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Abstract: Because of the importance of the web in our daily lives, phishing attacks have been causing a significant dam-
age to both individuals and organizations. Indeed, phishing attacks are today among the most widespread and
serious threats to the web and its users. The main approaches deployed against such attacks are blacklists.
However, the latter represents numerous drawbacks. In this paper, we introduce PhishGNN, a Deep Learning
framework based on Graph Neural Networks, which leverages and uses the hyperlink graph structure of web-
sites along with different other hand-designed features. The performance results obtained, demonstrate that
PhishGNN outperforms state of the art results with a 99.7% prediction accuracy.

1 INTRODUCTION

In the era of the Internet, malicious URLs are a com-
mon threat to the Web users. Phishing aims at steal-
ing sensitive information by fooling victims with fal-
sified interfaces. In the case of phishing websites,
attackers usually try to impersonate well-known and
widely used services such as social media, banks and
e-Commerce websites. Such spoofed websites are
often built from the same code base as the original
site, which could make them difficult to detect at first
glance. Thankfully, numerous other indicators can be
used to differentiate benign and phishing websites.
For instance, most phishing URLs tend to be very
long, with multiple sub-domains and special charac-
ters. Domains are often hosted on suspicious hosts
and use Secure Socket Layer (SSL) certificates de-
livered by non-trusted authorities. Since the begin-
ning of these attacks, numerous systems have been
implemented to try to overcome them. Some of these
implementations use traditional techniques such as
blacklists or URL lexical features’ analysis. How-
ever, blacklists suffer from multiple drawbacks like
the need for human assistance to be updated and the
lack of exhaustiveness. Furthermore, they cannot be
used on unseen and hidden URLs. Other techniques
leverage Machine Learning to train a model to clas-
sify websites based on a number of examples (Sahoo
et al., 2017), (Benavides et al., 2020). However, in
most approaches, the hyperlink structure of websites
is not tackled.

In this paper we introduce PhishGNN, a frame-
work that leverages and uses both hyperlink structural
features along with every other feature that has been
proven to be successful for phishing classification 1.
We also introduce features such as is same domain
which are essential for differentiating two websites
with the same structure. As many phishing web-
sites redirect to legitimate ones, each link pointing
to these websites has a different domain. However,
on the legitimate website, these links are redirecting
to the same domain, so the feature will be distinct in
both cases and the model will learn how to differen-
tiate them. We evaluated our approach through a real
implementation. The performance results obtained
demonstrate the efficiency and effectiveness of our
approach in terms of detection accuracy and its capac-
ity to outperform the existing detection approaches.

2 RELATED WORKS

The detection of phishing websites aims to classify
whether websites are phishing or benign. Research in
this area has increased sharply as the number of phish-
ing websites has exploded in recent years. While ad-
vanced techniques have been proposed for this task,
most solutions currently in production are based on
blacklists (Sahoo et al., 2017). However, phishing

1https://archive.ics.uci.edu/ml/datasets/Phishing+
Websites

https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
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websites become more and more complex and there
is an urgent need for reliable and efficient techniques
to detect them on demand, without human interaction.

2.1 Traditional Techniques

The most common technique used for the detection of
phishing websites is the use of blacklists. However,
this technique reveals numerous drawbacks, mainly:
(1) it requires the curation of such a blacklist (and,
therefore, is fallible to zero-day attacks and requires
human involvement). (2) it requires the storage (space
consumption) or the querying (time and computing
resource consumption) of a blacklist. (3) crowd-
sourced blacklists like PhishTank are centralized and
lack transparency. The resources consumption prob-
lem is addressed by the Google Safe Browsing API 2,
which is notably used in Chromium 3 and in Firefox
as a fallback 4, by allowing clients to maintain a small
local database which only contains truncated hashes
of malicious URLs, and an online service which can
be queried with a full hash when its truncated hash is
found in the local database 5.

Prakash et al. (2010) also show that it is possible
to build blacklists that, based on their current entries,
can predict new entries with no human involvement.
Cao et al. (2008) similarly build a list which automati-
cally grows over time, though it differs in that it keeps
track of legitimate websites (i.e. a whitelist).

Nonetheless, lists are flawed. Therefore, other
techniques have been proposed to detect phishing us-
ing human-defined heuristics, designed after identify-
ing inherent characteristics of known phishing web-
sites.

