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Abstract. In the field of education, the automatic assessment of
student profiles has become a crucial objective, driven by the rapid
expansion of online tutoring systems and computerized adaptive test-
ing. These technologies aim to democratize education and enhance
student assessment by providing detailed insights into student pro-
files, which are essential for accurately predicting the outcomes of
exercises, such as solving various types of mathematical equations.
We aim to develop a model capable of predicting responses to a large
set of questions within the Multi-Target Prediction framework while
ensuring that this model is explainable, allowing us to quantify stu-
dent performance in specific knowledge areas. Existing cognitive di-
agnosis algorithms often struggle to meet the dual requirement of ac-
curately predicting exercise outcomes and maintaining interpretabil-
ity. To address this challenge, we propose an alternative to the com-
plexity of current advanced machine learning models. Instead, we in-
troduce a direct yet highly effective Bayesian Personalized Ranking
algorithm, called CD-BPR, which incorporates interpretability as a
core learning objective. Extensive experiments demonstrate that CD-
BPR not only performs better in predicting exercise outcomes but
also provides superior interpretability of estimated student profiles,
thus fulfilling both key requirements.

1 Introduction

In computer-aided education, the accurate assessment of student pro-
ficiency is a main purpose, particularly with the advent of online
tutoring systems and computerized adaptive testing. These techno-
logical advancements aim to democratize access to education and
enhance the assessment process, necessitating a deep understanding
of individual student capabilities to predict their performance on var-
ious educational tasks. Cognitive Diagnosis Models (CDMs) play a
pivotal role in this landscape by providing estimates of student pro-
ficiency levels. CDMs are statistical frameworks used to assess and
diagnose individuals’ strengths and weaknesses in specific cognitive
skills or knowledge domains. Unlike traditional testing models that
primarily focus on providing a single global score, CDMs aim to of-
fer a detailed profile of an individual’s mastery of various attributes
or skills. The motivation behind developing CDMs stems from the
need for more nuanced diagnostic information that can inform tar-
geted interventions and personalized instruction. By identifying spe-
cific areas where an individual may struggle or excel, educators, psy-
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chologists, and other professionals can tailor their approaches to bet-
ter support learning and development.

Recent advancements in CDMs have significantly enhanced our
understanding of individual cognitive processes across various do-
mains, including psychiatric and psychological [13, 11, 4], and ed-
ucational assessment [19, 14, 15]. However, existing models often
face challenges in simultaneously achieving high predictive accu-
racy in such a multi-target prediction framework [16] and maintain-
ing interpretability. While models like NCDM [17] harness neural
networks to enhance the interaction between users and questions,
they encounter challenges in discerning the cognitive processes that
underlie individuals’ responses to test items. This opacity contrasts
sharply with the requirement for interpretability in educational con-
texts, where comprehending specific cognitive traits and processes is
essential for improving the learning process and capturing strengths
and weaknesses of learners. Consequently, there is an increasing ac-
knowledgment of the necessity for interpretable models that shed
light on the nuanced cognitive dimensions implicated in education,
surpassing the predictions provided by current state-of-the-art meth-
ods. On the other hand, the attempt of the IRR [14] method to im-
prove interpretability do not achieves fully satisfying results, but also
suffer from a backlash on prediction performances, and come at high
computational cost.

In response to this challenge, this article introduces CD-BPR, a
Bayesian Personalized Ranking model designed specifically for cog-
nitive diagnosis tasks. Traditional models often fall short by being
either overly simplistic and underperforming or overly complex with-
out achieving satisfactory results. In contrast, CD-BPR strikes a bal-
ance by embracing simplicity while effectively capturing the nuances
of student profiles. By leveraging a Bayesian framework, CD-BPR
not only achieves superior predictive performance but also enhances
the interpretability of estimated student proficiency by explicitly in-
corporating the interpretability as a learning objective in a more di-
rect way than what has been done in IRR. CD-BPR learns a repre-
sentative vector to assess users’ skills across multiple dimensions.
This vector predicts user performance, ranks potential answers, and
provides a self-explanatory skill profile. By adhering to the mono-
tonicity assumption ensuring that the likelihood of correct responses
consistently increases with the user’s proficiency in the relevant di-
mension, CD-BPR enables personalized learning and targeted skill
enhancement.

Our contributions are summarized as follows: (1) We define a
novel, simple yet accurate model built upon the Bayesian Person-



alized Ranking (BPR) framework, incorporating interpretability in a
direct way to identify influential factors in educational assessment.
Unlike traditional black-box models, our approach facilitates trans-
parent decision-making, providing insights into the factors driving
each prediction. (2) We report an extensive empirical study con-
ducted on several Education datasets against numerous state-of-the-
art models. Results indicate that CD-BPR outperforms other mod-
els on both classification metrics and interpretability. (3) For repro-
ducibility and open science purpose, the source code and the experi-
ments are made available on a public repository1.

The remainder of the paper is structured as follows: Section 2 pro-
vides a summary of related work and positions our contribution. Sec-
tion 3 elaborates on our model. Our extensive experiments are de-
tailed in Section 4. Finally, we conclude in Section 5.

2 Related work
Cognitive Diagnosis Models (CDMs) are a class of psychometric
models designed to provide detailed information about an individ-
ual’s specific knowledge and skills. One of the earliest and most in-
fluential CDM is DINA model [3] that operates under the assump-
tion that each item measures a combination of specific skills and that
a correct response to an item requires mastery of all the necessary
skills. If any of the required knowledge’s domains are not mastered,
the probability of a correct response is reduced. The model incor-
porates a deterministic component that specifies the relationship be-
tween skills and item responses, as well as a probabilistic component
that accounts for the possibility of guessing and slipping (i.e., random
errors). By analyzing students’ response patterns in relation to skill
requirements, the DINA model provides insights into individual stu-
dents’ strengths and weaknesses, allowing for targeted interventions
and instructional support.

