

For a transition t ∈ T , the preset of t is the multiset •t : S → N given by
•t(s)=F (s,t). This preset describes how many tokens are consumed in each place
when t fires. The postset of t is the multiset t• :S→N such that t•(s)=F (t,s). It
describes how many tokens are produced in each place of the net when firing t.

Petri nets compute by transforming markings. Their standard semantics is an
interleaved semantics, where states are markings and a single transition can fire
at each step. Let m :S→N be a marking and t∈T , then t can fire in m if •t≤m.
Firing t produces a new marking m′=m−•t+t•.

The reachability graph (see for example [9]) of Petri net N = (S,T,F ) is the
labeled graph JNK1=(V,E) given by V =NS and

E={(m,t,m′)∈V ×T×V |•t≤m,m′=m−•t+t•}.
(The reason for the subscript 1 in JNK1 will become clear later.)

In a reachability graph vertices are markings and edges are labeled by the tran-
sition which fires. A computation of a Petri net is a path in its reachability graph.
Note that we use collective token semantics, i.e., tokens in •t that are consumed by
firing t are considered as blind resources. Petri nets also have an individual token
semantics [20] where transitions distinguish tokens individually by considering
their origin. This may be used to model realisation of independent processes; but
we will not consider it here.



6 Amrane, Bazille, Fahrenberg, Hélouët, Schlehuber-Caissier
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Fig. 3. A Petri net N (left); the reachability graph JNK1 (middle); and its concurrent
step reachability graph JNKCS(right).

Let N1,N2 be two Petri nets. The reachability graphs JN1K1 = (V1,E1) and
JN2K1 = (V2, E2) are isomorphic, denoted JN1K1 ∼= JN2K1, if there exist bijec-
tions f : V1 → V2 and g : E1 → E2 such that for all e1 = (m1, t1,m

′
1) ∈ E1,

g(e1)=(m2,t2,m
′
2) iff f(m1)=m2 and f(m′

1)=m′
2.

Considering Petri nets via their interleaved semantics misses an important
point of the model, namely concurrency. Indeed, it does not allow to distinguish
between behaviors where a pair of transitions fire in sequence frombehaviors where
these transitions are independent and can fire concurrently. One way to cope with
this issue is to consider executions of Petri nets as processes [20], that is, partial
orders representing causal dependencies among transitions occurrences. Another
possibility is the use of a concurrent step semantics [19], where several transitions
are allowed to fire concurrently. The concurrent step semantics mimics that of the
interleaved semantics, but fires multisets of transitions.

For a multiset U : T → N of transitions we write •U =
∑

t∈T
•t U(t) and

U•=
∑

t∈T t
•U(t). U is firable in markingm if •U≤m. The concurrent step reach-

ability graph [28] of Petri net N = (S,T,F ) is the labeled graph JNKCS = (V,E)
given by V =NS and

E={(m,U,m′)∈V ×NT ×V |U ̸=∅,•U≤m,m′=m−•U+U•}. (3)

Figure 3 shows a simple example of a Petri net and its two types of reacha-
bility graph. Note that transitions in JNKCS allow multisets of transition rather
than only sets, thus several occurrences of a transition may fire in a concurrent
step. This feature is called autoconcurrency, and it is well known that allowing
autoconcurrency increases the expressive power of Petri nets [31]. Further, JNKCS

is closed under substeps in the sense that for all multisets V ⊆U , if (m,U,m′′)∈E,
then we also have (m,V,m′)∈E and (m′,U \V,m′′)∈E for some marking m′.

Notice that our definition of Petri nets allows preset-free transitions t with
•t= ∅. When a transition t has an empty preset, then t is firable from any mark-
ing. In an interleaved semantics, allowing preset-free transitions does not change
expressive power, so one frequently assumes that •t ̸= ∅ for every t ∈ T . In the
setting of a concurrent semantics with autoconcurrency, an arbitrary number of
occurrences of each preset-free transitions may fire from any marking, making
the transition relation of (3) of infinite degree. We will generally allow preset-free
transitions in what follows.
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X[∅]={p1+p3,p2+p3,p1+p4,p2+p4}
X[a]={(p3,a),(p4,a)}
X[b]={(p1,b),(p2,b)}
X[[ab]]={(0,[ab])}
X[[ba]]={(0,[ba])}

p1+p3 p2+p3

p1+p4 p2+p4

(p3,a)

(p4,a)

(p1,b) (p2,b)(0,[ab])

Fig. 4. Higher-dimensional automaton (reachable part only) for the Petri net of Fig. 3.
Left: sets of cells; right: geometric realisation (not showing X[[ba]]).

4 From Petri Nets to HDAs

We expand the notion of reachability graph to a higher-dimensional automaton
(HDA). The construction is an adaptation of [32, Def. 9] to the event-based setting
of HDAs introduced in [14].

Let N = (S,T,F ) be a Petri net. Let □=□(T ) and define X =NS ×□ and
ev :X→□ by ev(m,τ)=τ . For x=(m,τ)∈X[τ ] with τ=(t1,...,tn) non-empty and
i∈{1,...,n}, define

δ0ti(x)=(m+•ti,(t1,...,ti−1,ti+1,...,tn)),

δ1ti(x)=(m+t•i ,(t1,...,ti−1,ti+1,...,tn)).

