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Abstract. We present a new algorithm for checking the emptiness of
ω-automata with an Emerson-Lei acceptance condition (i.e., a positive
Boolean formula over sets of states or transitions that must be visited
infinitely or finitely often). The algorithm can also solve the model check-
ing problem of probabilistic positiveness of MDP under a property given
as a deterministic Emerson-Lei automaton. Although both these prob-
lems are known to be NP-complete and our algorithm is exponential in
general, it runs in polynomial time for simpler acceptance conditions like
generalized Rabin, Streett, or parity. In fact, the algorithm provides a
unifying view on emptiness checks for these simpler automata classes.
We have implemented the algorithm in Spot and PRISM and our exper-
iments show improved performance over previous solutions.
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Fig. 1. Find a cycle satisfying the condition given in the text.

Consider the graph in Figure 1. Can you find a cycle satisfying the condition((
Fin( 0 )∧ Inf( 1 )

)
∨
(
Fin( 2 )∧ Inf( 3 )

))
∧
(
Fin( 4 )∨ Inf( 5 )

)
∧
(
Fin( 6 )∨ Inf( 7 )

)
,

where Fin( i ) is satisfied iff the mark i is not on the cycle and Inf( j ) is satisfied
iff the mark j is on the cycle? Such a cycle exists.5

5 As this problem can be understood by the average Sudoku player, more instances
can be found at https://adl.github.io/genem-exp/examples/ either to practice
the algorithm by hand, or as an entertaining prophylaxis of Alzheimer’s disease.

https://adl.github.io/genem-exp/examples/
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In this paper we introduce an algorithm deciding whether a given graph
contains a cycle satisfying a given condition, we show that this algorithm gener-
alizes some known algorithms dedicated to simpler subclasses of conditions, and
we discuss other related work (Section 3). Further, we present two implemented
applications that motivated the algorithm. First, we show that the algorithm de-
cides whether a given ω-automaton with an Emerson-Lei acceptance condition
represents an empty language (Section 4). Second, we show that the algorithm
can be used in probabilistic model checking (Section 5). In both cases, experi-
mental results indicate significant improvements over previous solutions.

2 Preliminaries

Marked graph. Intuitively, a marked graph G is a graph with edges marked by
non-negative integers. We denote the set of all non-negative integers as N0 and
we call its elements marks. Formally, G is a tuple G = (V,E) of a finite set of
vertices and a finite set of edges E ( V × 2N0 × V where the set of marks M is
finite for each edge (v1,M, v2). The set of all marked graphs is denoted by G.

A cycle is a sequence of consecutive edges that starts and ends in the same
vertex, i.e., (v,M0, v1)(v1,M1, v2) . . . (vn,Mn, v). The union M0 ∪M1 ∪ . . .∪Mn

is the set of marks that are on the cycle. The marked graph S = (V ′, E′) is a
strongly connected component (SCC) of G = (V,E) if V ′ ⊆ V , E′ ⊆ E ∩ (V ′ ×
2N0 × V ′), and for each pair of distinct vertices v, v′ ∈ V ′ there is a sequence
of consecutive edges from E′ that connects v with v′. An SCC S is maximal, if
there is no other SCC (V ′′, E′′) of G such that V ′ ⊆ V ′′ and E′ ( E′′. Further,
S is non-trivial if E′ 6= ∅. Each non-trivial SCC has at least one cycle.

Acceptance condition. An acceptance condition over N0 is every formula ϕ built
by the following grammar where m ranges over N0, and t and f stand for true
and false, respectively. The set of all acceptance formulas is denoted by C.

ϕ ::= t | f | Inf(m) | Fin(m) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ)

The concept of acceptance conditions comes from the theory of ω-automata
(automata that read infinite words) and the grammar above is inspired by
the definition introduced by the Hanoi Omega-Automata Format [2]. Table 1
presents the shape of formulas for some traditional ω-automata acceptance con-
ditions. Note that marks can appear more than once in those formulas; for in-
stance (Fin(0) ∧ Inf(1)) ∨ (Fin(1) ∧ Inf(0)) is a Rabin acceptance formula.

Acceptance formulas are interpreted over sets of marks. We write M |= ϕ if
M satisfies ϕ with the relation |= defined as follows.

M |= t M |= Inf(m) iff m ∈M M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M 6|= f M |= Fin(m) iff m /∈M M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2

The following trivial simplifications, propagating f and t, are assumed to
occur every time a formula is built or modified.

t ∨ ϕ = t f ∨ ϕ = ϕ t ∧ ϕ = ϕ f ∧ ϕ = f

ϕ ∨ t = t ϕ ∨ f = ϕ ϕ ∧ t = ϕ ϕ ∧ f = f
(1)
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Table 1. Shape of acceptance formulas corresponding to classical names. Here
m,m0,m1, ... correspond some acceptance marks, and Ji are sets of natural numbers.

Büchi Inf(m)
generalized Büchi

∧
i Inf(mi)

Fin-less [4] any positive formula of Inf(...)
co-Büchi Fin(m)
generalized co-Büchi

∨
i Fin(mi)

Rabin
∨

i (Fin(m2i) ∧ Inf(m2i+1))

generalized Rabin [27]
∨

i

(
Fin(mi) ∧

∧
j∈Ji

Inf(mj)
)

Streett
∧

i (Inf(m2i) ∨ Fin(m2i+1))
parity (min even) Inf(m0) ∨ (Fin(m1) ∧ (Inf(m2) ∨ (Fin(m3) ∧ . . .)))
hyper-Rabin [5]

∨
i

∧
j∈Ji

(Fin(m2j) ∨ Inf(m2j+1))

Emerson-Lei [19] any positive formula of Fin(...) and Inf(...)

The notation ϕ[a ← b] means that all occurrences of the subformula a are
replaced by b in ϕ. For instance, if ϕ1 =

(
Fin(0)∧Inf(1)

)
∨
(
Fin(2)∧Inf(3)

)
, then we

have ϕ1[Inf(1)← f] = Fin(2)∧ Inf(3). We can also quantify the substitution over
sets of marks. For example, ϕ1[∀m ∈ {0, 1} : Inf(m) ← f] yields Fin(2) ∧ Inf(3)
again while ϕ1[∀m ∈ {1, 3} : Inf(m)← f] = f.

To distinguish from f and t in formula notation, we use B = {⊥,>} to denote
the set of Boolean constants in descriptions of algorithms.

The reason we do not express acceptance conditions over sets of transitions
(like Inf(T )), but use marks as indirection, is so that a condition may be specified
even for a graph that is not fully known (e.g., constructed on-the-fly).

3 Algorithm

Algorithm 1 decides whether a given graph G ∈ G contains no cycle satisfy-
ing a given condition ϕ ∈ C. Its main function is called is empty, as a graph
containing no such cycle can be seen as empty with respect to ϕ.

Each cycle in a graph G lies completely in some non-trivial SCC. Hence,
the function is empty(G,ϕ) decomposes the graph G into maximal SCCs using
SCCs of(G) and runs is SCC empty(S, ϕ) for each non-trivial maximal SCC
S. The graph is empty if and only if all its maximal SCCs are empty.

The function is SCC empty(S, ϕ) gets a non-trivial SCC. It first calls the
function marks of(S) that returns the set Moccur of the marks that occurs on
some edges in S and the set Mevery of the marks that occurs on all edges in S.

Formally, if E is the set of edges in S, then Moccur =
⋃

(v,M,v′)∈E

M and Mevery =
⋂

(v,M,v′)∈E

M .