Multidimensional Item Response Theory (MIRT) [7] is a statisti-
cal framework that allows for the estimation of multiple latent traits
simultaneously, enabling the assessment of complex constructs in-
volving multiple dimensions or sub-skills. MIRT models provide in-
sights into how individuals’ performances on assessment items are
influenced by various latent traits, allowing for a more nuanced un-
derstanding of their strengths and weaknesses across different skill
domains. By capturing interactions between latent traits and item
characteristics, MIRT facilitates the development of more accurate
and informative assessments, leading to improved educational prac-
tices and student outcomes.

Matrix-factorization-based Cognitive Diagnosis (MCD) [9] lever-
ages matrix factorization techniques to jointly model the interactions
between students and items in a low-dimensional latent space. By de-
composing the observed item-response matrix into student and item
latent representations, MCD uncovers the underlying structure of stu-
dents’ mastery profiles and item characteristics. This approach al-
lows MCD to capture complex patterns of skill mastery and item
difficulty, providing rich insights into students’ cognitive strengths
and weaknesses.

Recently, deep neural network models have demonstrated state-
of-the-art results in cognitive diagnosis models (CDMs). The Neural
Cognitive Diagnosis Model (NCDM) [17] uses neural networks to
model and predict students’ cognitive proficiency. Unlike traditional
CDMs, NCDM learns complex patterns and relationships from raw
assessment data, extracting high-level representations of students’
cognitive abilities and item characteristics. NCDM can also integrate
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additional sources of information, such as temporal dynamics or se-
quential dependencies in student responses. Through its data-driven
approach and adaptability to diverse assessment contexts, NCDM of-
fers promising avenues for advancing cognitive diagnosis research
and enhancing educational assessment practices.

While efforts have been made to enhance the accuracy of models
for predicting item responses and estimating users’ cognitive traits,
many recently developed models operate as "black boxes," offering
limited interpretability. This lack of interpretability raises concerns
when using CDMs. In [14], the authors propose a first attempt to deal
with this problem. They extend previous work by introducing the
Item Response Ranking (IRR) framework for cognitive diagnosis.
They propose to use a loss function that measures how well a CDM
model can correctly rank pairs of users based on their responses us-
ing a pairwise objective function to better ensure the monotonicity
property. The experimentation shows a limited improvement of the
interpretability, but also a backlash on response prediction perfor-
mance.

Our work aims at further improving interpretability while maint-
ing top response prediction performances by providing a framework
based on Bayesian Personalized Ranking (BPR) that incorporates in-
terpretability in a more direct way.

3 Cognitive Diagnosis Based on Bayesian
Personalized Ranking

Our approach aims to assess and diagnose individuals’ cognitive abil-
ities and skills within specific cognitive domains by developing a new
CDM. To formalize our problem, let U be a set of users and E a set of
test questions. Each question e has a binary answer outcome, either
a correct or a wrong answer. The response logs R consist of a set of
triplets (u, e, y), where u ∈ U , e ∈ E, and y ∈ {0, 1}. We denote by
Yue ≡ y for (u, e, y) ∈ R, the answer outcome by user u to question
e. Each test question corresponds to one or more cognitive concepts
or dimensions evaluated by the test, which are designated by the set
K of knowledge concepts. The Q-matrix [12] indicates the concepts
associated with a question: Qek = 1 iff the question e relates to the
concept k.

Our objective is to approximate users’ skills across different
knowledge concepts by learning a vector Hu for each user u, where
the vector has a length of #K, corresponding to the number of
knowledge concepts. This vector must not only estimate a user’s
performance on unseen questions, facilitating the ranking of poten-
tial answers (see Section 3.1), but also be self-interpretable, reflect-
ing the user’s proficiency in various knowledge concepts (see Sec-
tion 3.2). Each component of the vector assesses the user’s ability in
the corresponding knowledge concept. It must adhere to the mono-
tonicity assumption [18], which posits that the probability of correct
responses should increase monotonically with the user’s vector com-
ponent related to the knowledge concept of the test question. Thus, a
user who excels in questions associated with a concept k will have a
higher value Hu[k] for that concept.

3.1 Learning embeddings based on pairwise ranking
distances

Our proposed CDM is founded upon the Bayesian Personalized
Ranking (BPR) framework [8], which is specifically designed for
pairwise ranking tasks. In such tasks, the goal is to establish a rank-
ing among user responses rather than predicting precise values. This
framework is particularly well-suited for our application because



question responses inherently possess an order, and our focus is on
discerning the relative performance among students. Moreover, the
BPR model accommodates scenarios where students respond to only
a subset of questions, making it highly suitable for estimating cogni-
tive profiles from partially answered questions.

BPR, rooted in matrix factorization techniques, excels at capturing
latent factors within data. It achieves this by decomposing the user-
item interaction matrix, commonly used in recommender systems,
into low-rank matrices representing users and items within a latent
space. This work extends the application of BPR beyond binary in-
teractions, by introducing embeddings for each question-answer pair,
enabling the capture of more complex relationships. This augmen-
tation allows the model to uncover hidden patterns and similarities
among users, questions, and answers. BPR’s focus on learning the
ranking of question answers aligns well with the goals of Cogni-
tive Diagnostic models, where understanding user abilities on ques-
tions is essential. The adaptability of BPR to large datasets further
enhances its suitability for this task.

In addition to the embedding vector Hu associated to each user u,
we associate an embedding vector H(e,y) with each question-answer
pair. These two types of embeddings are of same dimension (#K) and
make possible to compare diverse elements into a shared latent space.
By employing the Euclidean metric within this space, effective gen-
eralization of relationships between users and questions/answers is
achieved. Using Euclidean distances in our model ensures the preser-
vation of the triangle inequality, which maintains consistent and in-
terpretable relationships between users and questions/answers. This
geometric property supports a robust relative representation, ensur-
ing that the proximity in the embedding space accurately reflects
users’ performance and similarities with questions [2].

