
SAT-based Minimization
of Deterministic ω-Automata

Souheib Baarir and Alexandre Duret-Lutz

LRDE, EPITA, Le Kremlin-Bicêtre, France
sbaarir@lrde.epita.fr,adl@lrde.epita.fr

Abstract. We describe a tool that inputs a deterministic ω-automaton
with any acceptance condition, and synthesizes an equivalent ω-automaton
with another arbitrary acceptance condition and a given number of states,
if such an automaton exists. This tool, that relies on a SAT-based encoding
of the problem, can be used to provide minimal ω-automata equivalent
to given properties, for different acceptance conditions.

1 Introduction

LTL Synthesis and Probabilistic LTL Model Checking (PMC) are two areas
where it is useful to express linear-time temporal properties as deterministic
ω-automata. Because it is well known that not all Büchi automata can be made
deterministic, these applications use other acceptance conditions such a Rabin or
Streett. The model checker PRISM [12], for instance, contains a reimplementation
of ltl2dstar [8], a tool that converts non-deterministic Büchi automata (obtained
from an LTL formula) into deterministic Rabin or Streett automata, using Safra’s
construction [14].

In the past few years, there have been a blossoming of tools directly translating
LTL formulas into Rabin automata, or generalized variants of Rabin automata [10,
3, 11, 5, 9]. These tools usually give automata smaller than those obtained
with ltl2dstar via Safra’s construction, and it has been shown that using the
generalized Rabin condition can speed PMC up by orders of magnitude [5, 9].

The need for interaction between tools producing and consuming ω-automata
with various acceptance conditions has led to the introduction of the Hanoi Omega-
Automata (HOA) format [4], where the acceptance condition can be specified
using an arbitrary Boolean expression of sets that must be visited infinitely often
or finitely often. The current implementation of PRISM can perform PMC using
deterministic automata having any such arbitrary acceptance condition, and to
save memory it is preferable to have automata with as few states as possible,
even if this means having a more complex acceptance condition.

In this paper, we present a tool that inputs a deterministic automaton with
any acceptance condition, and uses a SAT-based technique to synthetize an
equivalent automaton with any given accepance condition and number of states
if such an automaton exists. As a consequence we also have a way to construct
minimal equivalent deterministic automata for any given acceptance condition.

This SAT-based encoding is costly, so it is not suitable for routine simplification
of automata; however it is a very useful tool to provide lowerbounds for the size
of the deterministic automata that existing LTL translators (or actually, any
automaton transformation tool) could produce, so it should help authors of such
tools to find cases where there is room for improvement.

The SAT-based encoding we use for this synthesis with any acceptance is
an extension of our previous work that was restricted to generalized-Büchi
acceptance [2], and that was itself a generalization of the DBAminimizer of Ehlers
[7] for Büchi acceptance.

2 Definitions and Encoding

2.1 Deterministic Transition-based ω-Automaton

For a set S, Sω denotes the set of infinite sequences over S. Given such an infinite
sequence σ ∈ Sω, Inf(σ) denotes the subset of elements that occur infinitely often
in σ. We use B = {⊥,>} to denote the set of Boolean constants, and use [m] as
a shorthand for {1, 2, . . . ,m}.

Definition 1 (DTωA). A (complete) Deterministic Transition-based ω-Automaton
(DTωA) is a tuple A = 〈Q,Σ, ι, δ, (F1, F2, . . . , Fm),F 〉 where

– Q is a set of states, ι ∈ Q is the initial state,
– Σ is an alphabet,
– δ ⊆ Q×Σ×Q is a transition relation that is deterministic and complete, i.e.,

such that ∀(s, `) ∈ Q×Σ, |{d ∈ Q | (s, `, d) ∈ δ}| = 1. By abuse of notation,
we shall also write δ(s) to denote the set {(`, d) ∈ Σ ×Q | (s, `, d) ∈ δ}.