These websites frequently rely on domain names
to trick users into believing that they’re visiting a web-
site associated with a known, trusted entity. Since
obtaining legitimate domains requires compromising
their corresponding entity, phishing websites often
use patterns in the URL to make them look like le-
gitimate domains, while being subtly different. This
can be done by confusing users with slightly different
names (e.g. targeting ”foobar.com” using the domain
name ”foo-bar.com”), by using subdomains of trusted
entities (e.g. ”foobar.example.com” 6) or by includ-
ing keywords related to the trusted entity in the path

2https://developers.google.com/safe-browsing/v4
3https://www.chromium.org/developers/

design-documents/safebrowsing/
4https://wiki.mozilla.org/Security/Safe Browsing
5https://developers.google.com/safe-browsing/v4/

urls-hashing
6https://docs.apwg.org/reports/apwg trends report q4

2021.pdf

section of the URL (e.g. ”example.com/foobar” (Ter-
aguchi and Mitchell, 2004)).

Other lexical features derived from the URL can
be useful. Sonowal and Kuppusamy (2020) suggest
that having symbols such as ”-” and ”@”, or hav-
ing more than three dots in the domain name is sus-
picious, and considers long URLs suspicious as well
because they make it harder for users to read the sig-
nificant part of the URL.

Content features can also be significant, even
with simple heuristics. Teraguchi and Mitchell
(2004) can detect patterns such as similar-looking
domains or links that point to an URL differ-
ent from what they display to the user (e.g. <a
href="phishingsite.com">example.com</a>).
Sonowal and Kuppusamy (2020) assign lower legiti-
macy scores to web pages that have low accessibility
scores and to those whose lexical signature (com-
puted using the most frequent tokens in the page) do
not appear in the first results of search engines.

Zhang et al. (2007) successfully consider older
domains as more legitimate to identify phishing do-
main. However, the Anti-Phishing Working Group
(APWG) noted in the 2016 APWG Global Phishing
Report 7 that some attackers are starting to age do-
mains before using them for attacks. Zhang et al.
(2007) also use search engines and website rankings
to automatically trust well-known websites. Although
these approaches provide better accuracy, they rely on
external services which slow down the classification
of pages.

Some studies (Lakshmi and Vijaya, 2012) assume
that legitimate websites are protected by Transport
Layer Security protocol (TLS) and that phishing web-
sites are not (because the issuer Certificate Authority
(CA) must provide numerous verifications before pro-
viding a certificate). Nonetheless, this assumption no
longer holds true because most phishing websites are
now also protected by TLS (82% in 2021 8). Despite
this, new techniques exist to assess the legitimacy of
TLS certificates (Sakurai et al., 2020).

Phishing websites can protect themselves against
content-based phishing detection by obfuscating the
HTML content of their pages, or by using images in-
stead of actual text. To counter this obfuscation, re-
searchers have used image snapshots of suspicious
pages to extract text content using optical charac-
ter recognition (Dunlop et al., 2010), to determine
whether the suspicious page looks like known, pro-
tected web pages (Wenyin et al., 2005), (Afroz and

7https://docs.apwg.org/reports/APWG Global
Phishing Report 2015-2016.pdf

8https://docs.apwg.org/reports/apwg trends report q2
2021.pdf
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Greenstadt, 2009), or to look up whether the suspi-
cious page used logos that are typically associated
with other domains (Wang et al., 2011).

Finally, it has been shown that using combina-
tions of different techniques leads to more accurate re-
sults (Sonowal and Kuppusamy, 2020), (Zhang et al.,
2007).

2.2 Machine Learning Techniques

Machine Learning (ML) and Deep Learning (DL) has
known a real boom during the last decade and has
been widely used in the phishing classification task
(Sahoo et al., 2017), (Benavides et al., 2020). When
using such techniques, the first step is usually to ex-
tract a set of features from the URL. Although Deep
Learning models have the ability to learn features by
themselves from raw data, it is challenging to exploit
them directly because a website is not only defined
by its raw HTML content. Many useful features can
be extracted by hand from the website’s URL in or-
der to build a more powerful and robust model. Deep
Learning can be used on top of the features to let the
model learn other kinds of representations that could
improve the classification accuracy. These features
can be divided in three classes: lexical, content and
domain features.