The probability of predicting an answer to a test question for a
user is proportional to the opposite of the squared Euclidean distance
between their embeddings:

P̂u,e,y ∝ −||Hu −H(e,y)||2

To increase the probability associated with a given triplet (u, e, y)
of the response log R (the answer y of user u to question e), the
model is trained to prioritize the user’s answer y for question e over
the opposite answer y. This is expressed as maximizing the poste-
rior probability of the embedding vector H given the order on the
question/answer pairs: P (H | P̂u,e,y > P̂u,e,y). Using Bayes’ rule,
this probability is proportional to P (P̂u,e,y > P̂u,e,y | H)P (H). The
model aims to determine the parameters H that most effectively max-
imize the likelihood of accurately predicting the user’s answer, favor-
ing a higher probability for answer y compared to y. By abusively
assuming independence of questions, answers, and users, BPR esti-
mates the model parameters using the maximum a posteriori proba-
bility (MAP):

arg max
H

= log
∏

(u,e,y)∈R

∏
y ̸=y

P (P̂u,e,y > P̂u,e,y | H)P (H)

The probability P (P̂u,e,y > P̂u,e,y | H) is approximated by
σ(P̂u,e,y − P̂u,e,y), where σ(z) = 1

1+e−z is the logistic sigmoid

function, which approaches 1 when P̂u,e,y is greater than P̂u,e,y . The
comprehensive learning objective involves minimizing the loss:

L1(H) = −
∑

(u,e,y)∈R

∑
y ̸=y

log
(
σ(P̂u,e,y − P̂u,e,y)

)
+ λ||H||2

where λ is a regularization hyperparameter.

3.2 Self-interpretable embedding

A crucial consideration in developing our model is to enhance the
model’s confidence by incorporating self-interpretable embeddings
that align with the expectations of the model’s users. The overarch-
ing goal is for the embeddings to effectively capture and represent
the inherent skills of the users. This implies that if one user consis-
tently outperforms another, their corresponding value in the embed-
ding space should be higher, reflecting their superior aptitude.

To achieve this, we employ two key strategies aimed at enforc-
ing self-interpretability within the model. The first strategy centers
around embedding initialization, ensuring that the initial values as-
signed to the embeddings are conducive to meaningful interpreta-
tions. This involves a thoughtful setup that considers the inherent
skills and performance levels of users, providing a solid foundation
for subsequent model training. The second strategy focuses on em-
bedding updating during the model’s training process. As the model
learns from data and refines its understanding, the embeddings are
dynamically adjusted to better align with the evolving user perfor-
mance patterns. This continuous updating mechanism contributes to
the model’s adaptability and ensures that the embeddings accurately
represent the users’ skills over time. Both strategies are designed to
enhance the alignment of embeddings with user performance across
dimensions while preserving prediction accuracy (refer to the abla-
tion study in Section 4.3).

3.2.1 Self-interpreting embedding initialization

We propose a simple yet effective initialization procedure that be-
gins with a random initialization of Hu and H(e,y) using a uniform
distribution over the interval [0, 1). Then, the embedding value at di-
mension k is adjusted based on the number of logs related to k with
answers higher or lower than 0.5:

∀(u, e, y) ∈ R s.t. Qek = 1, and (x = u or x = (e, y)),

Hx[k]← Hx[k] + 1, if y > 0.5

Hx[k]← Hx[k]− 1, if y < 0.5,

Following the embedding initialization, the obtained vectors undergo
normalization to ensure consistency and stability. The initial step of
random uniform initialization plays a crucial role in preventing gra-
dient vanishing during the learning process.

3.2.2 Embedding learning preserving self-interpretation

To enforce the monotonicity assumption during the learning process,
we introduce an additional loss function that penalizes deviations
from the desired order of user proficiency across different dimen-
sions associated with a question. Specifically, when considering a log
triplet (u, e, y) and another log triplet (u, e, y′) where y′ ≤ y, indi-
cating that user u exhibited less proficiency for the same question,
our objective is to ensure that, for all dimensions k associated with
question e, the value of Hu[k] is greater than Hu[k]. This regular-
ization term promotes the desired monotonic relationship, steering
the model toward learning embeddings that align with the desired
interpretability, emphasizing the importance of dimension-wise per-
formance distinctions between users. This leads to the following loss
function:

L2(H) = −
∑

(u,e,y)∈R

∑
(u,e,y′)∈R

y′≤y
Qek=1

log (σ(Hu[k]−Hu[k]))



Algorithm 1: CD-BPR: Cognitive Diagnostic Bayesian Per-
sonalized Ranking
Data: Response logs R, matrix Q , learning rate α, number of

epochs max_epochs.
Result: Hu, H(e,y) of size #K.
Initialize user and item embeddings (see Section 3.2.1);
/* Compute quadruplets used in the learning process*/;
for (u, e, y) ∈ R do

for k such that Qek = 1 do
Take the opposite value y ;
Take u such that ∃(u, e, y′) ∈ R with y′ ≤ y, or u if
u does not exist;
B[k]← B[k]

⋃
[u, (e, y), (e, y), u)];

/* Learning process*/;
for epoch = 1 to max_epochs do

for k = 1 to #K do
for (u, (e, y), (e, y), u) ∈ B[k] do

∆+ ← −||Hu −H(e,y)||2;
∆− ← −||Hu −H(e,y)||2;
∆u ← Hu[k]−Hu[k];
L ← − log σ (∆+ −∆−)− log (σ(∆u));
/* Update user and item embeddings using

stochastic gradient descent:*/;
H← H− α× ∂L

∂H ;

return {Hu | u ∈ R}, {H(e,y) | (e, y) ∈ R};

where the logistic sigmoid function enforces Hu[k] > Hu[k]. It acts
as a gatekeeper, allowing us to maintain the prescribed hierarchy
among the dimension-wise values. It regularizes the learning process,
ensuring that the embeddings adhere to the specified constraints, and
fostering the model’s interpretability in capturing nuanced distinc-
tions between users’ performances on the same dimension.

