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Digital hologram rendering can be performed by a convolutional neural network, trained with im-
age pairs calculated by numerical wave propagation from sparse generating images. 512-by-512 pixel
digital Gabor magnitude holograms are successfully estimated from experimental interferograms by
a standard UNet trained with 50,000 synthetic image pairs over 70 epochs.

Convolutional neural networks already have demon-
strated their potential for digital hologram rendering
from optically-acquired interferograms in free-space
propagation conditions [1–4] and through scattering
media [5–7]. Our aim here is to determine whether an
auto-encoder convolutional neural network, a UNet [8],
can be trained over a synthetic database for digital
hologram rendering from experimental interferograms.
A model of wave propagation is used to create synthetic
Gabor interferograms and synthetic Gabor magnitude
holograms from random images. This image formation
model is based on angular spectrum propagation and
magnitude calculation of the wave field from the ob-
ject to the sensor array, and from the sensor to the object.

In contrast with previously reported computational
image rendering schemes with convolutional neural
networks, where image formation is statistically inferred
through experimental data [1–4], in our approach it
is inferred from synthetic data created by physical
modeling of wave interference and propagation. Since
the UNet training strategy relies on the strong use of
a large and diverse database [8], training on synthetic
data alleviates the need for numerous experimental data
and data augmentation.

The convolutional neural network used in this study is
(sketched in Fig. 1) is a standard UNet [8] with an input
image of 5122 pixels, a depth of 7 down sampling blocks
and 7 up sampling blocks. Convolution kernels are
3-by-3-by-n pixels, where n is the number of channels
of the input feature map. The first set of 16 kernels
generates a feature map of n = 16 channels from the
input image which has only n = 1 channel. In the down
sampling part, the lateral size of the features is divided
by two and the number of channels n is multiplied
by two between blocks. In the up sampling part, the
lateral size of the features is multiplied by two and
the number of channels n is divided by two between

blocks. Mirror features from the down sampling part
are concatenated to their up sampling counterparts.
The UNet is trained with 50,000 image pairs (among
which 15% are used for validation purposes). The
chosen loss function is the mean-square error between
predicted image H ′ and actual training output H during
the validation process. It is used to measure their
inconsistency; the optimization (or deep learning) of the
network consists in finding the set of network weights
for which this loss function is minimum. The learning
rate controls how much the weights of the network are
adjusted with respect to the gradient of the loss function.

We construct a database of training input and output
image pairs by the procedure illustrated in the flowchart
from Fig. 2. A square generating image A of 5122 pixels
that describes the amplitude transmission function of a
synthetic object is constructed by setting a given num-
ber N of source points at random locations with random
brightness on a black background, and spatial filtering by
a circular aperture in the Fourier plane. The diameter of
the aperture is one half of the diagonal of the reciprocal
plane. The values of the array A are positive real num-
bers. A synthetic Gabor interferogram I is calculated
from this generating image A by angular spectrum prop-
agation [10] of the wave field described by the transmis-
sion function A with a distance parameter −z, followed
by a rectification consisting of taking the magnitude of
the complex-valued array points

I(x, y) =

∣∣∣∣∫∫ FA(kx, ky)e−ikzzeikxxeikyydkxdky

∣∣∣∣ (1)