Using (1) to generate the other face maps, this defines a precubical set JNK=X.
The 0-cells in X are markings of N , and in an n-cell of X, n transitions of N

are running concurrently: the events of an n-cell (m,τ) are the elements of the
conclist τ=(t1,...,tn) of transitions. If a transition t appears multiple times in this
sequence, then it is autoconcurrent. Not all precubical sets are in the image of the
translation from Petri nets, see [32, Fig. 11] for an example.

Note that we translate (unlabeled) Petri nets to HDAs with labeled events: the
labels of the events in JNK are the transitions ofN . A path in JNK is a computation
in N in which concurrent transitions can fire concurrently.

Lemma 4. The reachability graph of Petri net N is isomorphic to the 1-trunca-
tion of JNK: JNK1∼=JNK≤1.

In order for this statement to make sense, we must consider JNK≤1 as a graph:
vertices are 0-cells of JNK, and edges triples of the form (δ0t (x),x=(m,t),δ1t (x)).

We can also relate JNK to its concurrent step reachability graph, as follows. For
a sequence a=(a1,...,an)∈□(Σ) on some alphabet Σ denote by pi(a) :Σ→N its
Parikh image, i.e., the multiset given by counting symbols: pi(a)(x)= |{i |ai=x}|.
For a precubical setX on Σ define a labeled graph flat(X)=(V,E) (the flattening
of X) by V =X0 and E⊆V ×NΣ×V given by

E={(x,U,z) |∃y∈X :δ0ev(y)(y)=x,δ1ev(y)(y)=z,pi(ev(y))=U}.
That is, edges in flat(X) are labeled by multisets of events for which there exist
corresponding cells inX, identifying all permutations in one edge.Wemay now re-
formulate Lem. 4 above to JNK1∼=flat(JNK≤1), and for JNKCS the following is clear.
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Lemma 5. The concurrent step reachability graph of a Petri net N is isomorphic
to the flattening of JNK: JNKCS

∼=flat(JNK). ⊓⊔

Note that under this translation, JNKCS being closed under substeps corre-
sponds to the fact that in JNK, all faces of any cell are also present.

A Petri net N = (S,T,F ) together with an initial marking i : S →N is called
a marked Petri net. Now i∈ JNK[∅], so this induces an HDA JNK=(T,X,⊥) with
⊥={i}.

A marked net N is bounded if all markings reachable from i in JNK1 are
k−bounded for some k ∈N. Obviously, as firable transitions only depend on the
current marking, and as the effect of a firing is deterministic, when a marked net
is bounded, the reachable part of JNK1, i.e., ess(JNK≤1) is finite. However, due to
autoconcurrency, this property does not hold for the full ess(JNK), as show in the
following example.

Example 6. Let N = (∅,{a},F ) be a Petri net with a single transition a, with-
out places, and with an empty flow relation. With empty initial marking, N is
bounded. Now •a = ∅, so a is firable in arbitrary autoconcurrency. In ess(JNK)
we get one cell in every dimension n: the n-fold autoconcurrency of a. That is,
ess(JNK) is infinite-dimensional (and hence infinite).

Proposition 7. If marked Petri net N is bounded and has no preset-free transi-
tions, then ess(JNK) is finite.

Figure 4 shows the HDA ess(JNK) for the Petri net N of Fig. 3 with initial
marking i=p1+p3. In particular, since by construction 0-cells in X are markings
of N , ess(JNK) includes all faces, so is an HDA. (This is a general principle: for
any HDA X with ⊥X ⊆X0, ess(X) is also an HDA [17].)

Note that the 2-dimensional cell (0,[ab]) corresponds to the edge of JNKCS be-
tween p1+p3 and p2+p4 in Fig. 3. Actually, we get two 2-dimensional cells, one
with event [ab] and the other with [ba]. (We have omitted the second in the geomet-
ric realisation.) This is somewhat unfortunate, as they should denote the same
concurrent step {a,b}. We will show in Sect. 5 how to fix this problem.

5 Event Order

The above definition of the HDA JNK is highly symmetric: for a given marking m
there is a cell (m,τ) for every sequence τ =(t1,...,tn), even though in fine we are
only interested in the multiset of concurrently active transitions. More precisely,
for every permutation σ∈Sn in the nth symmetric group5 there is a cell (m,τ ◦σ).

That is, X = JNK is a symmetric precubical set [21, 29]: a precubical set
equipped with actions Xn ×Sn → Xn of the symmetric groups which are con-
sistent with the face maps, see [21, Sect. 6].

In order to avoid this factorial blow-up, we may fix an arbitrary (non-strict)
total order≼ on the transitions in T and then instead of□(T )∼=T ∗ consider the set

T ∗
≼={(t1,...,tn) |∀i=1,...,n−1: ti≼ ti+1}.

5 The group of permutations of {1,...,n}.
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Fig. 5. Petri net (top) and HDA semantics (bottom) of Ex. 8.

The definition of the face maps of this reduced X = JNK stays the same, and X
is now a (non-symmetric) precubical set with one cell for every marking m and
every multiset of transitions τ .