– (F1, F2, . . . , Fm) is a tuple of m acceptance sets of transitions Fi ⊆ δ. For

convenience, we denote F̃ (t) = {i ∈ [m] | t ∈ Fi} the set of indices of
acceptance sets that contain t.

– F : 2[m] → B is a Boolean function that tells which combination of acceptance
sets should be visited infinitely often along a run for this run to be accepting.

A run of A is an infinite sequence of connected transitions ρ = (q1, `1, q2)(q2, `2, q3)
(q3, `3, q4) . . . ∈ δω such that q1 = ι. This run recognizes the infinite word

`1`2`3 . . . and is accepting iff F (
⋃
t∈Inf(ρ) F̃ (t)) = >. The language of A is the

set L (A) of all infinite words recognized by accepting runs of A.

For brevity, in the rest of this article we simply write automaton instead of
complete and deterministic ω-automaton.

In the HOA format [4], the acceptance function F is represented by a Boolean
expression over primitives of the form Inf(i) or Fin(i) meaning respectively that the
set Fi has to be visited infinitely often or finitely often. For instance Fin(0)∨ Inf(1)
is an expression for Streett acceptance with one pair (a run is accepting if it either
visits F0 finitely often, or F1 infinitely often); in our definition of DTωA, the
corresponding F function would be such that F ({1}) = F ({0, 1}) = F (∅) = >,
and F ({0}) = ⊥.

2.2 Synthesis of Equivalent DTωA

Given an automaton R = 〈QR, Σ, ιR, δR, (F1, F2, . . . , Fm′),F 〉, two integers n
and m, and an acceptance function G : 2[m] → B, we would like to construct (if
it exists) an automaton C = 〈QC , Σ, ιC , δC , (G1, G2, . . . , Gm),G 〉 with |QC | = n
states, and such that L (R) = L (C). We call R the reference automaton, and
C, the candidate automaton.

Since C and R are complete and deterministic, any word of Σω has a unique
run in R and C, and testing L (R) = L (C) can be done by ensuring that
each word is accepted by R iff it is accepted by C. In practice, this is checked
by ensuring that any cycle of the synchronous product C ⊗ R corresponds to
cycles that are either accepting in both C and R, or rejecting in both. To ensure
that property, the SAT-based encoding uses variables to encode the history of
acceptance sets visited between two states of the product C ⊗R.

SAT Variables We encode C with two sets of variables:
– The “triplet” variables {〈q1, `, q2〉 | (q1, q2) ∈ Q2

C , ` ∈ Σ} encode the existence
of transitions (q1, `, q2) ∈ δC in the candidate automaton.

– The “quadruplet” variables {〈q1, `, i, q2〉 | (q1, q2) ∈ Q2
C , ` ∈ Σ, i ∈ [m]}

encode the membership of these transitions to each acceptance set Gi of C.
For the product C ⊗R, we encode the reachable states, and parts of paths that
might eventually be completed to become cycles. We use SCCR ⊆ 2QR to denote
the set of non-trivial strongly connected components of R.
– A variable in {〈q, q′, q, q′, ∅, ∅〉 | q ∈ QC , q′ ∈ QR} encodes the existence of a

reachable state (q, q′) in C⊗R. The reason we use a sextuplet to encode such
a pair is that each (q, q′) will serve as a starting point for possible paths.

– A variable in {〈q1, q′1, q2, q′2, I, I ′〉 | (q1, q2) ∈ Q2
C , S ∈ SCCR, (q′1, q

′
2) ∈

S2, I ⊆ [m], I ′ ⊆ [m′]} denotes that there is a path between (q1, q
′
1) and

(q2, q
′
2) in the product, such that its projection on C visits the acceptance

sets Gi for all i ∈ I, and its projection on R visits the acceptance sets Fi for
all i ∈ I ′. This set of variables is used to implement the cycle equivalence
check, so the only q′1 and q′2 that need to be considered should belong to the
same non-trivial SCC of R.