where (x, y) are the pixels of arrays, and FA(kx, ky) is the
two-dimensional Fourier transform of A(x, y). The wave
vector projections (kx, ky, and kz) along lateral and axial
directions (x, y, and z) satisfy k2z = k2 − k2x − k2y, with
k = 2π/λ, and λ is the optical wavelength. A synthetic
magnitude hologram H is calculated from each synthetic
interferogram I by angular spectrum propagation of the
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FIG. 1: Topology of the convolutional neural networks trained with synthetic, input/output image pairs, and used for experi-
mental hologram rendering. Standard UNet [8] with a positive real input (and output) image of 5122 pixels (width = height =
512 pixels), a depth of 7 down sampling blocks in the encoding part and 7 up sampling blocks in the decoding part. Convolution
kernels are 3-by-3-by-n pixels, where n is the number of channels of the input feature map. The first set of kernels generates
n = 16 channels from the input image. In the down sampling part, the lateral size of the features is divided by two and
the number of channels is multiplied by two between feature maps. Down sampling transitions (noted ”down”) include max
pooling, and two iterations of convolution and rectification (ReLU) [9]. In the up sampling part, the lateral size of the features
is multiplied by two and the number of channels is divided by two between blocks. Up sampling transitions (noted ”up”)
include a convolution transpose, and two iterations of convolution and rectification. Mirror features from the down sampling
part of the network are concatenated to their up sampling counterparts through skip connections that allow feature maps to
pass through the bottleneck. The boxes represent feature maps, the numbers on top of each box are their respective width,
height, and depth n. Flowchart courtesy of http://alexlenail.me/NN-SVG/LeNet.html

wave field described by I with a distance parameter +z,
followed by rectification.

H(x, y) =

∣∣∣∣∫∫ FI(kx, ky)e+ikzzeikxxeikyydkxdky

∣∣∣∣ (2)

where FI(kx, ky) is the two-dimensional Fourier trans-
form of I(x, y). These operations generate a positive,
real-valued image triplet (A, I,H), displayed in Fig. 3.
We ought to teach wave field propagation to a UNet,
by deep learning over a large training database of M
randomly generated input/output image pairs (I,H).
The number of source points N in each generating image
A is logarithmically-spaced from 1 to one-tenth of 5122.

By following the same construction procedure as for
the generation of the training database, image couples
(I,H) are generated from a set of arbitrary images A for
validation purposes. The training procedure is stopped
after 70 iterations of the optimization process over the
whole training database (epochs), with a learning rate
of 0.1, when the network output H ′ for an input image
I becomes similar to the model-rendered magnitude
hologram H.

Gabor interferograms I measured from a preparation
of C. elegans roundworms with a digital holographic
Gabor microscope, sketched in Fig. 4, are then used to
compare the network output H ′ to magnitude holograms
H reconstructed by angular spectrum propagation
(Eq. 2). In the experiments, the radiation wavelength
λ is 658 nm, the pixel pitch is 5.5 microns, and the
reconstruction distance is z = 0.065 m. 512-by-512-pixel
interferograms I are cropped from 2048-by-2048-pixel
frames in a region of interest of the sensor array. A
database of image couples (I,H) is then constructed
from a set of recorded Gabor interferograms I and their
magnitude hologram counterparts H, reconstructed
by angular spectrum propagation from I, followed by
rectification (Eq. 2). Examples of network estimates
H ′ at several training iterations (epochs) for an input
interferogram I, alongside the calculated magnitude
hologram H (Eq. 2) are displayed in Fig. 5. All the
training dataset (I,H) is calculated for z = 0.065 m.
It is worth remarking that training the network over
several reconstruction distances degrades the prediction
accuracy.

http://alexlenail.me/NN-SVG/LeNet.html
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FIG. 2: Flowchart of the synthetic database creation. An
image pair (I,H) is calculated numerically from a random
generating image A. This process is iterated for each random
generating image to create the whole training database.
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FIG. 3: Examples of database of image triplets (A, I,H).
Generating images A (left column, a,d,g), synthetic inter-
ferograms I (center column, b, e, h), synthetic magnitude
holograms H (right column, c, f, i). The number of random
points in the generating images is N = 1 (top row, a, b, c),
N = 58 (center row, d, e, f), N = 5122/10 (bottom row, g, h,
i). A movie of generated image triplets (A, I,H) illustrating
the distribution of the whole range of number of source points
is displayed in Vizualization 1.
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FIG. 4: Optical arrangement of the Gabor inline holographic
microscope used to image transparent worms. A petri dish
with growth medium placed in the object plane is illuminated
by red laser light. It transmits light collected by a microscope
objective, which creates an image conjugate of the sample in a
plane between the lens and the sensor array of a camera. The
recorded interferogram I (top, right) of a resolution target
placed in the object plane, yields the magnitude hologram H
(bottom, right) via Eq. 2.