The order ≼ on T may be chosen arbitrarily, and changing it amounts to ap-
plying a permutation on X and passing to another, equivalent version of (the
symmetrization of) X. Technically speaking, the forgetful functor from symmet-
ric precubical sets to precubical sets is a geometric morphism [13,25] in that it has
both a left and a right adjoint; this is precisely what is needed to be able to say
that the order ≼ on T is arbitrary and may be chosen and re-chosen at will.

We give some further examples of Petri nets and their HDA semantics, using
a lexicographic order on transitions.

Example 8. Figure 5 shows a Petri netN which executes a and b in mutual exclu-
sion. We again show the essential part X=ess(JNK); the initial cell is p1+p3+p5.
We prove that X[[ab]] = ∅, so that JNK is in fact isomorphic to the reachability
graph JNK1. Assume x=(m,[ab])∈X[[ab]], then δ0ab(x)=m+p1+p3+2p5, but there
is no reachable marking m′ with m′(p5)=2.

Example 9. Figure 6 shows another Petri net, its concurrent step semantics and
its HDA semantics. Note that there is contact between the transitions a and b:
the pre-place p2 is modified when firing b. We use this example to pinpoint that
some possible behaviors are not captured by the concurrents step semantics. In
both semantics, firing b before a enables autoconcurrency of a. However, in con-
current step semantics, as steps are atomic, firing b and a concurrently disables
the possibility of autoconcurrency of a, while this is still an accepted behavior
in the HDAs sematnics. The illustration of the HDA is not quite correct, as the
autoconcurrent square x= (0,

[
e1 7→a
e2 7→a

]
) only has two different faces:6 using ∼= for

conclist isomorphism, we have δ0e1(x) = (p1 + p2,e2) ∼= δ0e2(x) = (p1 + p2,e1) and
δ1e1(x)=(p4,e2)∼=δ1e2(x)=(p4,e1).

6 We need to use the extended conclist notation here due to autoconcurrency.
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p1 p2 p3

p4

a
b

a a a

b

b

a

a

a+b

a+a

2p1+p2+p3

p1+p3+p4

2p1+2p2

p1+p2+p4

p1+p2+p4

2p4

(p1+p3,a) (p1+p2,a) (p4,a)

(2p1+p2,b)

(p1+p4,b)

(p1+p2,a)

(p4,a)

(p1,[
a
b]) (0,[aa])

Fig. 6. Petri net (top left), its concurrent step semantics (top right) and HDA semantics
(bottom) of Ex. 9. In the HDA, cells with the same label are identified.

Example 10. Figure 7 shows a slightly more complicated example, where transi-
tions a and b initially are mutually exclusive, but then c introduces independence.
Geometrically this is an empty box without bottom face (“Fahrenberg’s match-

box” [11]). We have X
[[

a
b
c

]]
= ∅, for if x =

(
m,

[
a
b
c

])
∈ X

[[
a
b
c

]]
, then δ0abc(x) =

m+p1+p3+2p5+p6, which is unreachable.

6 Inhibitor Arcs

We now extend our setting to Petri nets with inhibitor arcs. A Petri net with
inhibitor arcs (PNI )N=(S,T,F,I) consists of a Petri net (S,T,F ) and a set I⊆S×
T of inhibitor arcs. We denote by ◦t={s∈S |(s,t)∈I} the inhibitor places of t∈T .

The interleaved semantics for PNIs is as follows. Tokens in inhibitor places keep
transitions from being firable, so a transition t∈T can fire in marking m :S→N
if •t≤m and ∀s∈ ◦t :m(s)=0. The reachability graph of a PNI N =(S,T,F,I) is
the labeled graph JNK1=(V,E) given by V =NS and E⊆V ×T×V with

E={(m,t,m′) |•t≤m,∀s∈◦t :m(s)=0,m′=m−•t+t•}.
PNIs have two different concurrent semantics, one which disables concurrent

steps inwhich transitionsmay inhibit each other and onewhich does not. These are
called, respectively, a-posteriori and a-priori semantics in [22], and we treat them
both below. We refer to [22, Sect. 2] for an in-depth discussion of these semantics.

6.1 Concurrent a-posteriori semantics

In the a-posteriori semantics, a multiset U of transitions is firable in m if
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p5

p1

p2

a

p3

p4

b

p6

c

X[∅]={A,B,C,D,E,F,G,H}
A=p1+p3+p5+p6
B=p2+p3+p5+p6
C=p1+p4+p5+p6
D=p2+p4+p5+p6
E=p1+p3+2p5 F =p2+p3+2p5
G=p1+p4+2p5 F =p2+p4+2p5
X[a]={(p3+p5,a),(p4+p5,a),

(p3+p6,a),(p4+p6,a)}
X[b]={(p1+p5,b),(p2+p5,b),

(p1+p6,b),(p2+p6,b)}
X[c]={(p1+p3+p5,c),(p2+p3+p5,c),

(p1+p4+p5,c),(p2+p4+p5,c)}
X[[ab]]={(0,[ab])}
X[[ac]]={(p3,[

a
c]),(p4,[

a
c])}

X[[bc]]={(p1,[bc]),(p2,[
b
c])}A B

C D

E F

G H

a

c

b

c

Fig. 7. Petri net and HDA semantics of Ex. 10. Concurrent squares are indicated using
blue crosses instead of filled.

(1) •U≤m;
(2) for every t∈U and every place s∈◦t, m(s)=0;
(3) for every t1,t2∈U such that t1= t2 implies U(t1)≥2, t•1∩◦t2=∅.