This information is used to simplify ϕ on lines 8 and 9. For each mark m not
occurring in S, we replace Fin(m) in ϕ by t and Inf(m) by f as all cycles in S
satisfy Fin(m) and do not satisfy Inf(m). Similarly, for each mark m appearing
on all edges of S, we replace Fin(m) in ϕ by f and Inf(m) by t as all cycles in S
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Algorithm 1 Input: a graph G ∈ G and a condition ϕ ∈ C
Output: is empty(G,ϕ) returns ⊥ if G contains a cycle

satisfying ϕ, otherwise it returns >
1 is empty(G ∈ G, ϕ ∈ C)→ B:
2 foreach non-trivial S ∈ SCCs of(G) do
3 if ¬is SCC empty(S, ϕ) then return ⊥
4 return >
5
6 is SCC empty(S ∈ G, ϕ ∈ C) → B:
7 (Moccur,Mevery) ←− marks of(S)
8 ϕ ←− ϕ[∀m /∈Moccur : Inf(m)← f,Fin(m)← t]
9 ϕ ←− ϕ[∀m ∈Mevery : Inf(m)← t,Fin(m)← f]

10 if ϕ = t then return ⊥
11 if ϕ = f then return >
12 if ϕ[∀m ∈Moccur : Inf(m)← t] = t then return ⊥
13 // Every minimal model of ϕ contains some Fin(m) such that m ∈Moccur

14 // We assume that ϕ has the form ϕ =
∨
j∈J

ϕj where ϕj are not disjunctions
15 foreach disjunct ϕj of ϕ do

16 if ϕj =
∧

m∈M′

Fin(m) ∧ ϕ′ then

17 if ¬is empty(remove(S,M ′), ϕ′) then return ⊥
18 else
19 pick some m such that Fin(m) occurs in ϕj

20 if ¬is empty
(
remove(S, {m}), ϕj [Fin(m)← t]

)
then return ⊥

21 if ¬is SCC empty(S, ϕj [Fin(m)← f]) then return ⊥
22 return >

satisfy Inf(m) and do not satisfy Fin(m). If the simplified formula ϕ is equivalent
to t, then it is satisfied by all cycles of S and thus we return ⊥ as the considered
SCC is nonempty. Analogously, if the current ϕ is equivalent to f, then no cycle
can satisfy it and thus we return > as the SCC is empty.

Since S is an SCC, there exists a cycle going through all its edges and visiting
all marks in Moccur. Line 12 checks whether ϕ can be satisfied by such a cycle
and returns ⊥ if it is the case. If this check fails, we know that every cycle
potentially satisfying the formula has to satisfy some Fin(m) subformula.

In the rest of the algorithm, we see ϕ as a disjunction ϕ =
∨
j∈J ϕj , where

ϕj are not disjunctions. If ϕ is not a disjunction, we see the whole formula as a
single disjunct. The SCC is empty with respect to ϕ if and only if it is empty
with respect to each disjunct ϕj . Hence, the algorithm processes these disjuncts
one by one and if the SCC is not empty with respect to some disjunct, we
immediately return ⊥.

The previous part of the algorithm implies that each disjunct ϕj can be
satisfied only by a cycle satisfying some subformulas Fin(m). We can easily detect
some of these subformulas if ϕj has the from ϕj =

∧
m∈M ′ Fin(m) ∧ ϕ′. Note

that we see the formulas ϕj =
∧
m∈M ′ Fin(m) and ϕj = Fin(m) as special cases

of the conjunction and ϕ′ stands for t in these cases. In practice, we consider
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the set M ′ on line 16 to be maximal in the sense that ϕ′ is not a conjunction
with another conjunct of the form Fin(m). When M ′ is identified, we remove all
edges containing some marks of M ′ from S as these edges cannot be part of any
cycle satisfying ϕj . The removal is done by the function remove that takes a
graph and a set of marks and returns the graph without all edges that contain
some mark of the set. After this removal, we call is empty to check whether the
graph after the removal is empty with respect to ϕ′.

Finally, if ϕj is not of the form
∧
m∈M ′ Fin(m) ∧ ϕ′, line 19 nondetermin-

istically chooses a subformula of the form Fin(m). Line 20 looks whether there
is a cycle satisfying ϕj and containing no m mark (i.e., automatically satisfying
Fin(m)). If there is such a cycle, we return ⊥ as S is not empty. Otherwise, line 21
checks whether there exists a cycle satisfying ϕj independently on Fin(m). More
precisely, we replace Fin(m) in ϕj by f and check emptiness of S against the
resulting condition. As this step does not remove any edges of S, we can use the
function is SCC empty to check the emptiness.

3.1 Solving the Puzzle From the First Page

We illustrate how the Algorithm 1 works by running it step-by-step on the puzzle
from the first page. In figures, we use gray boxes to enclose maximal SCCs. The
red S or Si next to each box is the name of this SCC used in the description.
Trivial SCCs are indicated by a dashed border

To solve the puzzle, we call is empty(G,ϕ) where G is the marked graph of
Figure 1 and ϕ is the corresponding condition. The function SCCs of(G) on
line 2 identifies one maximal SCC S which is the whole G, see Figure 2(a). As
S is non-trivial, we call is SCC empty(S, ϕ). Lines 7–9 detect that 7 does not
occur in S ( 7 6∈Moccur) and thus ϕ becomes ϕ[Inf( 7 )← f] denoted by ϕ1.

ϕ1 =
((

Fin( 0 ) ∧ Inf( 1 )
)
∨
(
Fin( 2 ) ∧ Inf( 3 )

))
∧
(
Fin( 4 ) ∨ Inf( 5 )

)
∧ Fin( 6 )

As ϕ1 is neither t nor f, and it cannot be satisfied only by satisfaction of Inf(m)
subformulas, the tests on lines 10–12 fail.

Further, ϕ1 is a conjunction and thus the foreach loop on line 15 treats ϕ1

as a single disjunct. As ϕ1 matches the condition on line 16 for M ′ = { 6 },
we remove all edges marked with 6 from the graph and consider Fin( 6 ) as
satisfied. Now we call is empty(G1, ϕ2) on graph G1 depicted in Figure 2(b)
with condition ϕ2.

ϕ2 =
((

Fin( 0 ) ∧ Inf( 1 )
)
∨
(
Fin( 2 ) ∧ Inf( 3 )

))
∧
(
Fin( 4 ) ∨ Inf( 5 )

)
The function SCCs of(G1) returns three maximal SCCs indicated in Fig-

ure 2(b), where only S1 and S2 are non-trivial. Let us assume that the foreach
loop on line 2 processes S1 first and calls is SCC empty(S1, ϕ2).

We can see that 4 does not occur in S1 and the condition is thus transformed
into ϕ3 = ϕ2[Fin( 4 )← t] on line 8.

ϕ3 =
(
Fin( 0 ) ∧ Inf( 1 )

)
∨
(
Fin( 2 ) ∧ Inf( 3 )

)
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(a) Graph G from Figure 1, with one maximal SCC S.
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(b) Decomposition of G1 = remove(S, { 6 }) into maximal SCCs.
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(c) G2 = remove(S1, { 0 }) = remove(S1, { 2 }) (d) G3 = remove(S2, { 0 })

Fig. 2. Intermediate automata encountered while checking the emptiness of G.

The two disjuncts of ϕ3 are checked independently in the foreach loop on line 15.
Assume that the loop first considers the left disjunct and then the right one.

1. The first disjunct Fin( 0 ) ∧ Inf( 1 ) is matched by line 16 and thus we call
is empty(G2, Inf( 1 ), where G2 is S1 without edges marked with 0 . You
can find G2 in Figure 2(c) which also reveals that G2 has no non-trivial
SCC. Therefore, is SCC empty(G2, Inf( 1 ) immediately returns >.

2. For the second disjunct Fin( 2 ) ∧ Inf( 3 ), the computation follows the same

Note: In the proceed-

ings of ATVA’19, the

first item contains sev-

eral typos. This ver-

sion is fixed.

scenario as S1 without edges marked with 2 is precisely the same graph G2.

Overall, is SCC empty(S1, ϕ2) returns > which corresponds to the fact that
S1 is empty with respect to ϕ2.