The pseudo-code of CD-BPR is presented in Algorithm 1. The em-
bedding H are learned using a variant of Stochastic Gradient Descent
(SGD) called Adam optimizer. Samples in batch are made of a user
u, its answer y to a question e, the opposite answer y to question e,
and a user u whose answer is (e, y). The corresponding embeddings
are updated by back propagation of the gradient of the following loss
function

L(H) = L1(H) + L2(H)

whose derivative is defined as: ∂L(H)
∂H =

−
∑

(u,e,y)∈R

(
1− σ(P̂u,e,y − P̂u,e,y)

)
× ∂

∂H (P̂u,e,y − P̂u,e,y) +

2λ||H|| +
∑

(u,e,y)∈R

∑
(u,e,y′)∈R

y′≤yQek=1

(1− σ(Hu[k]−Hu[k])) +

∂
∂H (Hu[k]−Hu[k]).

By combining these two strategies, CD-BPR not only strives to
achieve high predictive accuracy but also prioritizes the development
of embeddings that are inherently interpretable and align with the
real-world expectations of users and stakeholders. This dual empha-
sis on predictive power and interpretability is pivotal for building a
robust and user-friendly cognitive diagnostic system.

4 Empirical validation of the method

This section assesses CD-BPR’s performance on classification and
interpretability metrics against other established methods using stan-
dard benchmark datasets.

Dataset Dimensions correct density
# U # E # K # K/E # R rate

ASSIST09 2493 17671 123 1.19 267415 0.658 0.006
ASSIST17 1702 3162 102 1.17 390281 0.437 0.073
ALGEBRA 830 2365 136 1.38 616730 0.729 0.314
MATH1 4209 20 11 3.35 84180 0.492 1
MATH2 3911 20 16 3.20 78220 0.466 1

Table 1. Main characteristics of the datasets.

4.1 Experimental Setup

Datasets. We use five real-world datasets containing records of stu-
dent performance in mathematics exercises. Each dataset consists of
logs containing the outcome of a mathematical exercises attempted
by students. Among these datasets, ASSIST09 and ASSIST17 are
two sparse datasets gathered via the online tutoring systems AS-
SISTments [5]. ALGEBRA ("Algebra | 2006-2007") comes from the
KDD Cup 2010 development challenge [10]. MATH1 and MATH2
are two datasets presenting high school students performances [6].
Basic statistics of the cleaned datasets are presented in Table 1. All
datasets were sanitized: logs with missing user, exercise, response or
skill were removed as well as duplicates. Attention has been paid not
to lose any knowledge concept associated with exercises while re-
moving the duplicates. ASSIST09 and ASSIST17 were pre-processed
using the same methodology as [18]. We filtered out users with fewer
than 15 logs to avoid excessively sparse datasets. For ALGEBRA, we
iteratively discarded users and exercises with fewer than 100 logs.
Finally, no pre-processing was performed on MATH1 and MATH2.
This methodology ensures that we compare our approach to compet-
itive ones, using datasets that exhibit different data sparsity levels.

Baselines. To assess the performance of CD-BPR, we compare it
against four state-of-the-art methods: MIRT [7], DINA [3], MCD [9],
and NCDM [17]. We use the code available in the EduCDM reposi-
tory [1] for the experiments. All baseline parameters were optimized
using the Adam optimization algorithm. For each method, we set
the number of dimensions of the latent space equal to the number
of knowledge concepts #K in the dataset (refer to Table 1). We also
consider the IRR-learned model. Due to space constraints, we report
only the results of the best model in terms of accuracy and DOA,
specifically the model with the highest harmonic mean of precision
and DOA, on the ASSIST09 dataset. Among the three methods –
IRR-MIRT, IRR-NCDM, and IRR-DINA – it is the combination of
IRR with MIRT that maximizes this value.

Training and hyperparameter setting. We used a 5-fold cross-
validation approach, splitting student logs into training, validation,
and test sets (60%, 20%, and 20% respectively). Before splitting,
user logs were shuffled to reduce bias from response time variations.
Hyperparameters were tuned using a grid search strategy with early
stopping mechanism based on validation accuracy. The best config-
uration was chosen across folds, and models were trained on com-
bined training and validation data. Evaluation was then conducted on
the test set to gauge the model’s generalization performance.

Evaluation Measures. We evaluate the performance of the models
using standard classification metrics, including Accuracy, Root Mean
Square Error (RMSE), Area Under the Receiver Operating Charac-
teristic Curve (ROC-AUC), Precision, Recall, and F1 Score. Addi-
tionally, we assess the quality and interpretability of the users’ em-
beddings using the Degree of Agreement (DOA) measure [17] and a
metric based on the Pearson Correlation Coefficient (PC-ER).



Algorithms Accuracy Precision Recall F1 ROC-AUC RMSE DOA PC-ER
ASSIST09

CD-BPR 0.740 ± 0.003 0.765 ± 0.002 0.867 ± 0.003 0.813 ± 0.002 0.786 ± 0.003 0.430 ± 0.001 0.762 ± 0.005 0.536 ±0.066
NCDM 0.718 ± 0.002 0.752 ± 0.008 0.849 ± 0.023 0.797 ± 0.006 0.740 ± 0.003 0.467 ± 0.004 0.561 ± 0.056 -0.019 ±0.005
MCD 0.657 ± 0.007 0.731 ± 0.010 0.750 ± 0.021 0.740 ± 0.008 0.667 ± 0.010 0.519 ± 0.005 0.463 ± 0.008 -0.010 ±0.018
MIRT 0.602 ± 0.002 0.717 ± 0.003 0.644 ± 0.003 0.679 ± 0.002 0.619 ± 0.003 0.589 ± 0.002 0.482 ± 0.006 0.007 ± 0.007
DINA 0.660 ± 0.005 0.754 ± 0.001 0.711 ± 0.011 0.732 ± 0.006 0.722 ± 0.003 0.481 ± 0.003 0.559 ± 0.050 -0.025±0.006
IRR-MIRT 0.620 ± 0.002 0.748 ± 0.002 0.773 ± 0.004 0.760 ± 0.002 0.693 ± 0.004 0.472 ± 0.002 0.526 ± 0.009 0.144 ± 0.007