The last condition ensures that t1 cannot produce a token that prevents t2
from firing, even when t1 and t2 are autoconcurrent in U . With this condition, the
transitions inU cannot inhibit each other. One advantage of a-posteriori semantics
is that JNKCS is closed under substeps [8, Prop. 2.8].

Similarly to what we did for Petri nets, we can give an HDA semantics to a PNI
N=(S,T,F,I) under a-posteriori concurrent semantics, by restricting the cells to
satisfy conditions (2) and (3) above. We let again □=□(T ) and define

X={(m,(t1,...,tn))∈NS×□ |∀i=1,...,n :∀s∈◦ti :m(s)=0,

∀i ̸=j=1,...,n : t•i ∩◦tj=∅}.
The rest of the definition of JNK now proceeds as before, and [8, Prop. 2.8] ensures
that for any x∈X and any A⊆ev(x), we also have δ0A(x),δ

1
A(x)∈X.

Example 11. Figure 8 shows the Petri net of Fig. 3 with an added inhibitor arc
from p4 to a. That is, transition a is disabled when there is a token in p4, hence
X[a] contains only (p3,a) but not (p4,a). Compared to Fig. 4, the 2-cell (0,[ab]) is
also disabled, as b•=◦a={p4}: there is no concurrency.

[8] also introduces a subclass of PNIs called primitive systems defined as fol-
lows. For a marked PNI N =(S,T,F,I,i), let Inib(N)= {s∈S | ∃(s,t)∈ I} be the
set of places used to inhibit some transition. Now N is called a primitive system
if there exists a function EL : Inib(N)→N such that for all s ∈ Inib(N) and all
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p1

p2

a

p3

p4

b

X[∅]={p1+p3,p2+p3,p1+p4,p2+p4}
X[a]={(p3,a)}
X[b]={(p1,b),(p2,b)}

p1+p3 p2+p3

p1+p4 p2+p4

(p3,a)

(p1,b) (p2,b)

Fig. 8. PNI and HDA semantics of Ex. 11.

reachable markings m with m(s)>EL(s), if m′ is reachable from m, then for all
t∈T with •t≤m′, we have s ̸∈◦t.

Intuitively, in primitive systems, when the bound EL(s) is exceeded in some
reachable marking m, then no transition with s ∈ ◦t is fired in markings that
are reachable from m. [8] demonstrates that primitive systems can be simulated
by Petri nets (without inhibitor arcs). However, the author shows that while her
construction preserves interleaved semantics, it does not preserve concurrent step
semantics; it is clear that the same is true for our HDA semantics.

6.2 Concurrent a-priori semantics

In the more liberal a-priori concurrent semantics, condition (3) of the multiset fir-
ing rules is removed. For intuition, consider again Ex. 11 and Fig. 8. In a-posteriori
semantics, the concurrent step U = {a,b} is disabled due to condition (3): b pro-
duces a token in inhibitor place p4 connected to a. This seems rather restrictive:
one might argue that while the b transition is firing, it has not yet produced a
token in p4, so it should not prevent from starting the firing of a.

On the other hand, if we add the 2-cell (0,[ab]) to the semantics, we are also
forced to add its upper face δ1b ((0,[

a
b])) = (p4,a), given that all faces of cells must

be present in HDAs. Now the cell (p4,a) would have the upper left vertex p1+p4
as a lower face, so semantically that means that we can fire a after firing b, which
is clearly contrary to what an inhibitor arc should do. To give proper semantics
to PNIs we thus must allow HDAs in which some faces are “missing”. These are
called partial HDAs and have been introduced in [10,16]; we adapt their definition
to our event-based setting.

A partial precubical set
(
X,ev,{δA,B;U |U ∈□,A,B⊆U,A∩B=∅}

)
consists of

a set of cells X together with a function ev :X→□. Further, for every U ∈□ and
A,B⊆U with A∩B=∅ there are partial face maps δA,B;U :X[U ]→X[U \(A∪B)]
which satisfy

δC,D;U\(A∪B)δA,B;U ⊆δA∪C,B∪D;U (4)

for every U ∈□, A,B⊆U , and C,D⊆U \(A∪B). Except for the face maps being
partial, this is the same definition as for HDAs in Section 2; we again omit the



Petri Nets and Higher-Dimensional Automata 13

p1

p2

a

p3

p4

b

p1+p3 p2+p3

p1+p4 p2+p4

(p3,a)

(p1,b) (p2,b)(0,[ab])

Fig. 9. PNI and partial HDA semantics of Ex. 16.

extra subscripts “U”. By the notation ⊆ in (4) we mean that if δA,B and δC,D are
defined, then also δA∪C,B∪D is defined and equal to the composition δC,DδA,B ;
but δA∪C,B∪D may be defined without one or both of the maps on the left-hand
side being defined.

A partial higher-dimensional automaton, or pHDA, (Σ,X,⊥) consists of a par-
tial precubical set X on Σ together with a subset ⊥⊆X of initial cells.

We now give a-priori concurrent semantics to PNIs by translating them to
pHDAs. Let N = (S,T,F, I) be a PNI and X = J(S,T,F )K its standard HDA
semantics, ignoring inhibitor arcs. Define a subset X ′⊆X by

X ′={(m,(t1,...,tn))∈NS×□ |∀i=1,...,n :∀s∈◦ti :m(s)=0}
and let JNK=X ′.