The foreach loop on line 2 now processes the second non-trivial SCC S2 and
calls is SCC empty(S2, ϕ2). In this case, lines 7–9 have no effect on ϕ2 as all
marks of the condition occur in S2, but none of them occurs on every edge. The
tests on lines 10–12 have no effect as well. Condition ϕ2 is a conjunction and thus
the foreach loop on line 15 treats it as a single disjunct. As ϕ2 does not match
the pattern on line 16, we reach line 19 and select some Fin(m) subformula of
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Table 2. Complexity of Algorithm 1 for various types of acceptance formulas. |V | and
|E| are the number of vertices and edges in the graph, n is the number of acceptance
marks, |ϕ| is the size of the formula, and f is the number of marks mi that appears as
Fin(mi) in ϕ. We assume |V | ≤ |E|, and that all marks between 0 and n− 1 occur in ϕ
(maybe multiple times, hence f ≤ n ≤ |ϕ|). We also show the subset of lines necessary
to handle the given acceptance (when line 15 is missing, it is assumed that ϕj = ϕ).

acceptance type complexity range of lines needed similar to

Büchi O (|E|) 1–8, 11–12 [22]
generalized Büchi O (n · |E|+ |ϕ| · |V |) 1–8, 11–12 [11, 37]
Fin-Less O (n · |E|+ |ϕ| · |V |) 1–8, 11–12
Rabin O (n · |ϕ| · |E|) 1–8, 11–17, 22
generalized Rabin O (n · |ϕ| · |E|) 1–8, 11–17, 22 [8, 4]
Streett O (f · (n · |E|+ |ϕ| · |V |)) 1–8, 11–12, 16–17, 22 [19, 17, 32]
parity O (f · (n · |E|+ |ϕ| · |V |)) 1–8, 11–12, 16–17, 22
hyper-Rabin O (|ϕ| · (n · |E|+ |ϕ| · |V |)) 1–8, 11–17, 22 [19]

Emerson-Lei O
(
2f · n · |ϕ| · |E|

)
1–8, 11–12, 19–22

ϕ2. Assume that we pick mark 0 to be removed from the condition. Hence, we
remove all edges marked with 0 from S2 and call is empty(G3, ϕ4), where G3

is S2 after the removal and ϕ4 stands for ϕ4 = ϕ2[Fin( 0 )← t].

ϕ4 =
(
Inf( 1 ) ∨

(
Fin( 2 ) ∧ Inf( 3 )

))
∧
(
Fin( 4 ) ∨ Inf( 5 )

)
The graph G3 can be seen in Figure 2(d). As G3 is a single maximal non-
trivial SCC, we can proceed to is SCC empty(G3, ϕ4). Lines 7–9 do not modify
the condition, but the test on line 12 finally succeeds because ϕ4[Inf( 1 ) ←
t, Inf( 3 )← t, Inf( 5 )← t] = t. Hence, G3 is not empty with respect to ϕ4. The
cycle satisfying ϕ4 can be easily seen in Figure 2(d). The value ⊥ is returned
and propagated all the way back to is empty(G,ϕ). This corresponds to the
fact that G is nonempty with respect to ϕ.

3.2 Correctness, Complexity, and Related Work

The following theorem summarizes the statements proved in Appendix A (ter-
mination and correctness) and Appendix B (complexity).

Theorem 1. Algorithm 1 always terminates, and it returns ⊥ if and only if
G contains a cycle satisfying ϕ. Furthermore, its time complexity satisfies the
upper bounds given in Table 2.

It should be noted that lines 9–10 are not necessary for correctness, and that
only the lines shown in Table 2 are needed to handle the listed acceptance types.
Restricting Algorithm 1 to the specified ranges of lines also give the algorithm
a behavior and complexity comparable to known algorithms for the subclass (as
indicated in the last column), even if the actual implementation differ.
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While the emptiness check for graphs with Emerson-Lei acceptance is known
to be NP-complete [19, Thm. 4.7],6our main goal was to write a simple algo-
rithm that covers the full spectrum of Emerson-Lei acceptance formulas while
retaining polynomial complexity for commonly used subclasses. Emerson and
Lei [19, Sec. 4.2–4.3] give an algorithm for the emptiness-check for Streett and
hyper-Rabin conditions that behaves exactly like ours on these classes. They
argue that at the cost of an extra O

(
2|ϕ|
)

factor, any acceptance conditions can
be converted into hyper-Rabin by first converting it to disjunctive normal form
(DNF), and then inserting some unsatisfiable Inf and Fin terms to match the
hyper-Rabin form. Our algorithm tries to avoid this blind DNF transformation
by first reducing the acceptance condition to the marks used in the SCC, and
by only “distributing” Fin marks (via the recursive calls of lines 20–21).

Better algorithms exist for some of these subclasses [5, Table 2]. However, the
proposed algorithm can be implemented to work on a graph G that is not known
explicitly, but on which forward successors can be computed on-the-fly, as usually
done in the model checking community. In this context, the SCC decomposition
algorithm may need to store all vertices of G, but the entire algorithm can be
run without storing the edges of G, saving a lot of memory. For instance one
faster emptiness check for Streett [9] requires the full graph to be available, with
knowledge of the predecessors of each state.

4 Application 1: Emptiness Check for ω-Automata

This section discuses the proposed algorithm in the context of ω-automata,
namely how it solves the emptiness check for transition-based Emerson-Lei au-
tomata (TELA) and several use cases for it. A TELA A over an alphabet Σ
can be seen as a marked graph where vertices are called states, one state ι is
the initial state, and each edge (called transition) carries in addition to marks
also a label ` ∈ Σ; transitions are thus quadruples of the form (s1, `,M, s2). The
language of A is the set L(A) ⊆ Σω of infinite words w such that there exists
an infinite sequence of consecutive transitions starting in ι whose composition
of labels is equal to w and the set of marks that appear infinitely often in the
sequence, satisfies the acceptance condition of the automaton.

Many algorithms for ω-automata need to decide whether L(A) is empty
or not. This can be reduced to locating a reachable cycle whose set of marks
satisfies the acceptance condition. To decide emptiness of L(A), we can safely
ignore transition labels, thus Algorithm 1 solves our problem.

The ω-automata with Emerson-Lei acceptance7 were introduced more than
30 years ago. However, tools supporting acceptance conditions more complex

6 In Appendix B.1 you can find a proof for a stronger statement relating satisfiability
of Boolean formulas and Emerson-Lei acceptance more closely.

7 The original definition was state-based, which means that marks were on states and
not transitions. As ω-automata with state-based acceptance can be easily converted
to transition-based acceptance without changing the transition structure, we focus
on transition-based ω-automata only.
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than generalized Büchi were rare in the past. In recent years, we could see a
blossoming of tools producing ω-automata with various acceptance conditions
(Streett, Rabin, parity, generalized Rabin, and even Emerson-Lei) [25, 27, 1, 29,
8, 26, 18, 20, 35, 21, 30]. The need for interaction between tools producing and
consuming ω-automata with various acceptance conditions has led to the intro-
duction of the Hanoi Omega-Automata Format [2], where acceptance conditions
are expressed using formulas as in Section 2. The existence of this format and
tools supporting this format had a boosting impact on the research community.

Spot [18] is one such tool: it supports TELA and aims to offer useful ω-
automata algorithms that work on any acceptance formula when possible.

4.1 Use Cases in Spot

TELA emptiness check is useful in Spot on several places. Here are four:

– Spot’s ltlcross tool is used to cross-compare the automata produced by
various tools translating LTL to TELA automata and to test these tools.
Initially, it only supported generalized Büchi automata [15, Sec. 3.2], but
was extended to support arbitrary acceptance formulas. To detect buggy
automata, ltlcross checks emptiness of automata products.8

– Deciding whether a TELA A is stutter-invariant also boils down to the
emptiness check of the intersection of some modified version of A with its
complement. Michaud and Duret-Lutz [33] describes this algorithm for gen-
eralized Büchi acceptance, but they apply (and are implemented) for TELA
with arbitrary acceptance formula.

– Deciding whether a TELA A describes an obligation property also requires
intersection of some modified version of A with its complement. Dax et al.
[13] describes this algorithm for state-based Büchi acceptance, but Spot’s
implementation works for TELA with arbitrary acceptance formula.

– Deciding whether an SCC is inherently weak (does not mix accepting and
rejecting cycles) can be done with two emptiness checks: one with the original
acceptance formula, and one with the complementary acceptance formula.
If one of these emptiness checks is successful, the SCC is inherently weak.

