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ABSTRACT

Rendering efficiently large virtual environment scenes composed of many elements,
dynamic objects, and a highly moving viewpoint is a major issue. This paper
focuses on the first of the two viewing stage operations: required elements determi-
nation, the second being shading/filtering. We propose a classification, extending
the existing computer graphic techniques toward display scalability requirements,
that distinguishes two key points: keeping only required elements (culling), and
keeping only required details (which includes traditional LODs). The mechanisms
needed for display scalability are presented.
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1 INTRODUCTION

Sending all the elements of a virtual en-
vironment (VE for short) scene to a ren-
dering engine is, considering the element
density of wanted scenes and nowadays
platforms performances, completely out of
question. The alternative is to perform
some pre-processing or real-time process-
ing to extract from the scene only the min-
imum pieces of data needed. The selected
data, that is supposed coherent, is a local
fragment, that, however, does not lead to

any restriction on the shading operation,
as VE shading techniques work locally.

The computing time taken by data re-
moval should be significantly inferior to
that taken if all elements were sent to
the renderer, and memory requirements
be reasonable. There exist many tech-
niques for this, and all involve at least one
of two methods classes: unnecessary ele-
ment removal and unnecessary detail re-
moval. The choice of the methods leads
to a performance/quality compromise, as
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referred by Green in [Green95].

In this paper, we focus on visualization is-
sues in virtual environments. We do not
discuss the problems due to network com-
munication, which is a concurrent task
vis-a-vis the visualization one [Fabre00a].
Section 2 establishes an extended classi-
cation of the techniques that may be used
to solve visualization issues. Section 3 de-
scribes what mechanism should be estab-
lished to take full advantage of LOD tech-
niques. Lastly, we conclude in section 4.

We stress virtual environment specific is-
sues using the symbol: ↪→.

2 SCENE SIMPLIFICATION

2.1 Culling

2.1.1 Culling Definition

Culling is an operation that consists in re-
moving elements that do not contribute to
the perceptible scene. Culling can be per-
formed at various hierarchical levels. The
lowest level , which is the most atomi-
cal, is polygon culling. The second level
is geometry culling, a geometry being a
structure of polygons linked to the same
coordinates set. The third level is sub-
space culling, a sub-space being a portion
of space that can hold one or more poly-
gons, geometries, objects, or sub-spaces.
The last kind of culling is performed at
object level, an object being a semantic
item to which is assigned a geometry or
sub-spaces attribute. We refer to poly-
gons, geometries, objects and sub-spaces
as elements. Those culled elements are of
three types: outside viewing frustrum, oc-
cluded, and semantically ignored. Outside
viewing frustrum and occluded elements
are related to realism issues.

↪→ In VEs, considering single polygons
is absurd, higher level consideration are
needed.

Outside Frustrum Culling The view-
ing frustrum delineates the user’s view-
space on the world. Outside elements
should not be send to the renderer. It is a
local portion of the scene.

↪→ A VE’s problematic element is land-
scape. It is not evident whether it should
be considered as a single geometry, thus
performing polygon culling, or considered
as a set of objects, allowing other levels
of culling . In the second case, it might
be necessary to manage cracking problems
between adjacent objects.

Occlusion Culling Elements that
stand inside the viewing frustrum do not
need to be drawn when occluded by other
elements. It is interesting to notice that
at sub-space level, an occluding sub-space
is an occlusion by all its internal polygons.

Backface culling is a special case of occlu-
sion culling that assumes all surfaces are
closed, so backfaced polygons are occluded
by the opposite side of their belonging ge-
ometry.

Semantic Culling Semantic culling is
a subversive way of considering render-
ing: it aims only at the viewers’ compre-
hension of the scene, and absolutely not
at scenes’ realism. This actually means
that elements that would have been view-
able with classic visibility calculation may
be culled when enabling semantic culling.
This culling has to be performed at seman-
tic level for determining if an object is re-
quired for the scene comprehension. Clas-
sic algorithms assume that the scene is un-
derstood if every detail is rendered, which,
contrary to a semantical scene graphs,
work on geometric scene graphs.