ASSIST17
CD-BPR 0.737 ± 0.003 0.763 ± 0.003 0.867 ± 0.003 0.812 ± 0.003 0.783 ± 0.004 0.430 ± 0.001 0.754 ± 0.012 0.199±0.213
NCDM 0.696 ± 0.003 0.692 ± 0.006 0.549 ± 0.023 0.612 ± 0.013 0.742 ± 0.003 0.476 ± 0.002 0.596 ± 0.120 -0.019±0.001
MCD 0.660 ± 0.003 0.613 ± 0.005 0.600 ± 0.012 0.606 ± 0.007 0.713 ± 0.006 0.480 ± 0.003 0.458 ± 0.007 -0.006 ±0.006
MIRT 0.623 ± 0.002 0.569 ± 0.002 0.559 ± 0.003 0.564 ± 0.002 0.659 ± 0.002 0.552 ± 0.001 0.460 ± 0.009 -0.001±0.005
DINA 0.620 ± 0.001 0.565 ± 0.003 0.569 ± 0.004 0.567 ± 0.003 0.710 ± 0.002 0.501 ± 0.001 0.587 ± 0.113 -0.020±0.003
IRR-MIRT 0.675 ± 0.005 0.613 ± 0.003 0.672 ± 0.003 0.641 ± 0.001 0.730 ± 0.001 0.473 ± 0.001 0.534 ± 0.008 0.072 ± 0.009

ALGEBRA
CD-BPR 0.806 ± 0.002 0.828 ± 0.001 0.926 ± 0.002 0.874 ± 0.001 0.826 ± 0.002 0.377 ± 0.001 0.846 ± 0.013 0.425±0.014
NCDM 0.789 ± 0.001 0.840 ± 0.005 0.878 ± 0.007 0.858 ± 0.001 0.813 ± 0.002 0.389 ± 0.001 0.580 ± 0.013 0.043± 0.003
MCD 0.801 ± 0.003 0.831 ± 0.001 0.914 ± 0.001 0.870 ± 0.000 0.826 ± 0.000 0.364 ± 0.000 0.479 ± 0.008 0.000±0.007
MIRT 0.682 ± 0.002 0.803 ± 0.002 0.746 ± 0.004 0.774 ± 0.002 0.676 ± 0.002 0.541 ± 0.002 0.481 ± 0.006 -0.002±0.005
DINA 0.677 ± 0.002 0.801 ± 0.002 0.741 ± 0.005 0.770 ± 0.002 0.772 ± 0.001 0.741 ± 0.005 0.582 ± 0.011 0.066±0.007
IRR-MIRT 0.645 ± 0.002 0.803 ± 0.004 0.689 ± 0.045 0.741 ± 0.024 0.669 ± 0.008 0.483 ± 0.013 0.485 ± 0.007 0.140 ± 0.013

MATH1
CD-BPR 0.776 ± 0.008 0.704 ± 0.011 0.727 ± 0.012 0.715 ± 0.009 0.853 ± 0.007 0.407 ± 0.004 0.803 ± 0.003 0.027±0.028
NCDM 0.563 ± 0.024 0.664 ± 0.033 0.542 ± 0.040 0.597 ± 0.037 0.700 ± 0.040 0.510 ± 0.026 0.563 ± 0.021 -0.055±0.006
MCD 0.611 ± 0.004 0.693 ± 0.006 0.732 ± 0.009 0.712 ± 0.004 0.804 ± 0.006 0.389 ± 0.004 0.521 ± 0.003 -0.006±0.019
MIRT 0.606 ± 0.016 0.700 ± 0.020 0.713 ± 0.033 0.706 ± 0.020 0.781 ± 0.026 0.414 ± 0.020 0.496 ± 0.025 0.027 ±0.050
DINA 0.469 ± 0.005 0.587 ± 0.017 0.124 ± 0.004 0.204 ± 0.006 0.767 ± 0.005 0.469 ± 0.007 0.573 ± 0.002 -0.027±0.003
IRR-MIRT 0.598 ± 0.009 0.607 ± 0.014 0.610 ± 0.022 0.608 ± 0.017 0.773 ± 0.015 0.453 ± 0.010 0.575 ± 0.003 0.017 ± 0.010

MATH2
CD-BPR 0.732 ± 0.008 0.689 ± 0.009 0.683 ± 0.009 0.686 ± 0.009 0.804 ± 0.008 0.433 ± 0.002 0.843 ± 0.003 0.221±0.023
NCDM 0.585 ± 0.026 0.638 ± 0.034 0.549 ± 0.034 0.591 ± 0.034 0.662 ± 0.032 0.557 ± 0.024 0.588 ± 0.002 0.050±0.003
MCD 0.644 ± 0.005 0.668 ± 0.007 0.700 ± 0.007 0.684 ± 0.005 0.775 ± 0.005 0.418 ± 0.003 0.585 ± 0.004 -0.000±0.018
MIRT 0.625 ± 0.012 0.643 ± 0.013 0.671 ± 0.015 0.657 ± 0.013 0.737 ± 0.017 0.457 ± 0.013 0.499 ± 0.018 -0.017±0.021
DINA 0.492 ± 0.004 0.553 ± 0.011 0.160 ± 0.007 0.249 ± 0.010 0.706 ± 0.005 0.504 ± 0.003 0.547 ± 0.010 0.026±0.003
IRR-MIRT 0.582 ± 0.005 0.598 ± 0.010 0.625 ± 0.008 0.612 ± 0.008 0.723 ± 0.010 0.489 ± 0.007 0.505 ± 0.002 0.122 ± 0.009

Table 2. Classification performances based on accuracy, precision, recall, ROC-AUC, F1, and RMSE scores, and quality of the embeddings based on DOA
and PC-ER. We highlight in bold the highest mean values and comparable ones with respect to the standard deviation, except for PC-ER on ASSIST17 whose

standard deviations are too high.