4.2 Previous and New Emptiness Check Implementations

Algorithm 1 has been implemented in Spot and released in version 2.8. The
implementation has the following additional optimizations:

– The enumeration of SCCs of G, on line 2 is done by a Dijsktra-based algo-
rithm [14] that also records the sets Moccur and Mevery for each SCC. As a
consequence, the tests of lines 10–12 can be moved into this SCC enumer-
ation algorithm, and that algorithm can be configured to stop as soon at
it find an SCC for which line 12 (or 10) would return ⊥. If one such SCC
is found, the loop of line 2-3 is not even executed, avoiding some useless
recursions into SCC using more complex conditions.

8 In fact, Figure 1 comes from a product of a Rabin and a Streett automaton.

https://spot.lrde.epita.fr/ltlcross.html
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– The remove function is not implemented as a function that returns a new
automaton. Instead, the SCC enumeration algorithm accepts a set of marks
that define which transitions should be disallowed in SCCs (this is imple-
mented by keeping the destination of marked transitions in a set of secondary
SCC roots, as in the Fstate of Bloemen et al. [4]). Doing so ensure that the
algorithm can run in place, without making any copy of the automaton.

– Finally, the top-most call to is empty first checks if the acceptance condition
has the form

∧
m∈M ′ Fin(m) ∧ ϕ′. If yes, M ′ is passed to the initial SCC

enumeration algorithm and the relevant transitions are disallowed from start.

Before Algorithm 1 was implemented, Spot only had emptiness-check algo-
rithms for generalized Büchi acceptance [12, 37], and those were easily extended
to deal with Fin-less acceptance. Basically, such an algorithm just has to enumer-
ate the SCCs of the automaton, and check whether the set of marks occurring
in some SCC satisfies the acceptance formula.

To perform emptiness checks of a TELA A using some Fin in its acceptance
formula, old versions of Spot would first convert A into some Fin-less TELA B,
and then check the emptiness of B. Spot employs four techniques for Fin-removal:

– The generic case is discussed by Bloemen et al. [4, Prop. 1] and Duret-Lutz
[16, Sec. 4.5]. Essentially, a disjunctive normal form (DNF) of the acceptance
condition ϕ is computed as an irredundant sum-of-product [34] for a BDD
representing ϕ (v1 encodes Inf(1) and v̄1 encodes Fin(1)). B is obtained by
cloning A once for each clause of the DNF. A clone for a clause ignores
transitions with marks appearing in the Fin terms of the clause.

– A special construction similar to the DBA-realizability algorithm of Krishnan
et al. [28] is used when the input is a Rabin automaton. It helps to avoid
cloning some SCCs of A for some clauses in the previous approach.

– A Streett automaton with k clauses and |V | states is transformed into a
generalized Büchi automaton with k marks and |V | · (2k + 1) states.

– Weak automata are converted into Büchi automata with identical graph.

One obvious disadvantage of going through this Fin-removal procedure is that
it completely generates the automaton B before it can be checked for emptiness.
This is usually wasting time in case the automaton is nonempty. It is also wast-
ing space compared to Algorithm 1 which can be implemented in place without
making any automaton copy (in Spot, the remove function is implemented by
recursively propagating a list of marks to filter in the SCC enumeration code).
Finally, the first step of the Fin-removal procedure in the general case is to rewrite
the acceptance formula into DNF, without any consideration for the actual au-
tomaton. Although this exponential cost is still present in Algorithm 1 (via the
recursive calls of lines 20–21), the algorithm tries its best to avoid this costs by
using information from the automaton to reduce the acceptance condition, by
detecting acceptance conditions that can be solved linearly (lines 15–16), and
in the worst case by using an exponential factor of O

(
2f
)

instead of O
(
2|ϕ|
)
.

(Recall that f is the number of distinct Fin marks in ϕ.)
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Table 3. Average runtime (in milliseconds) of the old and current implementations of
the generic emptiness checks of Spot, over 5 different datasets with n automata that
can be empty or non-empty. Since arithmetic means (amean) are biased towards larger
automata, geometric means (gmean) are also provided.

non-empty empty

old_is_empty is_empty old_is_empty is_empty

n amean gmean amean gmean n amean gmean amean gmean

random 44 1105.6 390.1 3.311 0.326 6 678.8 364.7 20.032 15.938
random-rep 43 254.2 186.3 2.980 0.306 7 91.1 57.1 18.732 16.595
Rabin 9 26.7 26.7 1.208 0.356 41 11.6 11.6 10.195 10.194
Streett 50 1.0 0.2 0.002 0.001 50 14.3 3.2 11.616 0.926
parity-like 50 1124.4 6.4 0.003 0.002 50 809.7 28.9 1.272 0.485

(all) 196 592.3 14.6 1.454 0.021 154 301.2 12.6 8.530 1.811

We report on a benchmark that shows how Algorithm 1 improved the run-
time of TELA emptiness checks in Spot compared to the previous approach with
the Fin-removal procedure.

We prepared 5 data sets containing a mix of empty and non-empty automata:
random Contains 100 000-state automata with Random acceptance conditions.

Each acceptance condition uses 20 acceptance marks, and those marks occur
exactly once (either as Fin or as Inf). These automata are generated using
Spot’s randaut tool configured to have a low density of transitions (to get
some empty automata) and with at least one successor per state.

random-rep Has similar automata, except that each of the 20 acceptance
marks may occur multiple times (possibly in both Fin and Inf terms).

Rabin Contains random 10 000-states Rabin automata with 32 marks used
without repetition.

Streett Contains Streett automata generated from random LTL formulas as
follows. First we consider only LTL formulas that are neither persistence
nor recurrence properties. For some LTL formula ψ and its negation, we use
ltl2dstar 0.5.4 [24] to generate two Streett automata Aψ, and A¬ψ. Then,
if the product P = Aψ⊗A¬ψ has more than 1000 states, we include P in the
dataset (this will be an empty automaton), and we also include the larger
of Aψ or A¬ψ (both are non-empty due to our selection of ψ).

parity-like Also contains generated automata of the form P = Aψ ⊗A¬ψ, but
now Aψ and A¬ψ are deterministic parity min-odd automata generated by
Spot’s ltl2tgba -P D command. In this case, the product has not exactly
parity acceptance formulae; it is rather a conjunction of parity acceptance.
However the subset of Algorithm 1 needed to handle parity or Streett can
also handle conjunction of parity. Again, for each product P , we also add the
larger of Aψ and A¬ψ to the dataset, to include some non-empty automata.

Table 3 shows the average runtime of the new version of the emptiness
check (called is_empty) compared to the previous implementation based on
Fin-removal (old_is_empty). Figure 3 shows a scatter plot of the same experi-
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Fig. 3. Runtime comparison (in milliseconds) of the old and current implementations
of the generic emptiness checks of Spot, over 5 different datasets.

ment. All measurements were done on an Intel Core i7-6820HQ CPU (2.70GHz)
running Linux, using a development version of Spot.9

We should start by commenting the results on empty Rabin automata. On
those automata, the amount of work needed in old_is_empty to create the
equivalent Fin-less automaton is similar to the amount of work performed by the
new is_empty. The minor improvement is due to the fact that is_empty creates
no new automaton. For empty Streett automata with k clauses, the Fin-removal
procedure has to generate a generalized Büchi automaton that is 2k time larger,
and old_is_empty pays this price. For empty automata with random and parity
acceptance, old_is_empty is also slower due to the fact that it has to convert
the acceptance formula to DNF upfront, and then process many disjuncts.

There is actually one case from the random-rep dataset where the conversion
to DNF saves the day for old_is_empty: that point is visible below the diagonal
on the right of Figure 3. This case correspond to an automaton whose random
acceptance condition is actually equivalent to false. Since our DNF conversion
works by encoding the acceptance formula into a BDD, equivalence to false or
true are often quickly detected. However outside of such random acceptance
condition, unsatisfiable conditions are very rarely seen.