A geometric graph can easily be incorpo-
rated in a semantic scene graph by replac-
ing the geometric relations with basic edge



relations such as “inside”, “bounding”,
“next to”. . . However, culling on a min-
imum semantical graph that only incor-
porates a geometric scene graph reduces
in performing frustrum culling (thus keep-
ing rendering realism). But when objects
are linked to the scene with edges such as
“decorates” and when they are of an un-
interesting node type for the viewer, then
they can be thrown away knowing that the
scene’s meaning will be preserved.

Therefore objects may be culled semanti-
cally for two reasons: for their node type
or according to relations between nodes
in the graph. The second reason im-
plies that object groups may be efficiently
semantically culled. The power of such
a culling resides in a graph’s semantic,
which is not a trivial issue. There are very
few VEs that have emphasized this ques-
tion [Fabre00b].

2.1.2 Culling Strategies

Exploiting coherence is the key to design
an efficient culling algorithm. We will dis-
tinguish five categories of coherence, ex-
tending Green’s classification [Green95]:
element-space coherence, image-space co-
herence, element-space temporal coher-
ence, image-space temporal coherence and
semantic-space coherence.

Element-Space Coherence An algo-
rithm that uses element-space coherence
can determine effectively which elements
stand inside some given sub-space. There-
fore at rendering, knowing that some sub-
space does not intersects the frustrum,
all the objects inside this sub-space can
be ignored. This sub-space culling tech-
nique should involve an element-space hi-
erarchical structure, thus finding every
geometry in O(log(n)) complexity in a
scene composed of n elements. Kay

and Kajiya have enumerated the desir-
able properties for any hierarchical scheme
[Kay86]. This category includes bound-
ing volumes [Groel95], octree, KD-
tree [Ooi87], BSP tree [Naylo90, Torre90]
and PVS [Airey90] algorithms.

↪→ Element-space coherence is an efficient
way to perform object level culling.
↪→ Hierarchies can be inserted inside an
object’s structure in order to perform ef-
fective intra-polygon level culling.
↪→ In VEs, the choice of an object-space
coherent algorithm for the landscape can
introduce restrictions on the world’s dy-
namism.

Image-space coherence Knowing
that an element is visible at a pixel, there
are great chances for this element to be
visible at surrounding pixels. Moreover,
knowing that the closest elements at an
area has been drawn, farther elements
can be culled. This coherence has many
applications in polygon and sub-space
level culling. Early algorithms [Watt92]
such as the Warnock algorithm or the
Weiler-Atherton algorithm belong to that
category. Image-space coherence is tightly
linked with object-space coherence and
many algorithms fall in those two classes.
Naylor has proposed a BSP screen projec-
tion [Naylo92] and Green has developed a
pyramidal Z-buffer working on top of an
octree [Green93, Green95].

↪→ There is an image-space coherent algo-
rithm that is widespread, as it is a com-
mon feature of 3d acceleration cards: Z-
buffer scan conversion, which is performed
at polygon level. However, it does not cull
polygons efficiently enough, and it is often
coupled to a software element-space coher-
ent algorithm.

Element-space-temporal Coherence
A moving element’s position is expected



to be close to its previous position, hence
allowing to manage every elements locally.

Element-space-temporal coherence has
rarely been exploited to perform culling.
Sudarsky developed a method using TBV
(temporal bounding volume) [Sudar96]
that culls an object from the scene during
some period of time. Moreover, it can give
efficient solutions to update structure, as
illustrates the LCA (least common ances-
tor) algorithm developed by Sudarsky.

↪→ A common VE algorithm based
on element-space-temporal coherence is
dead-reckoning.
↪→ this coherence is useful when updating
hierarchical structures.

Image-space-temporal coherence In
an animation, knowing the visibible col-
lection of elements at a frame can acceler-
ate visibility computation for the elements
in the next frame, as hidden objects are
likely to remain hidden. These elements
are likely to be objects and subspaces.