The Degree of Agreement (DOA) evaluates the alignment between
users’ embeddings and users’ responses in the response log. It re-
flects the consistency of the model with observed user behavior, pro-
viding insights into the interpretability and reliability of the embed-
dings. Specifically, it assesses the extent to which the embeddings
align with the observed data. Higher DOA values (DOA ∈ [0, 1])
indicate better alignment between the model and the data. For-
mally, for a given knowledge concept k, DOA(k) evaluates pairs
of users (u, v) where the model predicts that u performs better than
v (δ(Huk > Hvk)). It counts the proportion of questions related
to knowledge concept k (δ(Qek)) that both users have answered
(J(e, u, v)), and for which u provides a higher value than v. This
measure captures how well the model’s user embeddings reflect the
actual performance hierarchy among users for specific knowledge
concepts.

DOA(k) =
1

α

∑
u∈U

∑
v∈U

δ(Huk > Hvk)

×
∑

e∈E δ(Qek) ∧ J(e, u, v) ∧ δ(Yue > Yve)

β(u, v)

with α =
∑

u∈U

∑
v∈U δ(Huk > Hvk)δ(β(u, v) > 0),

β(u, v) =
∑

e∈E δ(Qek) ∧ J(e, u, v) ∧ δ(Yue ̸= Yve), and

δ(x) =

{
1 if x is true
0 otherwise

J(e, u, v) =

{
1 if u and v answered e

0 otherwise

The PC-ER measure quantifies the correlation between students’
embedding and their average response on questions grouped by

knowledge concepts. We use the Pearson correlation coefficient
(ρA,B = cov(A,B)

σAσB
) with A = Hu and B = Mu with

Mu[k] =

∑
Qek=1

(u,e,y)∈R

Yue

#{e | (u, e, y) ∈ R and Qek = 1}
.

We use the Pearson correlation coefficient to measure the linear
relationship between users’ embeddings and average user responses,
providing a quantitative assessment of the consistency and reliabil-
ity of user embeddings, ensuring that the model’s embeddings align
closely with actual observed data. The final measure is the average
value over all users: PC-ER = 1

#U

∑
u∈U ρ Hu,Mu

4.2 Classification performance and interpretability
evaluation

Across all experimental datasets, CD-BPR achieves superior Accu-
racy and ROC-AUC performances compared to other methods except
for algebra where MCD reaches a similar ROC-AUC (see Table 2).
CD-BPR also excels on Precision, Recall and F1 scores, for which
it holds the best performance in most of the cases. Notably, NCDM,
the most recent method rooted in deep learning is outperformed in
the majority of cases by CD-BPR which is based on a lighter ar-
chitecture. Indeed, CD-BPR exhibits a reduction in parameters rang-
ing from 7.9% fewer on ASSIST09 to as much as 74% fewer on
MATH1. Because of its excessive parameter count, NCDM’s perfor-
mances are particularly poor on the two smaller datasets, MATH1 and
MATH2—184268 and 203205 parameters, respectively, compared to
fewer than 47000 and 63000 for all other methods on these datasets.



The performance contrast between CD-BPR and its competitors,
observed through its lower RMSE but superior Accuracy and ROC-
AUC scores, underscores a fundamental divergence in learning prin-
ciples. On the one hand, the competitors learn to predict the outcome
by closing the gap between the true binary response outcome and a
continuous prediction —a proxy rounded for classification— that can
be interpreted as the positive response outcome probability. On the
other hand, CD-BPR learns to correctly order the two probabilities of
negative and positive outcomes. The response outcome with the high-
est probability is the one predicted by CD-BPR. This approach, based
on Bayesian Personalized Ranking (BPR), de-emphasizes closing the
gap between class probabilities and true outcomes. Instead, CD-BPR
predicts effectively even with minor differences in class probabili-
ties. For the sake of comparison, RMSE for CD-BPR is also com-
puted with the probability of the positive outcome. The lower RMSE
measures of CD-BPR, together with its superior performances on the
classification metrics, therefore indicate that trying to learn the abso-
lute probability value of the positive outcome proves ineffective in
binary classification tasks. Instead, prioritizing probability ranking
emerges as a more appropriate strategy.

Knowing CD-BPR is the most efficient method to predict stu-
dents’ responses, we compared its capacity to provide students pro-
ficiency estimates on knowledge concepts (KC) through their em-
bedding. The first condition for students embedding to be inter-
preted as proficiency estimates is the compliance with the mono-
tonicity assumption, measured with DOA and PC-ER. In this regard,
CD-BPR consistently achieves significantly higher performances on
both scores (Table 2). It is worth noticing that IRR-MIRT, the second
best method on DOA and PC-ER, is dominated by CD-BPR on all
datasets with a respective DOA gap of 30%, 29 %, 42%, 28% and
40% on ASSIST09, ASSIST17, ALGEBRA, MATH1 and MATH2.
Moreover, the IRR version decreases the accuracy of the original
MIRT method. The NCDM method, which aims at optimizing both
accuracy and DOA, reaches the second best prediction performances
of three out of the five datasets but stay far bellow the DOA per-
formance of CD-BPR. Indeed, the latter improves DOA measures
on ASSIST09, ASSIST17, ALGEBRA, MATH1 and MATH2 respec-
tively by 36%, 27%, 45%, 39% and 43%. These results suggest that
CD-BPR significantly better constraints the embeddings in the KC
space than other methods.