For the non-empty cases, the impressive improvement are easily explained by
the fact that old_is_empty constructs an equivalent Fin-less automaton before
starting to actually check it for emptiness, while is_empty will abort as soon as
it finds an accepting SCC.

9 See https://adl.github.io/genem-exp/bench-app1/ to reproduce.

https://adl.github.io/genem-exp/bench-app1/
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5 Application 2: Probabilistic Model Checking

Now we turn to the second application of our algorithm, probabilistic model
checking (PMC) against ω-regular path properties. Here, we are given a model in-
corporating stochastic behavior, such as a discrete time Markov chain (DTMC),
or stochastic and non-deterministic behavior, such as a Markov decision process
(MDP). We are then interested in computing the maximal or minimal probabil-
ities of an ω-regular path property, typically given as an LTL formula. For an
overview of these topics, we refer to Baier and Katoen [3].

The standard approach for PMC against LTL [38] relies on the construction
of a deterministic automaton for the formula, a product construction with the
model, a subsequent analysis of so-called bottom strongly connected components
(BSCC) in DTMCs and maximal end-components (MEC) in MDPs, yielding
parts of the product model where the acceptance condition of the automaton
holds with probability 1 (for DTMCs) or where the non-determinism in the model
can be resolved such that it holds with probability 1 (for MDPs). Subsequently,
a standard PMC reachability computation yields the desired probabilities. In the
case of DTMCs, determining whether a BSCC, i.e., an SCC with no outgoing
edges, satisfies an Emerson-Lei acceptance condition with probability 1 is easily
decidable in polynomial time(Appendix C).

For MDP, the step of finding end components that almost surely accept
an Emerson-Lei acceptance condition is more involved. Here, we are in a sit-
uation similar to finding an accepting cycle, with end-components (strongly
connected subgraphs that are closed under probabilistic branching) taking the
role of SCCs. The computation of maximal end-components can be done in

O
(
|E| ·min (

√
|E|, |V |)

)
if represented explicitly [6, 7] and O

(
|V | ·

√
|E|
)

if

represented symbolically [10]. We adapt Algorithm 1 by dealing with the graph
of the product-MDP, replacing the SCC decomposition in line 2 with the com-
putation of MECs.

We have implemented this adapted algorithm as an extension to PRISM 4.4
and report here on the benchmark. This extension will be integrated in an official
future PRISM version.

As PRISM itself generates deterministic Rabin automata from LTL formu-
las, we rely on Spot 2.7.4 for producing deterministic Emerson-Lei automata
(columns “Emerson-Lei” in Table 4). We use state-based acceptance as PRISM
does not support transition-based acceptance. For comparison, we consider the
standard implementations in PRISM using the internal generation of determinis-
tic Rabin automata via the algorithms of ltl2dstar [24] (columns “Rabin”) and
using deterministic generalized Rabin automata obtained from Rabinizer 4 [30]
(columns “generalized Rabin”). The computation was carried out with the ex-
plicit engine of PRISM on a computer with two Intel E5-2680 8-core CPUs at
2.70 GHz with 384GB of RAM running Linux and a time-out of 30 min and
10GB memory limit.10

10 See https://adl.github.io/genem-exp/bench-app2/ to reproduce.

https://adl.github.io/genem-exp/bench-app2/
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Table 4. Model checking times for the mutual exclusion protocol with four participants.
The model contains 27600 states. tEL

MEC denotes the time for the MEC analysis using
Algorithm 1, whereas tRabin

MEC denotes the time for the MEC analysis using the standard
(generalized) Rabin algorithm as implemented in PRISM. n stands for the number of
acceptance marks occurring in the deterministic automaton. All times are measured in
seconds and ‘−’ means time-out.

Emerson-Lei generalized Rabin Rabin

Property tEL
MEC n tRabin

MEC tEL
MEC n tRabin

MEC tEL
MEC n

Prmin(ψ3) 109.8 4 130.7 121.1 4 − − 14
Prmax(ψ4) 0.4 3 234.3 0.7 6 − 585.9 8
Prmax(ψ6) 0.4 3 100.1 0.6 5 − 855.1 6
Prmin(ψ8) 0.6 4 251.9 119.0 6 1.6 0.6 6
Prmax(ψ9) − 4 − − 12 − − −
Prmin(ψ10) 107.0 6 355.3 127.3 10 54.9 9.6 6

As the benchmark model and LTL formulas, we focus here on the mutual
exclusion protocol [36], which is provided as an MDP by the PRISM bench-
mark suite [31]. The LTL formulas we check are described by Hahn et al. [23,
Table 2] and are listed in Appendix C.1. We removed 2 formulas equivalent to t.

Table 4 shows the running times of the MEC analysis. Algorithm 1 shows a
good behavior in general. If we focus on the two first columns Emerson-Lei and
Generalized Rabin, the time used in our Emerson-Lei check is always smaller
than time in the original generalized Rabin check. In particular line 12 of Al-
gorithm 1 turns out to be beneficial, as it allows determine early if the MEC
is accepting. Also, the columns n show that the number of acceptance marks is
typically small (in this benchmark always 14 at most). In the last line of Ta-
ble 4, tEL

MEC is much smaller for the Rabin automaton than for the Emerson-Lei
automaton due to the more complicated acceptance condition of the latter.

6 Conclusion

We presented a simple and efficient algorithm deciding emptiness of automata
over infinite words with transition-based Emerson-Lei acceptance condition. The
algorithm subsumes several known algorithms for automata classes with simpler
acceptance conditions and keeps polynomial time complexity for these automata
classes. We have also suggested an application of the algorithm in probabilistic
model checking of MDPs. The algorithm has been implemented in Spot and
PRISM and experimental evaluation shows improved performance of these tools.

The algorithm can be further improved in several directions. In particular,
the running time of the current algorithm is influenced by some nondeterministic
choices (lines 2, 15, and 19). We plan to replace these choices by heuristics.
Another research goal is a parallel version of the algorithm.
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26. Z. Komárková and J. Křet́ınský. Rabinizer 3: Safraless translation of LTL to small
deterministic automata. In ATVA’14, LNCS 8837, pp. 235–241. Springer, 2014.
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deterministic Büchi automata. In ISAAC’94, LNCS 834, pp. 378–386. Springer,
1994.
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The following appendices are not part of the published version.

A Termination and Correctness of Algorithm 1

This section proves that Algorithm 1 always terminates and that it provides correct
results.

A.1 Termination

The function is SCC empty(S, ϕ) is recursive. However, any recursive call (either di-
rect on line 21 or indirect via call to is empty on lines 17 and 20) uses a condition
with strictly less subformulas of the form Fin(m) compared to the original argument
ϕ. Hence, the recursion depth is bounded by the number of Fin(m) subformulas in ϕ.
As both foreach loops of the algorithm have always only a finite number of iterations
and external functions SCCs of, marks of, and remove can be clearly implemented
as terminating, the algorithm terminates.

A.2 Correctness

We first prove correctness of the function is SCC empty(S, ϕ).

Theorem 2. For any non-trivial SCC S and condition ϕ it holds that S contains a
cycle satisfying ϕ if and only if is SCC empty(S, ϕ) returns ⊥.

Proof. We prove the theorem by induction on the number of Fin(m) subformulas in ϕ.
Before that, we make a general comment regarding the lines 7–9. These lines simplify
the condition by replacing subformulas that trivially cannot by satisfied by any cycle
in S by ⊥ and all subformulas that are trivially satisfied by each cycle in S by >. The
SCC S is empty with respect to the simplified formula if and only is it is empty with
respect to the formula before simplification.

Base case. First we consider the case where is SCC empty(S, ϕ) is called with a
Fin-less condition ϕ. The algorithm simplifies ϕ. If the simplified condition is t, the
algorithm correctly returns ⊥ as S is a non-trivial SCC and thus it contains some cycle
and each cycle satisfies t. If the condition is f, the algorithm correctly returns > as
this condition cannot be satisfied any cycle. If the simplified condition is neither t nor
f, it has to be a Fin-less condition build over subformulas of the form Inf(m) where m
ranges over Moccur (other Inf(m) subformulas have been replaced by simplification).
Line 12 replaces all these subformulas by t and because ϕ contains no negation, the
condition reduces to t and the algorithm immediately returns ⊥. This is correct as S
contains a cycle that visits all its edges and thus satisfies all Inf(m) subformulas and
therefore also the whole condition.