↪→ This coherence permits to manage ef-
ficiently VE’s many movements.

Semantic-space Coherence At a mo-
ment, a semantically culled object is likely
to be culled for the same reasons at next
moment. This is the same for visible ob-
jects.

2.2 LOD (Level of Detail)

2.2.1 LOD Definition

The other kind of data that can be re-
moved is detail. Once a bounding vol-
ume’s set of elements is determined to be
in view, it does not always need to be
drawn in full details, as should the ele-
ments be far away from the viewer, they

would only contribute to a few pixels of
the rendered image. Therefore, an el-
ement’s representation should propose a
LOD function that would give its required
geometry. Most early LOD systems did
not involve processing, and the sets of ge-
ometries had to be hand-drawn. Since
then, methods have been developed to ap-
proximate geometries within a certain tol-
erance [Schma97].

These algorithms can be described by
some caracteristics, often used as techni-
cal classifying criterias:

Specifying simplification level.
There are two possible ways for
the user to specify the amount of
simplification: by the number of
polygons or the simplification error.

Topology preservation. Some algo-
rithms may fill holes and disconnect
or connect object pieces. Algo-
rithms presented in [Hoppe96]
and [Ronfa96] discourage such
topology simplifications.

Smooth transitions. When changing
from one level to another, the intro-
duction or suppression of details may
create a visual popping effect. To
prevent this, a transition primitive
called geomorph is needed. Hoppe’s
progressive mesh method uses ge-
omorphs on vertex split and edge
collapse operations ( [Hoppe96]).

Metric. The simplification process must
be conduced in such way that the
shape’s characteristics are preserved,
such as planar areas, sharp edges
and pointed edges. The distortion
can be measured using a metric.
This metric can be either global (dis-
tance between the original mesh and
the simplified mesh) [Eck95, Guzi95]
or local (evaluates the distance be-
tween steps in the simplification pro-
cess) [Hoppe96, Ronfa96]. Moreover,



some LOD techniques use instead of
a metric a geometric construction,
ensuring that simplification does not
exceed a certain limit [Cohen96,
Algor95].

View dependence/independence.
In a serie of LOD transitions
parametrized by the distance to the
viewer, the object is detailed an
area at a time, chosen according to
some heuristic. There are recent
LOD algorithms parametrized by
the view, that can continue to
work locally on areas thus pro-
viding a non-uniformly detailed
model [Eck95, Hoppe96, Cohen96].

The elements should fulfill both display
quality and rendering speed, which are
completely opposed, as on one side, the
element quality requires an optimal repre-
sentation, and on the other side, the speed
restriction tolerates a perceptible element
degradation.

Thus, we introduce three classes of LOD
based on: viewer distance, frame per sec-
ond, and viewer interest.

2.2.2 LOD Categories

Optimal Visual LOD This is the com-
mon class of LOD. Parameterized by the
distance of the element to the observer,
the OV LOD function provides the opti-
mal representation for the element, with-
out deterioration. It aims to have a mini-
mal number of polygons and a maximum
of details, as a consequence that adding
details to the element would not change
the scene quality. It could even deterio-
rate it, as simplification performs geomet-
rical anti-aliasing.

Optimal Display Rate LOD Main-
taining a moreless constant frame rate is a

major requirement of VEs. That is what
ODR LOD aims at while throwing away
details. There is a polygon budget for ren-
dering, implying that the elements’ poly-
gon richness has to be constrained, and
this budget is maintained by the element’s
ODR LOD. This results in a perceptible
but tolerated homogenous degradation of
the scene’s elements.

↪→ In VEs, the number of elements is not
determined. The ODR LOD has its place
in VEs that aim at element number scal-
ability, in contrast with basic VEs where
the number of elements in the scene can-
not increase above a pre-determined max-
imum.