SAT Contraints With the above variables, C can be obtained as a solution of
the following SAT problem. First, C should be complete (i.e., δC is total):∧

q1∈QC , `∈Σ

∨
q2∈QC

〈q1, `, q2〉 (1)

Then, the initial state of the product must exist. Furthermore, if (q1, q
′
1) is a

state of the product, (q′1, `, q
′
2) ∈ δR is a transition in the reference automaton,

and (q1, `, q2) ∈ δC is a transition in the candidate automaton, then (q2, q
′
2) is a

state of the product too:

∧ 〈ιC , ιR, ιC , ιR, ∅, ∅〉 ∧
∧

(q1,q2)∈Q2
C , q

′
1∈QR,

(`,q′2)∈δR(q′1)

〈q1, q′1, q1, q′1, ∅, ∅〉 ∧ 〈q1, `, q2〉→〈q2, q′2, q2, q′2, ∅, ∅〉 (2)

Any transition of the product augments an existing path, updating the sets I
and I ′ of indices of acceptance sets visited in each automaton. Unfortunately, we

have to consider all possible subsets J ⊆ [m] of acceptances sets to which the
candidate transition (q2, `, q3) could belong, and emit a different rule for each J .

∧
∧

(q1,q2,q3)∈Q3
C ,

I⊆[m], J⊆[m],

S∈SCCR, (q
′
1,q

′
2)∈S

2,

I′⊆[m′], (`,q′3)∈δR(q′2)



〈q1, q′1, q2, q′2, I, I ′〉
∧〈q2, `, q3〉

∧
∧
i∈J
〈q2, `, i, q3〉

∧
∧
i 6∈J

¬〈q2, `, i, q3〉


→ 〈q1, q′1, q3, q′3, I ∪ J,

I ′ ∪ F̃ ((q′2, `, q
′
3))〉

(3)

If a path of the product is followed by a transition (q′2, `, q
′
3) ∈ δR and a transition

(q2, `, q3) ∈ δC that both close a cycle (q3 = q1 ∧ q′3 = q′1), then the cycle formed
in the candidate automaton by (q2, `, q1) should have the same acceptance (i.e.,
rejecting or accepting) as the cycle of the reference automaton. In other words,
the transition (q2, `, q1) belongs to a subset J ⊆ [m] of acceptance sets only if

this J satisfies G (I ∪ J) = F (I ′ ∪ F̃ ((q′2, `, q
′
1))).

∧
∧

(q1,q2)∈Q2
C , I⊆[m],

S∈SCCR, (q
′
1,q

′
2)∈S

2, I′⊆[m′],

(`,q′3)∈δR(q′2), q
′
3=q

′
1

〈q1, q′1, q2, q′2, I, I ′〉∧〈q2, `, q1〉 →
∨

J⊆[m]

G (I∪J)=F(I′∪F̃ ((q′2,`,q
′
1)))

(∧
i∈J
〈q2, `, i, q1〉∧

∧
i6∈J

¬〈q2, `, i, q1〉
)

(4)
Optimizations. A first optimization is to use the same symmetry breaking

clauses as suggested by Ehlers [7], to restrict the search space of the SAT solver.
Nonetheless, the above encoding requires O(|QR|2 × |QC |2 × 2m+m′

) variables
and O(|QR|2 × |QC |3 × 22m+m′ × |Σ|) clauses. It is therefore very sensitive to
the number of acceptance sets used in the reference and candidate automata. To
mitigate this, we implement some additional optimizations:
1. For SCCs that are known to be weak (i.e., all cycles are accepting, or all

cycles are rejecting) it is not necessary to remember the history I ′ of the
acceptance sets seen by paths. The sets of variables {〈q1, q′1, q2, q′2, I, I ′〉, . . .}
when q′1 and q′2 belong to a weak SCC can therefore be restricted to only
cases where I ′ = ∅.