Inductive step. Now we assume that is SCC empty(S, ϕ) is called with a condition
that contains at least one subformula of the form Fin(m) and that the statement holds
for all conditions with less subformulas of this form. The algorithm simplifies the condi-
tion and check whether it is t or f. If this is the case, the algorithm returns the correct
results due to the same arguments as in the base case. After the simplification, the
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Table 5. Complexity of Algorithm 1 for various acceptance formulas. |V | and |E| are
the number of vertices and edges in the graph, n is the number of acceptance marks,
|ϕ| is the size of the formula, and f is the number of marks mi that appears as Fin(mi)
in ϕ. We also show the subset of lines necessary to handle the given acceptance (when
line 15 is missing, it is assumed that ϕj = ϕ).

X acceptance type complexity range of lines needed

Büchi O (|E|) 1–8, 11–12 (prop. 1)
generalized Büchi O (n · |E|+ |ϕ| · |V |) 1–8, 11–12 (prop. 1)

FL Fin-Less O (n · |E|+ |ϕ| · |V |) 1–8, 11–12 (prop. 1)
Rabin O (n · |ϕ| · |E|) 1–8, 11–17, 22 (prop. 2)

GR generalized Rabin O (n · |ϕ| · |E|) 1–8, 11–17, 22 (prop. 2)
S Streett O (f · (n · |E|+ |ϕ| · |V |)) 1–8, 11–12, 16–17, 22 (prop. 3)
P parity O (f · (n · |E|+ |ϕ| · |V |)) 1–8, 11–12, 16–17, 22 (prop. 4)
HR hyper-Rabin O (|ϕ| · (n · |E|+ |ϕ| · |V |)) 1–8, 11–17, 22 (prop. 5)

EL Emerson-Lei O
(
2f · n · |ϕ| · |E|

)
1–8, 11–12, 19–22 (prop. 6)

condition contains only subformulas with marks that occur in the SCC S. Obviously,
S contains a cycle containing all edges and thus satisfying all subformulas of the form
Inf(m). If satisfaction of these subformulas implies satisfaction of the whole condition,
Line 12 correctly returns ⊥ as the cycle satisfies ϕ. In the opposite case, each disjunct
of the condition (now seen as a disjunction) has to contain a subformula of the form
Fin(m). A cycle satisfies the condition if and only if it satisfies at least one of its dis-
juncts. Hence, the foreach cycle starting at line 15 checks all the disjuncts one by one
and reduces the number of Fin(m) subformulas in the disjunct.

A disjuncts of the form ϕj =
∧

m∈M′ Fin(m) ∧ ϕ′ can be satisfied only by a cycle
containing no edge marked with any m ∈M ′. Hence, we remove these edges and look
for satisfaction of ϕ′. We return ⊥ if such a cycle is found. Correctness of the answer
follows from the inductive hypothesis and the fact that each cycle of a graph is included
in some non-trivial SCC of the graph.

If a disjunct ϕj does not have this form, we simply select a Fin(m) subformula of
the disjunct. Each cycle satisfying the disjunct either satisfies Fin(m) or not. A cycle
satisfying Fin(m) contains no edges marked with m. Hence, we remove these edges
and look for a cycle satisfying ϕj [Fin(m) ← t]). If such a cycle is found, we return ⊥
and the answer is correct due to the induction hypothesis and the same fact as in the
previous paragraph. Otherwise, we look for a cycle satisfying ϕj [Fin(m)← f]). Again,
we return ⊥ if such a cycle is found and correctness of this answer follows directly from
the induction hypothesis.

If no cycle satisfying any disjunct is found, we correctly return >. ut

Correctness of Algorithm 1 is then a simple corollary of Theorem 2.

Corollary 1. For any graph G and condition ϕ it holds that G contains a cycle satis-
fying ϕ if and only if is empty(G,ϕ) returns ⊥.

B Complexity of Algorithm 1

Let G = (V,E) ∈ G be a marked graph. In this section, we consider the time complexity
of running Algorithm 1 on G with different kinds of acceptance formulas ϕ over n



Generic Emptiness Check for Fun and Profit 19

different acceptance marks. The results from Table 2 are summarized again in Table 5,
this time with some extra columns related to the upcoming profs.

We denote by |ϕ| the size of the acceptance formulas (number of terms and op-
erators), and assume, without loss of generality, that n ≤ |ϕ| and that each vertex
has at least one successor (implying |V | ≤ |E|). Finally we denote by f the number
of marks mi that appears as Fin(mi) terms in ϕ: this f obviously decreases with each
recursive call. We assume that all marks between 0 and n−1 occur in ϕ, so this implies
f ≤ n ≤ |ϕ|.

Let TX(V,E, ϕ, n, f) (resp. T ′X(V,E, ϕ, n, f)) denote the time complexity of is -
empty (resp. is SCC empty) when formula ϕ belongs to the acceptance type abbre-
viated by X in the first column of Table 5.

Enumerating the non-trivial SCCs of G on line 2 can be done in O (|V |+ |E|) time
(or simply O (|E|) with our assumptions), using well known graph algorithms [14, e.g.].
The maximum number of non-trivial SCCs is |V |, if each SCC is a single state with
self-loops. In the following, we use VS and ES for the sets of vertices and edges in some
SCC S. We always have:

TX(V,E, ϕ, n, f) = O (|E|) +
∑
S

T ′X(VS , ES , ϕ, n, f) (2)

It is implicit that this sum over S covers the graph (V,E) or less (since trivial SCCs
are ignored), and therefore

∑
S |ES | ≤ |E|.

We assume that the marks on edges of the graph and the sets Moccur and Mevery

on line 7 are represented as bit sets, so that union and intersections of these sets can
be done in O (n). Computing the sets Moccur and Mevery can be done with a DFS
to explore all reachable edges during which we update Moccur and Mevery, for a total
cost of O (n · |ES |). Rewriting the acceptance formula ϕ on lines 8–9, 12, and 20–21 by
applying the trivial identities of Equation (1) can be done in O (|ϕ|). As a consequence,
lines 7–12 can be executed in O (n · |ES |+ |ϕ|).11

If ϕ is a Fin-less formula, Algorithm 1 will never go past line 12, because the
acceptance formula is turned either into f by line 8, or to t by lines 9 or 12.

T ′FL(VS , ES , ϕ, n, f) = O (n · |ES |+ |ϕ|)

TFL(V,E, ϕ, n, f) = O (|E|) +
∑
S

O (n · |ES |+ |ϕ|) from (2)

= O (|E|) +O (n · |E|+ |ϕ| · |V |) = O (n · |E|+ |ϕ| · |V |)

Above we use the fact that
∑

S |ES | ≤ |E| and the number of different SCC S is
bounded by |V |. This gives us the following result.

Proposition 1. When ϕ is a Fin-less acceptance formula, Algorithm 1 runs in TFL(V,E, ϕ, n, 0) =
O (n · |E|+ |ϕ| · |V |) = O (|ϕ| · |E|) time.

Proposition 1 shows complexity terms that we will encounter in other acceptance
classes as well: O (n.|E|) is the cost of running marks of over the edges of multiple
SCCs that may cover the entire automaton, and O (|ϕ|.|V |) comes from the evaluation
of the acceptance formula in each SCC (the number of SCCs is bounded by |V |).

11 Lines 9–10 are not necessary for the correctness of the algorithm: line 10 is covered
by line 12, and line 10 is just an optimization that does not change the complexity.