Two specific cases are worth detailing. Firstly, the standard devia-
tion above the 5-fold cross validation of PC-ER measure for CD-BPR
on ASSIST17 is higher than the mean value. Referencing the ablation
study (Table 3), it is evident that while L2 term predominantly con-
tributes to the enhancement of PC-ER across datasets, it also serves
as the primary driver of PC-ER variability on ASSIST17, as standard
deviation reduces only upon its removal. However, an analysis of PC-
ER measures for CD-BPR on individual folds reveals consistently
positive values, with two exceeding 0.4, indicative of CD-BPR’s su-
perior performance relative to competitors on this dataset. Secondly,
PC-ER is surprisingly low for CD-BPR on MATH1 with regard to
the high DOA. Looking once again at the ablation study, it becomes
apparent that the initialization method adversely affects the measure
for both the MATH1 and MATH2 datasets. However, the impact on
MATH1 seems to exceed L2 improvement of PC-ER. Individually
setting each dimension to zero, we observe that removing dimension
one annihilate the negative effect of initialization on MATH1 and al-
low CD-BPR to reach a PC-ER of 0.522± 0.037 whereas the mean
PC-ER plus standard deviation of the competitors in the same con-
ditions are below 0.03. In fact, this dimension is linked to a single
question out of the 20 in the dataset. Since PC-ER is calculated as

an average across dimensions, this particular item exerts a dispro-
portionate influence on the measure. The low PC-ER therefore is a
specific effect of CD-BPR initialization failure on a specific ques-
tion. Similarly, removing dimension 7 of MATH2 allows CD-BPR
to reach a PC-ER of 0.419 ± 0.033 whereas the competitors mean
PC-ER plus standard deviation stay bellow 0.04.

The second aspect of interpreting user embeddings as skill esti-
mates is the independence of the dimensions from each other. We
investigated whether individual components of a user’s embedding
can indicate their mastery of specific knowledge concepts (KC) or
whether a combination of components is necessary. To do this, we
measured the impact of each embedding component on the predic-
tion accuracy for questions linked to the corresponding KC by in-
troducing noise. Figure 1 shows the prediction accuracy, averaged
over KCs, as subtractive noise is introduced into the user embedding
component associated with the same KC. More precisely, we sub-
tract from the k-th component of user embeddings the absolute value
of a random variable following a normal distribution with a mean of
0 and x times the standard deviation of the component, where x is
the value on the x-axis. Due to the limited number of data points in
the test set for some dimensions, we exclude them from the graph,
as they result in almost flat curves. To do this, we apply a minimum
threshold value to the logs by KC, setting it at 2000 for ALGEBRA,
MATH1 and MATH2, 1750 for ASSIST09 and 1500 for ASSIST17.

We notice a decline in predictions with the introduction of noise,
signifying that altering the component associated with a KC affects
predictions for questions related to the same concept. This observa-
tion underscores the strong correlation between the information asso-
ciated with a KC and its corresponding component. Moreover, slower
decrease of some dimensions can be explained by the fact that their
corresponding questions are systematically related to other concepts.
As a consequence, they are expected to be correlated to other dimen-
sions. We can further hypothesize that the magnitude of decline on
MATH1 and MATH2 datasets is greater because of the higher average
number of logs per dimension compared to ASSIST09, ASSIST17
and ALGEBRA, which may allow CD-BPR to better learn to uncou-
ple dimensions.

Overall, these findings indicate that CD-BPR excels in generat-
ing embeddings that are not only effective for classification tasks but
also highly informative. Not only are the users embedding compo-
nents coherent with their responses outcome, dimensionally wise, but
there is also a direct consequence between an embedding component
and the predicted outcome on a related knowledge concept. The el-
evated interpretability expands the potential utility of the model for
stakeholders, suggesting additional avenues for exploration and anal-
ysis. In view of these results, it seems for example relevant to exploit
CD-BPR embeddings to analyze student profiles.

4.3 Ablation study

To conclude our evaluation of CD-BPR, we aim to investigate the
impact of the two strategies integrated into the BPR learning process
on the classification performances and the interpretability. To achieve
this, we conduct an ablation study, the results of which are presented
in Table 3. The performances are evaluated through a 5-fold cross
validation whose average and standard deviation on Accuracy, Pre-
cision, Recall, F1, ROC-AUC, RMSE, DOA and PC-ER is included
in the table. Notably, the omission of L2 leads to a marginal reduc-
tion in classification performance across most datasets; however, two
datasets are exceptions to this trend (i.e., MATH1 and MATH2). More
significantly, the DOA and PC-ER experience a substantial decline



ASSIST09 ASSIST17 ALGEBRA MATH1 MATH2

Figure 1. Perturbation of the embeddings (subtracted noise) and its impact of the accuracy of the corresponding question answers (10 replications).

Datasets Accuracy Precision Recall F1 ROC-AUC RMSE DOA PC-ER
ASSIST09

CD-BPR 0.740 ± 0.003 0.765 ± 0.002 0.867 ± 0.003 0.813 ± 0.002 0.786 ± 0.003 0.430 ± 0.001 0.762 ± 0.005 0.536 ±0.066
Without L2 0.737 ± 0.003 0.763 ± 0.002 0.866 ± 0.003 0.811 ± 0.002 0.782 ± 0.004 0.430 ± 0.001 0.534 ± 0.014 0.265 ±0.037
Without init 0.736 ± 0.003 0.770 ± 0.002 0.849 ± 0.002 0.807 ± 0.002 0.781 ± 0.003 0.433 ± 0.001 0.755 ± 0.004 0.456 ±0.051
Without L2 and init 0.737 ± 0.003 0.763 ± 0.003 0.867 ± 0.003 0.812 ± 0.003 0.783 ± 0.004 0.430 ± 0.001 0.478 ± 0.015 0.003 ±0.018

ASSIST17
CD-BPR 0.737 ± 0.003 0.763 ± 0.003 0.867 ± 0.003 0.812 ± 0.003 0.783 ± 0.004 0.430 ± 0.001 0.754 ± 0.012 0.199±0.213
Without L2 0.730 ± 0.001 0.711 ± 0.003 0.644 ± 0.002 0.676 ± 0.002 0.798 ± 0.001 0.431 ± 0.000 0.563 ± 0.011 0.046±0.011
Without init 0.730 ± 0.001 0.711 ± 0.003 0.643 ± 0.002 0.675 ± 0.002 0.796 ± 0.001 0.434 ± 0.000 0.572 ± 0.003 0.130 ±0.158
Without L2 and init 0.731 ± 0.001 0.712 ± 0.003 0.644 ± 0.002 0.676 ± 0.002 0.798 ± 0.001 0.431 ± 0.000 0.486 ± 0.020 -0.001 ± 0.025