2. In case an SCC S is not weak, it is possible that it does not intersect all the
sets F1, F2, . . . , Fm. Then the variables {〈q1, q′1, q2, q′2, I, I ′〉, . . .} can have
their history I ′ restricted to the subset of [m′] that actually intersects S.

3. Simplifying histories. Consider a Rabin acceptance condition like Fin(0) ∧
Inf(1), where the set F0 has to be visited finitely often and F1 has to be
visited infinitely often. The histories I ⊆ [2] or I ′ ⊆ [2] involved in the
variables {〈q1, q′1, q2, q′2, I, I ′〉, . . .} could take any value in {}, {0}, {1}, or
{0, 1} depending on which sets have been seen along this path. However these
variables are only used to detect cycles, and a cycle that contains 0 in its
history cannot be prolonged into an accepting cycle: the history {0, 1} can
therefore be simplified into {0}, which is enough to ensure that the cycle will
be rejecting. Doing this reduces the number of variables and clauses needed.

4. Equation (4) is not directly expressed as a disjunction. To encode it more
efficiently, we use BDDs to express the right-hand side of the implication as
an irredundant product of sums: depending on whether F (I ′ ∪ F̃ ((q′2, `, q

′
1))

is accepting, we encode the formula G or its negation as a BDD, assign to
true the BDD variables corresponding to the sets listed in I and obtain the
resulting product of sums by dualizing the Minato-Morreale algorithm [13].
State-based acceptance. This encoding can be tweaked to synthetize au-

tomata with state-based acceptance by reducing the quadruplets 〈q1, `, i, q2〉 to
pairs 〈q1, i〉 in all the above rules.

3 Implementation and Experiments

3.1 Tool Support

The above encoding is implemented in Spot 1.99.41, and can be used via the
command-line tool autfilt. Tools that produce deterministic ω-automata, such
as ltl2dstar [8], ltl3dra [3], and Rabinizer3 [9], have all been recently updated
to support the Hanoi Omega-Automata format [4], that autfilt can input.

The following example translates Gp0 ∨ FGp1 using ltl2dstar. The formula
is first passed to ltlfilt [6] for conversion into ltl2dstar’s input syntax.
ltl2dstar outputs its result in dra.hoa: it is a 5-state Rabin automaton with
two pairs of acceptance sets.2

% ltlfilt -f ’Gp0 | FGp1’ -l | ltl2dstar --output-format=hoa - dra.hoa

% egrep ’States:|acc-name:|Acceptance:’ dra.hoa

States: 5

acc-name: Rabin 2

Acceptance: 4 (Fin(0)&Inf(1))|(Fin(2)&Inf(3))

Now we can minimize this automaton using our SAT-based approach. We pass
the dra.hoa to autfilt --sat-minimize, with additional options to require a
complete automaton (-C) with state-based acceptance (-S), in the HOA format
(-H). The result has only 3 states.

% autfilt -S -C --sat-minimize -H dra.hoa > dra-min.hoa

% egrep ’States:|acc-name:|Acceptance:’ dra-min.hoa

States: 3

acc-name: Rabin 2

Acceptance: 4 (Fin(0) & Inf(1)) | (Fin(2) & Inf(3))

The --sat-minimize option can take additional parameters, for instance to
force a particular acceptance condition on the output (the default is the same as
for the input). As an example, the following command forces the production of a
minimal equivalent automaton with co-Büchi acceptance, which is enough for
this formula (and means only one Rabin pair was really necessary).