Lexical features: features that could be extracted
from the URL as a string. It is possible to ex-
tract efficient and meaningful features from the
raw URL, like the URL length, the entropy, the
number of special characters, the number of sub-
domains, and so on. Most Machine Learning
phishing detection techniques highly rely on lexi-
cal features.

Content features: features related to the HTML
content of the web page. Such features are ob-
tained by fetching the DOM of the pages and then
processing it to extract useful information like the
number of anchors, the presence of a form, the
number of Javascript imports, and so on. How-
ever, this feature extraction is more resource in-
tensive.

Domain features: features are obtained from the do-
main name extracted from the URL. By request-
ing that domain, it is possible to extract features
from the underlying server such as its location, the
connection speed, ”WHOIS” information, and so
on. Another useful set of features that could be
extracted from domain is the Secure Socket Layer
(SSL) certificate, where we can discover the do-
main age, its expiration date, and whether it is
delivered by a reliable authority or not. Domain

features are known to be very expensive to extract
but can lead to better predictions.

According to Sahoo et al. (2017) content-based and
lexical-based features are mostly used in Machine
Learning techniques, compared to host-based fea-
tures, due to the extraction complexity of this one.

Most state of the art approaches for phishing clas-
sification are url-based. That is, they focus on the
extraction of useful features directly from the raw
URL. Some studies use traditional Machine Learn-
ing with hand-crafted features to make predictions
(Abu-Nimeh et al., 2007), (Jain and Gupta, 2018),
(Adeyemo et al., 2020), while others prefer using
Deep Learning to let the model learn the features by
its own (Sahoo et al., 2017). Using Deep Learning
methods has the benefit to avoid human-assisted fea-
ture engineering and thus do not require the assistance
of domain experts. Thanks to these benefits, numer-
ous recent studies (Benavides et al., 2020) apply Deep
Learning to URL classification. URL-based classifi-
cation is a key process in the overall phishing clas-
sification task. This is due to the numerous lexical
features possible to extract from a raw URL string.

Saxe and Berlin (2017) proposed eXpose, a solu-
tion based on a Convolutional Neural Network (CNN)
(LeCun et al., 1995), where convolutions are applied
to the URL at character-level to the raw URL (Zhang
et al., 2015). The convolutions are used to find pat-
terns between characters that could lead to interesting
hidden features.

URLNet (Le et al., 2018) is a framework where
a character-level CNN is used in combination with a
word-level CNN. It is stated that using word-level fea-
tures along with character-level features achieve bet-
ter results for the URL classification task.

Some other methods use CNNs combined with
Long Short-Term Memory (LSTM). Yu et al. (2018)
detects algorithmically-generated domain names
(DGA), and Yang et al. (2019) achieve 98.99% accu-
racy on URL classification using a preliminary clas-
sification based on URL features. However, the pro-
posed method does not take in consideration domain
features, which have been proven to be very efficient
in the phishing classification task.

More recent studies take profit of the Transformer
model and the attention mechanism to give appropri-
ate weights for each feature and thus grant more at-
tention to the most important ones (Maneriker et al.,
2021), (Yuan et al., 2021).

Other techniques fetch domain information and
scrap the HTML content of web pages to extract do-
main and content features. For example, Niakan-
lahiji et al. (2018) relies on a large number of fea-
tures directly fetched from server, DNS and WHOIS.



Traditional Machine Learning models such as Ran-
dom Forest, AdaBoost and kNN are then trained on
these features to reach an accuracy of 95.4%. This
study shows than Random Forest achieves better per-
formance than other compared models. HTMLPhish
(Opara et al., 2020), on the other hand, takes profit
of CNNs to learn the semantic dependencies in the
textual content of the raw HTML page. Using this ar-
chitecture, they achieve 93% accuracy with no feature
engineering required.

To the best of our knowledge, the sole application
of Graph Neural Networks to phishing detection is
based on the HTML structure of the website (Ouyang
and Zhang, 2021). In this approach, a graph is built
from the HTML DOM and a GNN is fed with this
graph. At each GNN layer, every feature node aggre-
gates the features of their neighboring nodes, result-
ing in node embeddings containing the overall graph
information. Downstream classification models can
then be used to predict based on these embeddings.
However, this method only relies on the HTML con-
tent, which could be easily stolen from benign web-
sites in order to build prefect website copies. This
method could thus be easily bypassed by cloning the
HTML structure of legitimate websites.