ALGEBRA
CD-BPR 0.806 ± 0.002 0.828 ± 0.001 0.926 ± 0.002 0.874 ± 0.001 0.826 ± 0.002 0.377 ± 0.001 0.846 ± 0.013 0.425±0.014
Without L2 0.806 ± 0.002 0.828 ± 0.001 0.926 ± 0.003 0.874 ± 0.001 0.826 ± 0.002 0.376 ± 0.001 0.491 ± 0.017 0.088±0.009
Without init 0.807 ± 0.001 0.830 ± 0.001 0.923 ± 0.002 0.874 ± 0.001 0.822 ± 0.002 0.380 ± 0.001 0.735 ± 0.020 0.256±0.018
Without L2 and init 0.806 ± 0.002 0.829 ± 0.001 0.925 ± 0.002 0.874 ± 0.001 0.826 ± 0.002 0.376 ± 0.001 0.486 ± 0.016 0.001 ±0.031

MATH1
CD-BPR 0.776 ± 0.008 0.704 ± 0.011 0.727 ± 0.012 0.715 ± 0.009 0.853 ± 0.007 0.407 ± 0.004 0.803 ± 0.003 0.027±0.028
Without L2 0.781 ± 0.007 0.709 ± 0.009 0.729 ± 0.014 0.719 ± 0.009 0.862 ± 0.007 0.397 ± 0.004 0.467 ± 0.009 -0.298±0.03
Without init 0.778 ± 0.009 0.709 ± 0.012 0.719 ± 0.013 0.714 ± 0.010 0.856 ± 0.008 0.404 ± 0.004 0.846 ± 0.007 0.454 ±0.091
Without L2 and init 0.781 ± 0.007 0.709 ± 0.009 0.731 ± 0.014 0.720 ± 0.008 0.862 ± 0.007 0.397 ± 0.004 0.503 ± 0.076 0.036±0.080

MATH2
CD-BPR 0.732 ± 0.008 0.689 ± 0.009 0.683 ± 0.009 0.686 ± 0.009 0.804 ± 0.008 0.433 ± 0.002 0.843 ± 0.003 0.221±0.023
Without L2 0.737 ± 0.011 0.693 ± 0.012 0.692 ± 0.014 0.693 ± 0.012 0.811 ± 0.010 0.428 ± 0.003 0.523 ± 0.007 -0.004 ±0.006
Without init 0.730 ± 0.011 0.688 ± 0.012 0.676 ± 0.013 0.682 ± 0.012 0.802 ± 0.010 0.434 ± 0.003 0.867 ± 0.006 0.547 ±0.064
Without L2 and init 0.737 ± 0.011 0.693 ± 0.012 0.693 ± 0.013 0.693 ± 0.012 0.811 ± 0.010 0.428 ± 0.003 0.500 ± 0.057 0.061±0.035

Table 3. Ablation study: mean and standard deviation of the accuracy, precision, recall, f1, Area Under the ROC Curve (ROC-AUC), Root Mean Square
Error (RMSE) and DOA scores for four ablation scenarios (without L2, without initialization, without both L2 and initialization, and vanilla BPR). Each

experiment was replicated according to a 5-folds cross validation method. We highlight in bold the highest mean scores of every dataset.

when L2 is excluded, underscoring its importance in the model’s
predictive consistency. In scenarios where the model is deprived of
initialization, the DOA and PC-ER exhibit a slight decrease, with the
exception of MATH1 and MATH2. As detailed in section 4.2 it is
explained by the failure of initialization on only one over-influential
question in MATH1 and MATH2. Despite these alterations, the ac-
curacy metric largely remains unaffected, indicating a resilience in
the model’s ability to correctly classify. However, when both L2 and
initialization are absent, a noticeable decrement in accuracy is ob-
served alongside a pronounced reduction in DOA and PC-ER, the
latter almost reaching 0 correlation. This highlights the synergistic
importance of these components in achieving optimal model perfor-
mance and agreement.

The empirical validation shows CD-BPR surpasses current state-
of-the-art models in Accuracy, AUC, and DOA across various
datasets. Unlike most models, CD-BPR’s efficient architecture en-
sures better classification performance and interpretability on both
big and small datasets. An ablation study underscores the impor-
tance of L2 loss and initialization for high accuracy and DOA. These
results underscore CD-BPR’s value for students’ profile analysis,
thanks to its efficient parameterization and informative concept em-
beddings.

5 Conclusion

In this paper, we address the challenge of approximating students’

skills in knowledge concepts using data on their success or failure in
exercises. Our primary objectives are twofold: accurately predicting
students’ response outcomes and estimating interpretable proficiency
scores. To achieve these goals, we introduce a novel Cognitive Diag-
nosis Model called CD-BPR. Leveraging the rank learning principle
from Bayesian Personalized Ranking, our model incorporates a sec-
ond learning objective to ensure interpretability in a more direct way,
along with an astute parameter initialization method. We conduct ex-
tensive experiments on five datasets of mathematical exams to eval-
uate the performance of CD-BPR in both response outcome predic-
tion and student profile interpretability. Our results demonstrate that
CD-BPR outperforms existing approaches on all objectives, signifi-
cantly improving the interpretability across all datasets as measured
by the DOA and PC-ER metric. Additionally, a qualitative analysis of
student proficiency approximations by CD-BPR confirms their inter-
pretability, indicating potential for personalized education. Further-
more, an ablation study underscores the significance of our proposed
contributions in CD-BPR, enhancing both classification performance
and interpretability. By effectively combining these strengths, our
model offers a nuanced understanding of student cognitive profiles,
providing educators and educational platforms with a powerful tool
for personalized teaching on a large scale. Future research could fo-
cus on characterizing the student profiles generated by our method to
better target educational resources.
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