Optimal Intentional LOD The
viewer’ s intention in the scene is always
contained by the frustrum, but is never
equal to it, so even if there are many
elements in it, all do not need to be
rendered at the same ODR LOD, thus
implying a controlled heterogeneity of el-
ements’ detail levels. Hence, elements are
weighted by the intention that the user
grants to them, thus making possible to
determine for each an optimal intentional
LOD (OI LOD). OI LOD will be detailed
in section 3. To our knowledge, this class
is empty.

3 DETAILING OI LOD

3.1 Situating the Three LODs

OI LOD stands between total degradation
and OV LOD.

If the polygon budget is large enough to
draw every element at OV LOD, then OI
LOD is the same as OV LOD.

In other cases, an appropriate polygon
budget has to be assigned to the elements



that is proportional to the intention the
viewer grants them.

At best, the budget is sufficient to render
the elements at OV LOD. At worst, a de-
cision has to be made:

• the scene does not worth rendering if
it does not have the required details,
so rendering will be done at OV LOD,
thus breaking frame rate.

• for each element, a polygon budget
smaller than the OV LOD number
of polygons is assigned per element,
proportional to the intention that the
viewer grants them.

ODR LOD is a special case of OI LOD,
where the viewer’s intention in every ele-
ment is the same, and for which the second
decision is always taken.

3.2 Interruptability

By interruptability, we mean that a ren-
dered scene may be asked to the rendering
engine without considering whether it had
the time to complete it or not.

This is useful in a context where the num-
ber of frames per second is variable, con-
trolled by the dynamism of the frustrum.
Unfortunately, this produces incomplete
and incoherent scenes. A way to antic-
ipate the interruption is to control the
number of polygons sent to the renderer,
such as when the interruption occurs:

• if the scene has been completely ren-
dered, the polygon budget per frame
can be increased.

• if the scene has been partially ren-
dered, the polygon budget per frame
can be decreased.

3.3 OI LOD Mechanism

This mechanism aims at determining how
to establish the elements’ OI LOD.

Because of his motivations in the world,
a viewer may be more interested in some
objects than others, such as the objects
he is looking for, potentially interacting
objects or other avatars, the viewer having
a different intention with every object.

The determination of the intention de-
gree depends of the VE graph’s structure,
or some interface. In a VE based on a
geometric scene graph, this degree could
be determined by the angle between the
viewing direction and the object’s posi-
tion.

Having each object’s intention, a OILOD
has to be determined, that respects the
following constraints:

• considering each element’s with a
percentage of detail of the original el-
ement for optimal visual representa-
tion: OV LOD.

• considering each object’s intention
degree with a percentage for inten-
tion degree: iDegree.

• the polygon budget has to be shared
among all the viewed scene objects,
therefore we have a coefficient that
weights every object degradation:
ODRLOD. It is updated while the
viewer moves.

The percentage of degradation for each
object’s optimal intention is thus given
by OILOD = OV LOD ∗ iDegree ∗
ODRLOD.

We give a pseudo-code for the OI LOD
mechanism for a scene contained in a tree
structure:



r = 1000.0 / fps

ODRLOD = 0.0

while TRUE do

t1 = mstime()

scene.draw(ODRLOD)

t2 = mstime()

dt = t2 - t1;

ddt = dt - r

ODRLOD += f(dt, ddt)

endWhile

Where f is a piecewise continuous func-
tion that provides an increment for
ODRLOD according to the rendering
variation ddt and rendering time dt (Fig.
1).

Figure 1: Function form

4 CONCLUSION

Classic culling and LOD algorithms are
not designed to support effectively real-
time VE rendering, as they omit to con-
sider that the potential number of ob-
jects and their potential details is not re-
stricted.

We have illustrated that the only way
to support visible objects scalability is to
perform geometry degradation, and that
when the number of frames per second
does not depend of the renderer, degra-
dation has to be managed dynamically.

Moreover, widespread VEs do not con-
sider the semantic meaning that can sup-
ply an object and the relation that can
link such meanings, as presented in this
paper.
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