Hence a cell (m,τ) exists in JNK if none of the tokens inm inhibits any transition
in τ . Compared to the contact-free semantics, we leave outBusi’s last condition (3),
thus allowing firing of subsets containing pairs of transitions t1,t2 with t•1∩◦t2 ̸=∅.

Lemma 12. JNK is a partial precubical set.

If we extend the definition of flattening and truncation to partial HDAs and
allow the concurrent step semantics to not be closed under substeps, we have the
following analogues of Lemmas 4 and 5.

Lemma 13. The reachability graph of PNI N is isomorphic to the 1-truncation
of JNK: JNK1∼=JNK≤1. ⊓⊔

Lemma 14. The concurrent step reachability graph of PNI N is isomorphic to
the flattening of JNK: JNKCS

∼=flat(JNK). ⊓⊔

We also have the following analogue to Prop. 7.

Proposition 15. If a marked PNI N is bounded and has no preset-free transi-
tions, then ess(JNK) is finite. ⊓⊔

Example 16. Consider Fig. 9, where Ex. 11 is interpreted with partial HDA se-
mantics, ignoring condition (3). The 2-cell (0,[ab]) is now present, but its δ1b face is
not. There are now two paths from p1+p3 to p2+p4, passing respectively through
p2 + p3 and (0, [ab]). The latter captures reaching marking p2 + p4 from p1 + p3
through the multistep U={a,b} in JNKCS.
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p1

p2

a

p3

p4

b

p1+p3 p2+p3

p1+p4 p2+p4

(p3,a)

(p1,b) (0,[ab])

Fig. 10. Second PNI and partial HDA semantics of Ex. 16.

Wemay also modify the example by introducing another inhibitor arc from p2
to b, see Fig. 10. Then transition a (resp. b) is disabled when there is a token in p4
(resp. p2). Again, the corresponding partial HDA contains the 2-cell (0,[ab]) even if
both its δ1a and δ1b are missing. In the a-posteriori semantics, the marking p2+p4
is now unreachable; but in the a-priori semantics, there is a path passing through
(0,[ab]) which mimics firing a and b in parallel.

Similarly to [8, Thm. 5.20], it can be proven that the concurrent a-priori seman-
tics of primitive systemsmay not be simulated by Petri nets without inhibitor arcs.

7 Self-Modifying Nets

Instead of considering other extensions one by one, we now pass to generalized
self-modifying nets which encompass many other extensions. Recall [12] that a
generalized self-modifying net (G-net) N = (S,T,F ) consists of a set of places
S, a set of transitions T , with S ∩N = S ∩ T = ∅, and a weighted flow relation
F :S×T∪T×S→N[S].

That is, flow arcs are labeled by polynomials in place variables; contrary to
[12] we do not assume that the labels are sums of monomials. We will propose a
concurrent semantics using ST-graphs, a generalisation of partial HDAs, see below.

The intuition of the flow polynomials labeling arcs is that when a transition
fires, it consumes precisely the number of tokens given by evaluating polynomials
of its input arcs, and produces precisely the number of tokens given by evaluating
polynomials labeling its output arcs in the current marking. More precisely,
– if F (s,t)=P for an arc (s,t), then firing t consumes P (m) tokens from s, where

m is the current marking; so the polynomial P is evaluated by replacing its
place variables with the current number of tokens in the respective places;

– if F (t,s)=P for an arc (t,s), then firing t produces P (m) tokens in s, where
m is the marking before t started firing.

That is, in interleaved semantics the new marking when firing a transition t in
marking m is given by m′ =m− •t(m)+ t•(m): •t is the function φ : S →N[S]
given by φ(s)=F (s,t), so •t(m) :S→N is given by •t(m)(s)=φ(s)(m). Now in
concurrent semantics, other transitions may fire between starting and terminating
t, so we will need to remember the marking before firing t, see below.

Example 17. G-nets can model transfer arcs, a Petri net extension which, when
firing the associated transition, transfers all tokens present in the pre-place to
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p1 p2 p3

p4

a
b

p1 p2 p3

p4

a

p2

p2 b

Fig. 11. Petri net with transfer arc (left) and its translation to a G-net (right). Anno-
tations “p2” at flow arcs indicate that they consume and produce the number of tokens
present in p2. Otherwise, they consume one token as usual.

the post-place. Figure 11 shows a simple Petri net N with a transfer arc, from p2
through the a-transition to p4, and its G-net translation. (In fact, this is a self-
modifying net in the sense of [30], a strict subclass of G-nets.) Note that there is
contact between the transitions a and b, and the marking p2+2p4 reached by firing
first a and then b is not reachable from the marking p1+3p3 obtained after firing b.

The latter is indicated with a “broken” arrow in the intuitive (partial) HDA
semantics for N :

p1+2p2+p3 p3+2p4

p1+3p2 p2+2p4

3p4

(p3,a)

(p1+2p2,b) (2p4,b)

(0,a)

(p2,a)

x=(0,[ab])

Transitions a and b can fire concurrently, so we have a square x ∈ JNK[[ab]], and
from here b can terminate, leading to δ1b (x)=(p2,a). Since p2+2p4 is not reachable
from p1+3p2, we must have δ0a((p2,a)) ̸=p1+3p2 if it is defined. In fact, this is un-
reachable, so it is not defined.We have a partial HDA, with all cells “geometrically
present” but one gluing undefined.