Unlike previous approaches, our solution takes ad-
vantage of the internal links structure of the website,
along with the traditional features that led to success-
ful results as shown in previous papers. By analysing
many phishing websites, we figured out that most of
them use similar ”href” patterns in <a>, <form>and
<iframe>tags. These links are usually self-loops an-
chors (URLs starting by #) or outgoing links to ex-
ternal domains (usually pointing to a legitimate web-
site like a bank or a social media). Such patterns
are useful for phishing classification because a neu-
ral network can be trained to learn how to distin-
guish websites with different structures. Malicious
websites could hardly bypass this detection system
because most of the outgoing links present on these
websites redirect to external websites from other do-
main names in order to fool victims by persuading
them that the website is legitimate.

3 PROPOSED APPROACH

3.1 Graph Neural Networks

Graph Neural Networks (GNNs) represent a type of
neural networks that takes graph data as input. Unlike
other neural network architectures, GNNs can handle
non-euclidean data with complex relations between
objects. Most GNNs follow the message-passing

framework (MPNN) (Gilmer et al., 2017) and can be
considered as a generalization of convolutional neural
networks (CNN) for graphs. This message-passing
algorithm takes as input a graph G = (V ,E) with n
nodes vi ∈V and m edges (vi,v j)∈E , where G could
be directed or undirected. Each node and edge can
store a vector of features, respectively named node
and edge features. Generally, all this information is
represented through three matrices:

• A: the graph-structure matrix, of shape n× n in
the case of an adjacency matrix and 2× n for a
CSR (Compressed Sparse Row) or COO (COOr-
dinates) sparse matrix

• X : the node features matrix of shape n×d

• E: the edge features matrix of shape m× e

where n = |V |, m = |E|, d and e are respectively the
number of features per node and per edge.

The message passing framework consists of four
steps, where steps 1 to 3 are implemented by one
GNN layer and are repeated as many times as the
number of layers. Step 4 is a final step that should
be applied after passing through every GNN layers.

1. MESSAGE: every node creates a message based on
its node features and sends it to all neighbors.

2. AGGREGATE: nodes aggregate the incoming mes-
sages from every neighbor by using an aggrega-
tion function.

3. UPDATE: the old features of a node are updated
by merging them with new features aggregated,
creating node embeddings.

4. READOUT: combines every node embeddings into
a representation that could be used in downstream
Machine Learning algorithms for prediction.

Every step is generally a function with learnable pa-
rameters, that is, weight matrices and activation func-
tions are used in the computation of both steps. One
GNN layer usually corresponds to the propagation of
features within a 1-hop neighborhood, so stacking n
GNN layers will result in node features propagating
up to n distant nodes. In each of these layers, ev-
ery node gathers its neighbors’ features. However,
increasing the number of GNN layers is at date not
considered as efficient as for CNNs (Alon and Ya-
hav, 2020). When multiple node aggregations occur
in the graph, the information tends to smooth and be
approximately the same in every feature node (Oono
and Suzuki, 2019). This phenomenon, called feature
smoothing, becomes more and more present as the
number of graph layers increases. Moreover, across
long distances, GNNs are susceptible to bottlenecks.
That is, the information can grow exponentially when
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Figure 1: PhishGNN architecture comprises two steps: PRE-CLASSIFICATION (a) and MESSAGE-PASSING (b).
Example using a graph with one root URL x1 and 4 outgoing links x2≤i≤5. The input feature matrix X is processed in these 2

steps to result in a prediction vector ŷ containing the probability of the 2 classes.

multiple embeddings have to aggregate in a fixed-
size embedding vector (Topping et al., 2021). This
represents a main issue when there is a need to get
long-distance information via message passing on the
graph. Thankfully, in the phishing classification task
with graphs, we are essentially interested in the 1-
hop neighborhood of the classified URL, as the com-
plexity for crawling n-hop neighborhoods grows ex-
ponentially with the number of URLs. For example,
websites like wikipedia.org can be difficultly crawled
with a depth greater than 1 as the feature extraction
for thousands of nodes takes a huge amount of time.