% autfilt -S -C --sat-minimize=’acc="co-Buchi"’ -H dra.hoa > dra-min1.hoa

% egrep ’States:|acc-name:|Acceptance:’ dra-min1.hoa

States: 3

acc-name: co-Buchi

Acceptance: 1 Fin(0)

1 https://spot.lrde.epita.fr/
2 In the HOA format [4] the Acceptance: line encodes the F function of Def. 1, while

the acc-name: just supplies a human-readable name when one is known.

https://spot.lrde.epita.fr/

The colored option requests that all transitions (or states) belong to exactly
one acceptance set. This is useful for instance when requesting parity acceptance:

% autfilt -S -C --sat-minimize=’acc="parity max even 2",colored’ -H \

dra.hoa >dpa.hoa

% egrep ’States:|acc-name:|Acceptance:’ dpa.hoa

States: 3

acc-name: parity max even 2

Acceptance: 2 Fin(1) & Inf(0)

One section of the web page https://spot.lrde.epita.fr/satmin.html

details the usage of autfilt with more examples.

3.2 Minimization

To evaluate the usefulness and effectiveness of our tool, we built a benchmark of
LTL formulas to convert into deterministic ω-automata by the three translators
ltl2dstar 0.5.3, ltl3dra 0.2.2, and Rabinizer 3.1.

Table 1, shows the number states of deterministic Rabin automata produced
by the translators, as well as the size of the minimal Rabin automata that
autfilt --sat-minimize could produce using a single acceptance pair. The
table distinguishes the use of state-based acceptance or transition-based accep-
tance. All automata are complete. Because the SAT encoding is exponential in
the number of acceptance sets, but polynomial in the size of the automaton,
the input automaton supplied to autfilt --sat-minimize was chosen among
the automata output by the translators as the one with the fewest number of
acceptance sets, and in case of equality the fewest number of states. For instance,
for ¬(GFp1∧GFp0∧GFp2) in Table 1, the minimal transition-based automaton of
size “3 (2)” was obtained starting from the minimal state-based Rabin automaton
of size “4 (2)”, not starting from the “1 (6)” automaton produced by Rabinizer,
as it involves more acceptance sets.

Although this table only shows minimal automata with a single pair, our
technique can deal with more pairs (and different acceptance conditions) as
well. For instance the formula (FGp0 ∨ GFp1) ∧ (FGp2 ∨ GFp3) is translated by
ltl2dstar into a DRA with 4385 states (and 7 acceptance pairs), by ltl3dra

into a DRA with 18 states (and 4 pairs) and by Rabinizer into a transition-based
DRA with 13 states (and 4 pairs). Using autfilt --sat-minimize we could
reduce it to a transition-based DRA with 2 states and only 3 acceptance pairs,
and show that there is no transition-based DRA with 2 states and less acceptance
pairs (the problem becomes unsatisfiable).

Finally Table 2 shows minimization examples that use the transition-based
generalized Rabin acceptance introduced by ltl3dra and Rabinizer. Before
minimizing the automaton we simplified the acceptance by removing all unused
sets, yielding the simpler acceptance conditions displayed in the table.

Complete results and instructions to reproduce this benchmark can be found
at https://www.lrde.epita.fr/~adl/lpar15/. In particular, the CSV files
include run time information for the SAT solver we used (Glucose 4.0 [1]), and
experiments with 2 and 3-pair DRA.

https://spot.lrde.epita.fr/satmin.html
https://www.lrde.epita.fr/~adl/lpar15/

Table 1: Sizes of Rabin automata produced by ltl2dstar (L2), ltl3dra (L3),
Rabinizer (R3), or our SAT-based minimization procedure configured to
produce deterministic Rabin automata with a single acceptance pair
(min), with either state or transition-based acceptance. The notation “x (y)”
denotes an automaton with x states and y acceptances sets. (In Rabin automata,
acceptance sets are used as pairs, so y is always even.) Timeouts after 1h are
denoted with “t.o”. “imp.” (for “impossible”) indicates that no Rabin automaton
with a single pair where found. Finally “n.a.” indicates that the formula falls out
of the supported LTL fragment of ltl3dra.