In the previous example and Ex. 21 below, pHDAs allow to capture the concur-
rent semantics of G-nets, however, we conjecture that they are not sufficient in the
general case. Instead, in order to give concurrent semantics toG-nets, we introduce
a third kind of automaton, closely related to HDAs and partial HDAs but more
general. First, some terminology; again Σ denotes an arbitrary alphabet and □=
□(Σ). A starter is a pair (A,U), written A↑U , consisting of a conclist U ∈□ and a
subsetA⊆U . A terminator is a pair (U,B), writtenU↓B , consisting of a conclistU
and a subsetB⊆U . The intuition is that these denote actions of starting resp. ter-
minating subsets of the events in U , passing from U \A to U , resp. from U to U \B.

Let ST=ST(Σ) denote the (infinite) set of starters and terminators over Σ.
An ST-graph is a structure (Σ,Q,E, λ) consisting of a set Q of states, a set
E⊆Q×ST×Q, and a labeling λ :Q→□ such that for all (p,x,q)∈E,

– if x=A↑U , then λ(p)=U \A and λ(q)=U ;
– if x=U↓B , then λ(p)=U and λ(q)=U \B.
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ST-automata, i.e.,ST-graphs with initial (and final) states, have been introduced
in [3] in order to give operational semantics to HDAs.

Now letN=(S,T,F ) be a G-net and define an ST-graph JNK′ST=(T,Q′,E′,λ′)
by Q′=NS×□×(NS)∗, λ′(m,τ,µ)=τ , and

E′=
{((

m+•ti(µi),(t1,...,ti−1,ti+1,...,tn),(µ1,...,µi−1,µi+1,...,µn)
)
,

ti
↑(t1,...,tn),

(
m,(t1,...,tn),µ

))}
∪
{((

m,(t1,...,tn),µ
)
,(t1,...,tn)↓ti ,(

m+t•i (µi),(t1,...,ti−1,ti+1,...,tn),(µ1,...,µi−1,µi+1,...,µn)
))}

.

The intuition is that in a state x = (m,(t1,...,tn),(µ1,...,µk)) ∈Q′, n = k if x is
reachable, and the marking µi :S→N is the memory of how the net was marked
before transition ti started firing.

Remark 18. In the construction of JNK′ST, one may compose successive starting
edges to start multiple transitions at the same time, similarly for terminating
edges. (See [3, Sect. 4.4] for a related construction.) Note that concurrency of
several transitions is captured by starting them one by one in any order before
terminating any of them.

We have primed JNK′ST above, as the memory so-defined remembers too much:
in Ex. 17, transition a only needs to remember the contents of p2 and b should not
require memory at all. We remedy this by introducing a notion of memory equiv-
alence and passing to a quotient. Say that two pairs (t,m), (t,m′) are memory
equivalent, denoted (t,m)∼ (t,m′), if •t(m)= •t(m′) and t•(m)= t•(m′). Then m
and m′ have the same effect on the net when t is fired.

Now extend∼ toQ′ by
(
m,(t1,...,tn),(m1,...,mn)

)
∼
(
m,(t1,...,tn),(m

′
1,...,m

′
n)
)

if (ti,mi)∼ (ti,m
′
i) for all i. As the memory works by insertion and deletion when

starting resp. terminating transitions, ∼ is a congruence on the ST-graph JNK′ST
and we may form the quotient JNKST=JNK′ST/∼.

Similarly to HDAs, we may define the 1-truncation of an ST-graph (Σ,Q,E,λ)
as the graph which has as vertices states q∈Q for which dim(λ(q))=0 and edges
(q,a,q′) corresponding to states x∈Qwith dim(λ(x))=1. This yields the following
analogue of Lem. 4; the relation to the concurrent step reachability graph is left
for future work.

Lemma 19. The reachability graph of G-net N is isomorphic to the 1-truncation
of JNKST. ⊓⊔

We leave open the question of a characterization of G-nets (or subclasses) by
means of partial HDAs. They are sufficient in all our examples. On the other
hand, note that the ST-automaton semantics we have given conforms with how
the reachable part of the semantics is constructed, by starting and terminating
events one at a time. (See also Sect. 8.)
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p1+2p2+p3 (p3,a,2p2) p3+2p4

(p1+2p2,b,0)

p1+3p2

(0,[ab],
[
2p2
0

]
) (2p4,b,0)

(p2,a,2p2)

(0,a,3p2)

p2+2p4

3p4

a+

b+

a−
b+

b−

a+

b+

a−
b−

a+

b−b−b−

a−a−

a−

Fig. 12. ST-automaton semantics (reachable part only) of the G-net of Fig. 11, see
Ex. 20. For readability, transitions are labeled with starts (a+) and terminations (a−) of
actions rather than starters and terminators.

Example 20. We continue Ex. 17 by giving JNKST for the transfer netN in Fig. 12,
indicating memory equivalence classes by representatives. We see that, as ex-
pected, the sequence b+b−a+ leads to a different state than the other permutations.