3.2 PhishGNN

We propose PhishGNN, a framework for websites
classification (phishing or benign) based on Graph
Neural Networks. This framework can be considered
as an additional layer to GNN architectures. There-
fore, it can be easily plugged-in existing GNN imple-
mentations. We use graphs to leverage the hyperlink
structure of websites. In the context of GNNs, we
consider the task of phishing websites classification
as a node classification task, where the node to clas-
sify is a given URL and the other nodes represent ev-
ery possible link coming from that URL until a user-
defined depth. From these links, it is possible to build
a graph where nodes represent URLs, and edges are
the links between URLs, extracted either from <a>,
<form>or <iframe>tags. More precisely, the graph
is a rooted graph where the root node is the website
to classify (named root URL). The input dataset (fed
to our classifier) contains a list of root URLs, map-
ping to a label: phishing or benign. For each URL
in the dataset provided, a feature vector is extracted,
as well as a vector of all URLs going from that root
URL (children URLs). Features are also extracted for

the children URLs. The feature vectors are used to
build the feature matrix X . The children URLs are
used to build the actual graph-structure matrix A.

In our approach, we suggest to train a model in
a semi-supervised mode. The known labels are the
actual root URLs and the unknown labels represent
every child URL (i.e. we do not know if these URLs
are phishing or not). Our contribution highly relies on
the fact that knowing the label of every node around
the root node makes that node much easier to clas-
sify. Given that labels are not known for every child
URL, a classifier could be used to find an approxima-
tion for these labels. This classifier is trained on ev-
ery supervised examples available in the dataset and
is then used for inference on all other unsupervised
examples. Afterwards, using a traditional GNN with
message passing will gather information from classi-
fied nodes to build the embeddings. We use pooling
methods such as add, max or mean on top of the em-
beddings to reduce graph dimension to a single node
embedding. A linear layer is used as a final layer to
make a prediction.

As Figure 1 shows, the architecture is divided into
two steps:

(a) PRE-CLASSIFICATION: initially, the graph com-
prises n nodes, where each node xi(1 ≤ i ≤ n) is
a vector of d features extracted from the corre-
sponding ith URL. x1 is the root URL node and
every node xi(1 < i ≤ n) represent a link com-
ing from x1. At this first step, a binary classi-
fier is used to predict in a semi-supervised mode
whether a node is phishing or benign, for each fea-
ture node xi(1≤ i≤ n). The classifier is a function
g :Rd →B, where B is the Boolean domain. After
this step, the feature matrix X is transformed to a
vector X̂ containing respectively zeroes and ones
for legitimate and phishing predictions.



(b) MESSAGE-PASSING: the predictions are then
passed through a traditional message passing
GNN with h hidden layers, to propagate the infor-
mation in the graph and learn node embeddings.
This results into a matrix X̂′ where each node is
an embedding vector of size h. A pooling method
is used to reduce the dimension of node embed-
dings to a single node of shape 1× h. Finally, a
dot product is applied between this node and a lin-
ear layer of shape 2× h, resulting into a vector ŷ
containing the probability of belonging into each
class: phishing or benign.

The graph-structure matrix A is stored in memory
using the COO format, which requires only O(|E |)
memory space, i.e. it grows linearly according to
the number of edges. The feature matrix X uses
O(|V |×d) memory as it stores fixed-size feature vec-
tors for each node.

The propagation rule of PhishGNN with a
Graph Convolutional Networks (GCN) as MESSAGE-
PASSING step is the same as the original GCN propa-
gation rule:

f (H(l+1),A) = f (H(l),A) (1)

f (H(l),A) = σ(D̂
−1
2 ÂD̂

−1
2 H(l)W (l)) (2)

where A is the adjacency matrix, H(l) is the propa-
gation at layer l, σ is the ReLU non-linear activation
function (Rectified Linear Unit), W (l) is a weight ma-
trix at layer l, Â is the adjacency matrix with self loops
such that Â = A+ I (I is the identity matrix), and D̂ is
the diagonal matrix of Â.
However, instead of starting with H(0) = X in
the original GCN, PhishGNN applies the PRE-
CLASSIFICATION step to X such that H(0) = g(X),
where g is a Random Forest prediction function.