state-based acceptance tr.-based acc.
L2 L3 R3 min R3 min

¬((FGp0 ∨ GFp1) ∧ (FGp2 ∨ GFp3)) 9 (4) 9 (4) 9 (8) t.o. 4 (4) imp.
¬((GFp1 ∧ GFp0) ∨ (GFp3 ∧ GFp2)) 270 (10) 10 (8) 11 (16) imp. 10 (8) imp.
¬F(G(p2∨(p1∧p2))∨(Xp1 U(p0∧Xp1))) 9 (2) n.a. 36 (12) 5 (2) 34 (6) 3 (2)
¬FG((p0∧GFp1∧XXp1)UG(XXp2∨XX(p0∧p1))) 4 (2) n.a. 16 (4) 2 (2) 16 (2) 1 (2)
¬(Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2)) 9 (6) 8 (6) 15 (16) 8 (2) 13 (8) 8 (2)
¬(Fp0 ∧ GFp0) 4 (4) 3 (4) 4 (8) 3 (2) 2 (4) 2 (2)
¬(Fp0 ∧ GFp1) 5 (4) 4 (4) 4 (8) 3 (2) 2 (4) 2 (2)
¬(GFp1 ∧ GFp0 ∧ GFp2) 8 (6) 8 (6) 8 (12) 4 (2) 1 (6) 3 (2)
¬(GFp1 ∧ GFp0) 4 (4) 4 (4) 4 (8) 3 (2) 1 (4) 2 (2)
¬GFp0 2 (2) 2 (2) 2 (4) 2 (2) 1 (2) 1 (2)
¬(Xp0 UGp1) 7 (2) n.a. 6 (8) 5 (2) 6 (4) 5 (2)
(FGp0 ∨ GFp1) ∧ (FGp2 ∨ GFp3) 4385 (14) 18 (8) 19 (16) imp. 13 (8) imp.
F(G(p2∨(p1∧p2))∨(Xp1 U(p0∧Xp1))) 7 (4) 6 (4) 8 (8) 5 (2) 6 (4) 3 (2)
FG((p0∧GFp1∧XXp1)UG(XXp2∨XX(p0∧p1))) 3 (2) n.a. 7 (4) 2 (2) 6 (2) 1 (2)
Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2) 8 (2) 8 (4) 9 (8) 8 (2) 9 (4) 8 (2)
Fp0 ∧ GFp0 3 (2) 3 (2) 3 (4) 3 (2) 3 (2) 2 (2)

Table 2: Size of transition-based generalized Rabin automata produced by
ltl3dra or Rabinizer, and minimized by our procedure configured to keep
the same acceptance condition. Acceptance conditions are indicated with
“Rabin x” meaning Rabin acceptance with x pairs, “gR x” for generalized-
Rabin [5, 3] with x pairs, or “gcB x” for generalized-co-Büchi with x acceptance
sets (one of these x sets has to be seen finitely).

Rabinizer ltl3dra

orig. min orig. min

¬(p0∧((Gp0∧((Fp0∧Gp1)∨(Gp0∧Fp1)))∨(Fp0∧(Gp0∨Fp1)))) 6 (gR 3) 4 6 (gcB 3) 4
¬((XFp0∧(p1∨XGp0))∨(XGp0∧((p1∧XFp0)∨(p1∧XGp0)))) 5 (gR 2) 3 5 (gcB 2) 3
¬(Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2)) 8 (gR 4) 8 8 (gcB 3) 8
¬(Fp0 ∧ GFp1) 2 (gcB 2) 2 2 (gcB 2) 2
¬(p0 ∨ XG(p1 ∧ Fp0)) 4 (gR 2) 4 5 (gcB 2) 4
p0∧((Gp0∧((Fp0∧Gp1)∨(Gp0∧Fp1)))∨(Fp0∧(Gp0∨Fp1))) 6 (gR 2) 4 6 (gcB 2) 4
F(G(p2 ∨ (p1 ∧ p2)) ∨ (Xp1 U(p0 ∧ Xp1))) 3 (gR 2) 3 4 (gcB 2) 3
Fp0 ∧ (p1 ∨ Gp2) ∧ (p1 ∨ Fp2) 8 (gR 2) 8 8 (gcB 2) 8
Gp0 ∧ XFp1 4 (gcB 1) 4 4 (gcB 1) 4
Fp0 ∧ Xp0 ∧ (Gp1 ∨ XFp0) 7 (gR 2) 7 9 (gcB 2) 7
p0 ∨ XG(p1 ∧ Fp0) 5 (gR 2) 4 4 (gR 3) 4