20 C. Baier, F. Blahoudek, A. Duret-Lutz, J. Klein, D. Müller, and J. Strejček

Consider now ϕ to be a generalized Rabin acceptance formula with n marks and
O (|ϕ|) disjuncts.12 We may reach line 15 and iterate over each disjunct ϕj of the
form Fin(mi) ∧

∧
j∈Ji

Inf(mj). Such ϕj necessarily satisfies the condition of line 16

and we execute the recursive call on line 17. The formula ϕ′ from line 16 is a Fin-
less acceptance formula of size smaller than ϕj . Finally, the remove operation can be
executed in O (n · |ES |). We therefore have:

T ′GR(VS , ES , ϕ, n, f) ≤ O (n·|ES |+ |ϕ|) +
∑
ϕj

(
O (n·|ES |) + TFL(VS , ES , ϕj , n, 0)

)
≤ O (n·|ES |+ |ϕ|) +

∑
ϕj

O (n·|ES |+ |ϕj |·|VS |)

We remove the sum using the fact that the number of disjuncts ϕj is bounded by |ϕ|,
and so is the sum of their sizes.

T ′GR(VS , ES , ϕ, n, f) ≤ O (n·|ϕ|·|ES |+ |ϕ|·|VS |) = O (n·|ϕ|·|ES |)

Plugging this in (2) we get the following result.

Proposition 2. Algorithm 1 runs in TGR(V,E, ϕ, n, f) = O (n · |ϕ| · |E|) time when ϕ
is a generalized Rabin acceptance formula.

The case of Streett acceptance is more subtle. Let ϕ be a conjunctions of clauses of
the form Inf(m2i)∨Fin(m2i+1). For an SCC S, if all clauses are satisfied, either because
Fin(2i+ 1) is replaced by t on line 8 or because Inf(2i) is replaced by t on line 12, then
the algorithm will not go past line 12.

The worst case occurs when at least one clause is not satisfied. For such a clause,
we have necessarily m2i missing and Inf(m2i) to be replaced by f on line 8, leaving
only Fin(m2i+1). This means that after the check of line 12 fails, it is guaranteed that
one of the conjuncts of ϕ has been reduced to Fin(. . .). The condition on line 16 is
therefore successful and we execute line 17. Note that ϕ is a conjunction, so the loop
on line 15 does only one iteration with ϕj = ϕ. Furthermore, line 12 does not modify
ϕ. Therefore, the clauses that were satisfied by S because of their Inf(m2i) term will
be still present in ϕ′ and some of them may become unsatisfied after the removal of
some edges. Therefore, even if there is at most one recursive call to is empty per call
to is SCC empty, the depth of the recursion is bounded by the the f different Fin(m)
sets that can occur in the Streett acceptance. We have:

T ′S(VS , ES , ϕ, n, f) ≤ O (n · |ES |+ |ϕ|) + TS(VS , ES , ϕ, n, f − 1)
)

Using (2) we get:

TS(V,E, ϕ, n, f) ≤ O (n · |E|+ |ϕ| · |V |) +
∑
S

TS(VS , ES , ϕ, n, f − 1)
)

and iterating this definition13 we have:

TS(V,E, ϕ, n, f) ≤ f · O (n · |E|+ |ϕ| · |V |)

12 Even if ϕ uses f Fin marks, our definition of Rabin and generalized Rabin (in Table 1)
allows acceptance marks to be reused multiple times in ϕ, allowing formulas with
more than f clauses.

13 Nested sums that appear in the process still cover the graph at most once.
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Proposition 3. When ϕ is a Streett acceptance formula, Algorithm 1 runs in TS(V,E, ϕ, n, f) =
O (f · (n · |E|+ |ϕ| · |V |)) = O (f · |ϕ| · |E|) time.

Notice how the upper-bound for Streett acceptance is f time that of Fin-less ac-
ceptance. This is because in the worst case a Streett emptiness check will revisit the
entire graph f times.

The algorithm handles parity conditions in a way that is similar to the way it deals
with Streett acceptance. Assume ϕ = Inf(m0)∨ (Fin(m1)∧ (Inf(m2)∨ (Fin(m3)∧ . . .))).
If ϕ is not found satisfied by Moccur (as checked on lines 8 and 12), it must be that he
lowest mark present in the SCC has an odd index. So if the algorithm goes past line
12, the rewritten ϕ has the shape of Fin(m2i+1)∧ (. . .). As a conjunction, it causes only
one iteration of loop of line 15, and then one recursive call on line 17, where is it sure
that at least one Fin term has been removed.

Proposition 4. When ϕ is a parity acceptance formula, Algorithm 1 runs in TP(V,E, ϕ, n, f) =
O (f · (n · |E|+ |ϕ| · |V |)) = O (f · |ϕ| · |E|) time.

Although it can be confusing, hyper-Rabin formulas [5] are actually disjunctions
of Streett formulas. They are easily broken down into Streett formulas by the foreach
loop, and if we reach the loop, it will be the case that each ϕj originally comes from a
Streett condition that was not satisfied by Moccur, so ϕj has a Fin term as a top-level
conjunct. We therefore execute line 17 with a cost of TS(VS , ES , ϕj , n, f

′ − 1) where f ′

is the number of Fin marks in ϕj . Clearly f ′ ≤ |ϕj |, so we can round up the previous
complexity to TS(VS , ES , ϕj , n, |ϕ|) for simplicity.

T ′HR(VS , ES , ϕ, n, f) ≤ O (n·|ES |+|ϕ|) +
∑
ϕj

(
O (n·|ES |) +TS(VS , ES , ϕj , n, |ϕj |)

)
≤ O (n · |ϕ| · |ES |) +

∑
ϕj

O (|ϕj | · (n · |ES |+ |ϕj | · |VS |))

≤ O (n · |ϕ| · |ES |) +O (|ϕ| · (n · |ES |+ |ϕ| · |VS |)
≤ O (|ϕ| · (n · |ES |+ |ϕ| · |VS |))

Combining the above with (2) we obtain the following result.

Proposition 5. When ϕ is an hyper-Rabin acceptance formula, Algorithm 1 runs in
THR(V,E, ϕ, n, f) = O (|ϕ| · (n · |E|+ |ϕ| · |V |)) time.

So far in this section, we have not discussed cases where lines 19–21 are used.
However, we have already encountered such a case in Section 3.1 when processing ϕ2.
Notice that if we remove lines 15–18 (assuming ϕj = ϕ in lines 19–21), the algorithm
is still correct. The binary tree of recursive calls on lines 20 and 21 will eventually tests
all possible valuations of all the Fin(mi). At some point, each branch of the recursive
tree will reach an acceptance formula that is Fin-less and the recursion will necessarily
stop. The maximum depth of this recursion is the number of marks f that are used in
Fin terms, so the largest tree we can build has 2f leaves. If we keep the foreach loop
as in the proposed algorithms, but still assume that the condition on line 16 always



22 C. Baier, F. Blahoudek, A. Duret-Lutz, J. Klein, D. Müller, and J. Strejček

fails, we have the following:

T ′EL(VS , ES , ϕ, n, f) ≤ O (n · |ES |+ |ϕ|) +
∑
ϕj

(
O (n · |ES |)
+ TEL(VS , ES , ϕj , n, f − 1)

+ T ′EL(VS , ES , ϕj , n, f − 1)
)

≤ O (ϕ·n·|ES |) +
∑
ϕj

(
T ′EL(VS , ES , ϕj , n, f−1) +

∑
S′

T ′EL(VS′ , ES′ , ϕj , n, f−1)

)

It can be shown by induction that T ′EL(VS , ES , ϕ, n, f) = O
(
2f · n · |ϕ| · |ES |

)
using the

above inequality. Combined with (2) we get the following result.

Proposition 6. Algorithm 1 runs in TEL(V,E, ϕ, n, f) = O
(
2f · n · |ϕ| · |E|

)
time when

ϕ is an Emerson-Lei acceptance formula.

It should be noted that if the optional foreach loop is removed, the complexity
in the EL case is reduced to O

(
2f · (n · |E|+ |ϕ| · |V |)

)
= O

(
2f · |ϕ| · |E|

)
, which is

2f times the complexity of the Fin-less case. With the foreach loop, the unsimplified
complexity for the EL case is O

(
2f · (n · |ϕ| · |E|+ |ϕ| · |V |

)
.The extra |ϕ| factor can

be easily seen if the formula ϕ contains Θ(|ϕ|) repetitions of the same ϕj . There is
certainly some room for improvement here. On the other hand, without the foreach
loop, the generalized Rabin acceptance formulas would be treated as the EL case.