4 PERFORMANCE EVALUATION

4.1 Evaluation Framework

To train the model and later evaluate arbitrary inputs,
raw features related to a given URL must be obtained.
Additionally, and unlike traditional classifiers oper-
ating on content features, PhishGNN must crawl web
pages recursively to provide features for the pages ref-
erenced. Several existing crawlers were considered,
but ultimately we implement a crawler specifically
designed for PhishGNN with the following function-
alities.

1. FINE-TUNED FEATURE EXTRACTION: feature
extraction can be tailored to our use cases. No-
tably, workers can extract lexical features, content
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d = 0 d = 1 d = 2 d = 3
Figure 2: Crawling depth, noted as d. Node 1 is the root

URL of depth 0, nodes 2, 3 and 4 are nodes of depth 1, etc.

features, and domain features with no external de-
pendencies (i.e. no sub-processes are needed dur-
ing feature extraction).

2. ROBUSTNESS: scraper 9 (which uses Servo’s 10

error-resilient HTML parser) is used for parsing
and browsing HTML trees. rust-url 11 (sim-
ilarly used by Servo) is used for parsing URLs,
and addr 12 (which uses Mozilla’s Public Suffix
List 13) is used for parsing domain names. rustls
14 is used with webpki-roots 15 for establishing
safe TLS connections and rejecting invalid TLS
certificates with sane defaults. Pages that take
more than 10 seconds to read, or that are over than
1 MiB, or that lead to more than 10 redirects are
dropped.

3. CONCURRENCY: multiple processes can operate
on the same database at the same time, and each
process can contain hundreds of workers which
run in parallel (using OS threads) and concur-
rently (using asynchronous tasks).

4. DOMAIN-SPECIFICITY: multiple types of work-
ers are available; core workers process pending
URLs, extracting lexical and content features.
Domain workers process pending domains, ex-
tracting domain features. This separation allows
each domain to be processed only once, no matter
how many pages are hosted on it.

5. EXTERNAL STORAGE: the processing queue lives
entirely on a database separate from the workers.

9https://crates.io/crates/scraper
10https://servo.org/
11https://crates.io/crates/url
12https://crates.io/crates/addr
13https://publicsuffix.org/
14https://crates.io/crates/rustls
15https://crates.io/crates/webpki-roots

https://crates.io/crates/scraper
https://servo.org/
https://crates.io/crates/url
https://crates.io/crates/addr
https://publicsuffix.org/
https://crates.io/crates/rustls
https://crates.io/crates/webpki-roots


This enables distributed workers to be stopped
or resumed at will, and direct interaction with
the database to enqueue new pages or to monitor
progress.

Crawling websites can be a heavy and time-
consuming task. That’s why it is mandatory to spec-
ify to the crawler when to stop the recursion. In Fig-
ure 2, we explain how the crawling depth works: a
value determining how deep the crawler should go
when iterating over the children of each web page.
In this study, we have set the crawling depth to 1 (that
is, both pages of depth 0 and 1 are crawled for their
features), because using greater depth results in huge
times for feature extraction. We classify the most im-
portant features extracted by the crawler (before the
post-processing) as follows.

1. LEXICAL FEATURES: is https (is the URL
scheme ”https”), is ip address (is the domain
an IP address in any form), domain length
(length of the domain name, including sub-
domains and Top Level Domain (TLD)),
domain depth (number of dots in the domain
name), has subdomain (domain depth ≥ 2),
dashes count (number of dash characters in the
domain name), has at symbol (contains ”@”),
is same domain (false if the URL domain is not
the same as the root URL).

2. CONTENT FEATURES: is valid html (false if
the response body contains HTML parsing er-
rors), has iframe (true if an <iframe> tag is
in the page document), has form with url (true
if a <form> element exists with a valid, static
src attribute). References are added for <a> el-
ements with valid (i.e. statically known and lead-
ing to a valid HTTP or HTTPS URL after resolu-
tion) href attributes, <form> elements with valid
action attributes, and <iframe> elements with
valid src attributes.

3. DOMAIN FEATURES: is cert valid (false if
expired or rejected by rustls), cert country,
cert reliability (computed using the duration
of the certificate and whether its issuer is trusted),
has whois (false if WHOIS could not be resolved
for the domain), domain age (in seconds, be-
tween the last update date and the domain reg-
istry expiry date), domain end period (in, sec-
onds between the date of the extraction and the
domain registry expiry date).