4 Conclusion
We have presented a tool that can read any deterministic ω-automaton and
synthetize (if it exists) an equivalent deterministic ω-automaton with a given
number of states and arbitrary acceptance condition.

Although the SAT-based encoding is exponential in the number of acceptance
sets, our experience is that it is nonetheless usable for automata that have up to 8
acceptance sets. This is enough to cover a large spectrum of temporal properties.

By processing the output of existing translators, we were able to find sev-
eral cases where smaller automata exist, showing that there is still room for
improvement in tools that translate LTL into ω-automata.

As a final remark, we should point that our tool can find a minimal automaton
for a user-supplied acceptance condition. It might make sense to specify a more
complex acceptance condition in order to obtain a smaller automaton. Could
such a better acceptance condition be synthetized automatically?

References

1. G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In IJCAI’09, pp. 399–404, July 2009.

2. S. Baarir and A. Duret-Lutz. Mechanizing the minimization of deterministic
generalized Büchi automata. In FORTE’14, vol. 8461 of LNCS, pp. 266–283.
Springer, June 2014.

3. T. Babiak, F. Blahoudek, M. Křet́ınský, and J. Strejček. Effective translation of
LTL to deterministic Rabin automata: Beyond the (F, G)-fragment. In ATVA’13,
vol. 8172 of LNCS, pp. 24–39. Springer, 2013.

4. T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křet́ınský, D. Müller, D. Parker,
and J. Strejček. The Hanoi Omega-Automata Format. In CAV’15, vol. 8172 of
LNCS, pp. 442–445. Springer, 2015. See also http://adl.github.io/hoaf/.

5. K. Chatterjee, A. Gaiser, and J. Křet́ınský. Automata with generalized Rabin pairs
for probabilistic model checking and LTL synthesis. In CAV’13, vol. 8044 of LNCS,
pp. 559–575. Springer, 2013.

6. A. Duret-Lutz. Manipulating LTL formulas using Spot 1.0. In ATVA’13, vol. 8172
of LNCS, pp. 442–445. Springer, 2013.

7. R. Ehlers. Minimising deterministic Büchi automata precisely using SAT solving.
In SAT’10, vol. 6175 of LNCS, pp. 326–332. Springer, 2010.

8. J. Klein and C. Baier. On-the-fly stuttering in the construction of deterministic
ω-automata. In CIAA’07, vol. 4783 of LNCS, pp. 51–61. Springer, 2007.

9. Z. Komárková and J. Křet́ınský. Rabinizer 3: Safraless translation of LTL to small
deterministic automata. In ATVA’14, vol. 8837 of LNCS, pp. 235–241. Springer,
2014.

10. J. Křet́ınský and J. Esparza. Deterministic automata for the (F,G)-fragment of
LTL. In CAV’12, vol. 7358 of LNCS, pp. 7–22. Springer, 2012.

11. J. Křet́ınský and R. Ledesma-Garza. Rabinizer 2: Small deterministic automata for
LTL \ GU. In ATVA’13, vol. 8172 of LNCS, pp. 446–450. Springer, 2013.

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In CAV’11, vol. 6806 of LNCS, pp. 585–591. Springer, 2011.

13. S. Minato. Fast generation of irredundant sum-of-products forms from binary
decision diagrams. In SASIMI’92, pp. 64–73, Apr. 1992.

14. S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann
Institute of Science, Rehovot, Israel, Mar. 1989.

http://adl.github.io/hoaf/

	SAT-based Minimization of Deterministic -Automata