B.1 NP-Hardness and Membership

The previous propositions explain the runtime complexity of Algorithm 1. Now we
turn to prove that deciding whether a marked graph has an accepting cycle for an
acceptance formula ϕ is NP-complete, by proving an stronger statement, namely that
if deciding satisfiability for a class of Boolean formulas is NP-complete, then deciding
whether a marked graph contains an accepting cycle for an acceptance condition in the
corresponding class is NP-complete as well.

Lemma 1. Let C − SAT be a class of Boolean formulas for which the satisfiability
problem is NP-complete. Then, deciding whether a marked graph G = (V,E) contains
a cycle satisfying a given condition ϕ in C − SAT is NP-complete.

Proof. For proving the hardness we provide a polynomial reduction from C −SAT. Let
ϕ′ be a C-formula with atomic propositions X = {x1, . . . , xn}. We generate a marked
graph G = ({v}, V ) with a marked edge (v, {i}, v) ∈ V for every atomic proposition xi
in ϕ.

For further considerations, we identify an edge by its marks, i.e., an edge subset Y ⊆
{n}×X×{n} can be identified by the corresponding marks {k ∈ N0 : (v, {k}, v) ∈ Y }.
The acceptance condition ϕ is obtained from ϕ′ by replacing every occurrence of xi
with Inf(i) and every occurrence of ¬xi with Fin(i).

Obviously, an edge subset Y = {i0, . . . , ik} (seen as a set of marks) satisfies ϕ if
and only if Y ′ = {xi0 , . . . , xik} |= ϕ′. Every model Y ′ = {xi0 , . . . , xik} of ϕ can be
transformed to a corresponding cycle in G by visiting Y = {i0, . . . , ik} infinitely often,
since there is only one node with a self-loop marked i for every atomic proposition
xi ∈ X. Analogously, every subset of edges Y = {i0, . . . , ik} satisfying the acceptance
condition ϕ can be easily translated to a model Y ′ = {xi0 , . . . , xik} for ϕ′. Therefore,
G contains an accepting cycle for ϕ if and only if ϕ′ is satisfiable.



Generic Emptiness Check for Fun and Profit 23

To prove that finding an accepting cycle belongs to NP, we assume that we are given
a marked graph G and an acceptance condition ϕ. One can choose non-deterministically
a cycle, and check whether the set of markings in the cycle satisfies ϕ. ut

Unless P 6= NP, the converse direction does not necessarily hold: Deciding the
satisfiability for 2CNF, i.e., conjunctive normal form where every clause contains at
most two literals, can be done in polynomial time. For Emerson-Lei acceptance, 2CNF
is NP-complete, as formulas of the form

∧n
i=0

(
Fin(m2i) ∨ Fin(m2i+1)

)
yield already

NP-completeness [19, Proof of Thm. 4.7].

C Probabilistic Model Checking

For a clear and easy presentation we start with Markov chains and progress afterwards
to Markov decision processes.

Markov chains are an operational model for systems that exhibit solely probabilistic
choices.

Definition 1. A Markov chain is a tuple M = (S, P, ι,AP, `), where

– S is a finite set of states,
– P : S × S → [0, 1] is the transition probability function satisfying:∑

s′∈S
P (s, s′) ∈ {0, 1} for all s ∈ S,

– ι : S → [0, 1] is the initial distribution satisfying
∑

s∈S ι(s) = 1,

– ` : S → 2AP is a labeling function.

The last two components, AP and `, serve to formalize properties of paths in M.
Paths in M are finite or infinite sequences π = s0 s1 s2 . . . starting in the initial state
s0 that are built by consecutive steps, i.e., P (si, si+1) > 0 for all i. The trace of π is
the word over the alphabet Σ = 2AP that arises by taking the projections to the state
labels, i.e., trace(π) = `(s0) `(s1) `(s2) . . .. For an ω-regular language L, we denote the
probability, that the Markov chain M generates a trace contained in L by PrM(L).
For further detail on the probability measure generated we refer to Baier and Katoen
[3]. For Markov chains the analogous problem to (non)-emptiness is the positiveness
problem, i.e., deciding PrM(ϕ) > 0 for a Markov chainM and an acceptance condition
ϕ.

In contrast to automata, a Markov chain cannot visit a connected component that
is a strict subset of a SCC from some point on exclusively with probability 1. Instead, a
Markov chain will enter a reachable bottom SCC (BSCC), i.e., a SCC without outgoing
transitions, and visit there every state in the BSCC infinitely often with probability
1. Thus, the existence of a reachable BSCC accepting ϕ is equivalent to positiveness.
Deciding whether a bottom SCC with state (or transition) set B is accepting for ϕ can
be done by checking whether B, seen as an interpretation, is a model for ϕ. So, overall
for Markov chains, deciding positivity for a generic acceptance condition ϕ can be done
in polynomial time.

Proposition 7. Deciding PrM(ϕ) > 0 for a Markov chain M and an Emerson-Lei
acceptance ϕ can be done in polynomial time.

Markov decision processes combine probabilities with nondeterminism:
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Definition 2. A Markov decision process is a tuple M = (S,Act, P, ι,AP, `), where

– S is a finite set of states,
– Act is a finite set of actions,
– P : S ×Act × S → [0, 1] is the transition probability function satisfying:∑

s′∈S
P (s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act,

– ι : S → [0, 1] is the initial distribution satisfying
∑

s∈S ι(s) = 1, and

– ` : S → 2AP is a labeling function.

Since an MDP contains nondeterminism, we need to resolve the nondetermin-
ism to obtain probabilities. Therefore schedulers are introduced to choose the cur-
rent nondeterministic action in dependence of the history. Formally, it is a function
s : (S×Act)∗×S → Act . With a fixed scheduler, an MDP behaves purely probabilistic
and so we can reason about probabilities of path events. For an ω-regular language L
and a scheduler s, we denote the probability of L under s by PrM,s(L). Analogously, we
write PrM,s(L) for the probability of an MDPM to satisfy an acceptance condition ϕ.
In practice, one looks for the maximal probability PrM,max(L) or minimal probability
PrM,min(L), yielding a maximal or minimal scheduler.

The analog of an accepting cycle in an automaton is an accepting end-component
in an MDP. An end-component is an SCC closed under probabilistic choice. Similar to
an SCC in an automaton, that can contain several sub cycles, an end-component can
contain several sub end-components. This also results in NP-completeness for checking
whether an end-component satisfies an accepting condition.

C.1 Benchmark: Mutual Exclusion Protocol

Section 5 uses the following LTL formulas, published by Hahn et al. [23, Tab. 2].

ψ3 = GFa ∧ GFb ∧ GFc ∧ GFd
ψ4 = (GFa′ ∨ FG¬b′) ∧ (GFb′ ∨ FG¬c′)
ψ6 = (GFa′ ∨ FG¬b′) ∧ (GFb′ ∨ FG¬c′) ∧ (GFc′ ∨ FG¬a′)
ψ8 = (GF¬a ∨ GFa′ ∨ FGa′′) ∧ GF¬a′ ∧ GFa′′

ψ9 = (G¬a ∨ G¬b ∨ G¬c) ∧ (FG¬a′′ ∨ GFb′′ ∨ GFc′′) ∧ (FG¬b′′ ∨ GFa′′ ∨ GFc′′)
ψ10 = FG¬a′ ∨ FG¬b′ ∨ GFc′ ∨ (FG¬a ∧ GFb ∧ GFc)

The atomic propositions have the following meaning:

a: p1 = 10 b: p2 = 10 c: p3 = 10 d: p4 = 10
a′: p1 = 0 b′: p2 = 0 c′: p3 = 0
a′′: p1 = 1 b′′: p2 = 1 c′′: p3 = 1
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