We show some of the calculations; for readability we make a distinction be-
tween a variable p appearing in a polynomial and the current number of tokens
in p, denoting the latter by |p|. We also write •t=

∑
sF (s,t)s to denote that t fires

by consuming F (s,t) tokens from each place s (and similarly for t•).
We have •a=F (p1,a)p1+F (p2,a)p2+F (p3,a)p3=p1+ |p2|p2 and a•= |p2|p4.

In addition, the marking before only firing a is µ= p1+2p2+p3. Then
•a(µ) =

p1+µ(p2)p2 = p1+2p2. Note also that for µ′ = 2p2, for example, •a(µ) = •a(µ′)
and a•(µ)=a•(µ′).

More generally, we have •a(n1p1+n2p2+n3p3)=p1+n2p2 for alln1,n2,n3∈ N.
Thus (p1+n2p2+p3,a

+,(p3,a,p1+n2p2))∈E′.We also have that (p3,a,p1+n2p2)∼
(p3,a,n2p2). Indeed, since F (p1,a) and F (a,p1) are constants, •a(p1 + n2p2) =
•a(n2p2) and a•(p1+n2p2)=a•(n2p2).

Thus, for the sequence a+b+b−, ((p3,a,2p2),b
+,(0, [ab] ,

[
2p2
p3

]
)) ∈ E′ since we

had only one token in p3 before firing b, but (0,[ab],
[
2p2
p3

]
)∼ (0,[ab],

[
2p2

0

]
). Finally,

((0,[ab],
[
2p2

0

]
),b−,(p2,a,2p2))∈E′, leading to a different state than b+b−a+.

Example 21. Figure 13 shows a G-net containing two transfer arcs which are in
conflict and the corresponding ST-automaton semantics. If we admit that start-
ing a and b at the same time is non-deterministic and may lead to any of the two
states in the center (as indicated by the dashed {a+,b+}-labeled transitions in
ST-automaton), then this is now a partial HDA: two partial squares labeled [ab]
and glued at the initial state.

8 Implementation

We have developed a prototype tool, pn2HDA, written in C++ and implementing
our translations from Petri nets to HDAs and from PNIs to partial HDAs. Our



18 Amrane, Bazille, Fahrenberg, Hélouët, Schlehuber-Caissier

p1 p2 p3

p4 p5

a b

p1+2p2+p3 (p3,a,2p2) p3+2p4

(p1,b,2p2)

p1+2p5

(0,[ab],
[
2p2
0

]
)

(0,[ab],
[

0
2p2

]
)

(2p4,b,0)

(0,b,2p2)

(0,a,2p2)

(2p5,a,0)

2p4

2p5

a+

b+

a−

b+

b−
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b−
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b+

a−

a− b−

b−

{a
+ ,b

+ }
2p4

a

a

b

2p5

b

a

b

Fig. 13. G-net of Ex. 21 (top left), ST-automaton semantics (right), and corresponding
partial HDA (bottom left).

implementation is able to deal with standard, weighted and inhibitor arcs in a
modular fashion and is available at https://gitlabev.imtbs-tsp.eu/philipp.
schlehuber-caissier/pn2hda. Our tool is based onpreviouswork by our student
Timothée Fragnaud and on the PNML parser provided by the library Symmetri7,
but any other parser could easily replace this task.

As shown above, Petri nets with or without inhibitor arcs (a-posteriori seman-
tics) canbe translated into the same formalism: partialHDAs.The implementation
reflects this by having a parametrizable (via templates) representation for Petri
nets, which is used in a generic way to build the corresponding pHDA.

For this prototype tool, we have chosen an explicit representation of the pHDA
and its face maps as defined at the beginning of section 4. That is each reachable
cell x ∈ X is defined as the tuple (m,τ) corresponding to the conclist and the
marking. As event order, the arbitrary total order on transitions introduced in
section 5, we have chosen the shortlex order on transition names (i.e., names are
first sorted by their length, and sequences of identical length are sorted accord-
ing to the lexicographical order). While this representation is likely not the most
efficient, it allows to underpin the correctness of our constructions.

Since we cannot display the constructed pHDAs if their dimension is greater
than 3, we have chosen to output them as ST-automata (see Sect. 7). For gather-
ing information about the structure of the automaton like the number of unique
conclists or markings we provide a function get csv data. In the repository we
also provide the PNML files of all Petri nets given as examples in the paper, as
well as a selection of models from the Model Checking Contest8. This is useful for
example for gathering statistics about cells of different dimensions, see Fig. 15.

7 See https://github.com/thorstink/Symmetri.
8 See https://mcc.lip6.fr.

https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-caissier/pn2hda
https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-caissier/pn2hda
https://github.com/thorstink/Symmetri
https://mcc.lip6.fr
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Fig. 14. Petri net (left) and pHDA conversion (right): definition of cells (top) and ST-
automaton representation (bottom).

Fig. 15. Statistics on cell distribution for some MCC models.

9 Conclusion

We have seen that Petri nets exhibit a natural concurrent semantics as higher-
dimensional automata (HDAs) which allows methodical reasoning about the finer
points of the semantics of Petri nets and their extensions. The semantics of Petri
nets with inhibitors is naturally expressed using partial HDAs in which some faces
may be missing.