Training the network with synthetic interferograms
and reconstructed holograms (I,H) image pairs teaches
the network to estimate the solution of the transforma-
tion of Eq. 2, for a given depth z, which already has
an analytical solution. Yet this solution is cluttered
with a spurious contribution. The quality of single-shot
magnitude holograms reconstructed from Gabor in-line
interferograms is degraded by the superposition of a twin
image [11–13] : the ripples observed in the neighborhood
of the worms in Fig. 5(b) are the twin image of the
roundworms in focus. The sum of the diffracted object
wave beating against the reference wave, and their
conjugate are present in the recorded interferogram I,
hence the object wave reconstructed +z is stained with
an additive diffraction pattern, which creates a twin
image at the reconstruction distance −z. Those ripples
are also present in the image H ′ in Fig. 5(f), estimated
by the neural network.

The convolutional neural network proves capable of
mimicking standard hologram rendering with a high
level of accuracy (Fig. 5(f) vs. Fig. 5(b)). We also
wanted to assess wether it would also provide high qual-
ity estimates of solutions to the twin-image problem.
Twin-image elimination by neural network rendering

https://youtu.be/3pJCNV56ACI
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FIG. 5: (a) Optically-acquired digital interferogram I of
transparent worms. (b) Magnitude hologram H calculated
by angular spectrum propagation from I. Output image es-
timate H ′ after 10 (c), 40 (d), 50 (e), and 70 (e) training
epochs, over 50,000 synthetic image pairs (I,H). A movie of
image triplets (I,H,H ′) is displayed in Vizualization 2.

was previously reported for hologram estimation by
a convolutional neural network [3]. In this approach,
the network was trained with interferograms measured
experimentally and with calculated holograms from
which the twin-image was removed by an experimental
and numerical iterative multi-height phase recovery
scheme [14]. This suggests that UNets may be able to
estimate solutions to ill-posed inverse problems beyond
the ones for which the normal operator is a convolu-
tion [15]. The inverse problem that needs to be solved
is to determine the possible positive real-valued images
(object amplitude transmission functions) to reproduce

a given measured Gabor amplitude interferogram. Our
network was also trained with (I, A) pairs instead of
(I,H), ie. onto the inverse problem of image formation
(Fig. 2), switching the calculated magnitude holograms
H for generating images A, naturally devoid of twin
image. Yet it did not enable the neural network to
estimate twin-image-free magnitude holograms H ′ from
inline interferograms inputs I. This approach failed
to reconstruct twin-image-free Gabor holograms. This
problem is most often ill-posed, which means that
many object transmission estimates may produce the
same Gabor amplitude interferogram. Yet the direct
problem, which is the formation of an interferogram
by a given transmission function, has an analytical
formulation. Adding regularization constraints [16] has
emerged as the standard procedure for iterative image
reconstruction algorithms [11–13, 15]. It may be also
prove useful for hologram rendering by convolutional
networks.

In conclusion, digital image rendering in Gabor
holography can be performed by a convolutional neural
network trained with a fully synthetic database formed
by image pairs generated randomly, and linked by a
numerical model of in-line angular spectrum propaga-
tion of a scalar wave field from the object to the sensor
array, and magnitude calculation. Gabor holograms
of microscopic worms are successfully predicted from
experimental interferograms by a UNet trained with
50,000 random image pairs. Two main caveats apply to
the use of a standard Unet for image rendering : the
results were obtained for a fixed reconstruction distance,
and twin-image elimination could not be achieved by
training the network with image pairs from the inverse
problem.
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