We have also given concurrent semantics to generalized self-modifying nets
(G-nets) which encompass many other extensions. We have given the semantics
as ST-automata, a generalization of partial HDAs, using a notion of memory to
store the state of the G-net before the starts of transitions. Whether or not the
semantics may also be given as partial HDAs, or whether there are interesting
subclasses of G-nets which admit partial-HDA semantics, is left open.
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Finally, we have presented an implementation of the translations from Petri
nets to HDAs and from Petri nets with inhibitors to partial HDAs.

We believe that pHDA and ST-automaton semantics may provide a unifying
framework for investigating constructions on Petri nets (such as the removal of
inhibitor arcs from primitive systems which we have seen) and their effects on
concurrent semantics. This should apply to other well-known simplifications such
as removing read arcs; but also for example to unfoldings.

We would also like to apply our setting to other generalizations of Petri nets.
Introducing concurrent semantics for affine nets [7], for example, appears difficult;
but real-time extensions such as time Petri nets [27] seem natural candidates. Re-
centwork onhigher-dimensional timed automata [1,2]will be useful in this context.

Finally, we plan to continue to work on our implementation.We are working on
another, implicit, representation of pHDAs which would avoid creating all reach-
able cells. We would also like to extend our tool to time Petri nets and connect it
with Kahl’s work on program graphs and homology [23].9
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26. Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In
Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May
11-13, 1981, Milwaukee, Wisconsin, USA, pages 238–246. ACM, 1981.

27. Philip Merlin. A study of the recoverability of computer systems. Ph. D. Thesis,
Computer Science Dept., University of California, 1974.

28. Madhavan Mukund. Petri nets and step transition systems. International Journal
of Foundations of Computer Science, 3(4):443–478, 1992.
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Appendix: proofs

Proof (of Lem. 4). Let JNK1=(VN ,EN ). We can define a bijection f :VN →JNK0
between VN and 0-cells of JNK as f(m) = (m,∅) for all m ∈ VN . Then, define
g :EN → JNK1 such that g((m0,t,m1)) = x= (m,t) if δ0(x) = (m0,∅) and δ1(x) =
(m1,∅).

Thus, there exists e=(m0,t,m1)∈EN if and only if t can fire inm0 i.e.,
•t≤m0,

and m1=m0−•t+t• if and only if, by construction of JNK, there exists x∈ JNK1
and m=m0−•t=m1− t• such that x= (m,t). Thus e= (m0,t,m1)∈EN if and
only if g(e)=(f(m0),(m,t),f(m1)). ⊓⊔

Proof (of Prop. 7). Note first that since N is bounded and T finite there exists
a constant k∈N such that for every marking m, m(p)≤k for all p∈S. Thus the
number of different reachable markings of JNK1 is finite. Besides, they correspond
to the number of 0-cells of ess(JNK) by Lem. 4. Now, by Lem. 5, proving that the
number of edges of the reachable part of JNKCS is finite proves the proposition.
Indeed, each edge (m,U,m′) corresponds to a |U |-cell of JNK, U ∈□(T ).

Since each t∈T is constrained, i.e.,not preset-free, each t fires in some bounded
marking m only if •t≤m. Thus, for each reachable marking m there are finitely
many U ∈□(T ) such that •U ≤m, and each such U leads to a unique marking
m′=m−•U+U•. Note that these U may contain autoconcurrency but are finite
since m is bounded. In addition, if (m,U,m′) is an edge of JNKCS, then there are
|U |! |U |-cells: {(m−•

U ′=m′−U ′•,U ′) |U ′ a permutation of U} in JNK for which
(m,∅) is a lower face and (m′,∅) an upper face but only one edge ((m,∅),U,(m′,∅))
in flat(JNK) by construction. Finally, since the reachable part of JNKCS is finite
and contains finitely many edges, ess(JNK) is finite by Lem. 5. ⊓⊔

Proof (of Lem. 12). The construction of JNK fromN=(S,T,F,I) starts by building
the precubical set X = J(S,T,F )K and then take a subset X ′ = {(m,(t1,...,tn))∈
N

S×□ | ∀i=1,...,n : ∀s∈ ◦ti :m(s)= 0}. Thus we only need to show (4). That is
if there exist x0,x2 ∈X ′ such that δC,D(δA,B(x0))=x2 then δA∪C,B∪D(x0)= x2.
Let x0,x2 be such cells and let x1 ∈X ′ such that δA,B(x0) = x1 and δC,D(x1) =
x2. Assume xi = (mi,Ui) and Ui = (ti,1, ... , ti,ni). By construction of X ′ for all
ti,j ∈ Ui and for all s ∈ ◦ti,j , mi(s) = 0. As x2 is already in X ′ it remains to
show that δA∪C,B∪D(x0)=x2, that is x2 is reachable form x0 by unstarting A∪C
and terminating B ∪D. By definition of face maps U1 = U0 \ (A∪B) and U2 =
U1 \ (C ∪D). Thus U2 = U0 \ (A∪B ∪C ∪D). Moreover, by construction of X,
m1=m0+

•A+•B and m2=m1+C•+D•. Hence m2=m0+
•A+•B+C•+D•

and δA∪C,B∪D((m0,U0))=(m2,U2). ⊓⊔


	Petri Nets and Higher-Dimensional Automata