Once features have been extracted by the crawler, they
can be exported to a csv file which can then be read
and pre-processed in Python. To better understand
the underlying structure of each website, we have
developed a tool to visualize every graph from the

externaldomainerrorpage

root urlsamedomain

Figure 3: Graph representation of two websites after
crawling with depth=1. Graph on the left contains multiple

children URLs already crawled in previous iterations so
their children are inserted in the graph as nodes of depth 2.
Graph on the right contains children URLs never crawled
before. Node in dark blue is the root URL, nodes in cyan
and yellow are respectively URLs from the same domain
and different domain, while red nodes are URLs returning

an error code (HTTP status not in range 200-299).

dataset16. In Figure 3, two crawled web pages, with
totally different structures, are represented as graphs.

4.2 Dataset

Finding a reliable public phishing dataset is fairly
challenging because the lifetime of phishing web-
sites is really short (few days or weeks). Hence, we
have built a dataset based on around 30,000 malicious
URLs, extracted from public phishing blacklists such
as OpenPhish17 or PhishTank18. However, most of
these URLs redirect to 404 error pages as the corre-
sponding websites are now out of service. The first
filtering operation to apply on the dataset is thus to
check that every website is responding with a success-
ful HTTP code (i.e. in the range 200-299). This step
has reduced the dataset size by 85%. Furthermore,
some of the filtered URLs are labeled incorrectly. In-
deed, totally legitimate websites like wikipedia.org or
baidu.com are sometimes classified as phishing in-
stead of benign. These incorrect classifications could
lead to a biased model and therefore to incorrect pre-
dictions. To prevent this, we used the Google Safe
Browsing API 19 in order to filter the dataset. Using
this service on every URL from the dataset improves
the reliability of each training example and brings a
fairly better data quality but also removes a significant
amount of data. This filtering step reduces the size of

16Tools, implementations and experiments developed
and provided in this paper are available on GitHub https:
//github.com/TristanBilot/phishGNN.

17https://www.openphish.com/
18https://phishtank.org/
19https://developers.google.com/safe-browsing/v4

https://github.com/TristanBilot/phishGNN
https://github.com/TristanBilot/phishGNN
https://www.openphish.com/
https://phishtank.org/
https://developers.google.com/safe-browsing/v4


Model Mean-Pooling Max-Pooling Add-Pooling Time (s)
GIN 48±1.5 59±2.4 76±0.1 37.2
GAT 79±3.2 59±2.7 82±1.1 45.5
MemPooling 78±3.0 73±4.1 76±3.8 67.5
GCN 2 91±0.5 93±0.2 92±0.5 32.1
GCN 3 91±0.3 92±0.1 89±0.7 34.4
GraphSAGE 92±0.4 92±0.5 89±0.7 29.4
ClusterGCN 93±0.3 93±0.6 72±2.8 37.8

Figure 4: Model accuracy in % on test set for 10 epochs, for every implemented GNN. Each model is declined in three
versions using multiple pooling methods (mean, max, add) as readout functions.

Model Mean-Pooling Max-Pooling Add-Pooling Time (s)
PhishGNN GIN 52.4 53.2 71.2 23
PhishGNN GAT 88.9 62.1 95.0 90
PhishGNN MemPooling 75.8 99.2 98.0 23
PhishGNN GCN 2 99.7 99.7 99.1 20
PhishGNN GCN 3 99.7 99.7 99.2 22
PhishGNN GraphSAGE 99.6 99.6 99.6 17
PhishGNN ClusterGCN 99.7 99.7 97.2 24

Figure 5: Accuracy of PhishGNN framework on test set for 1 epoch using a Random Forest setting. PhishGNNGCN2 ,
PhishGNNGCN3 and PhishGNNClusterGCN achieve best results with 99.7% accuracy, where PhishGNNGCN2 is the fastest

model for inference and training.

the dataset again by around 40% but has proven to be
profitable. Furthermore, only websites containing at
least a <form>, <input> or <textarea> tag are used
for training. Indeed, we assume that phishing web
pages usually request the user’s personal information.
A web page not containing such HTML tags is there-
fore not trying to steal any information.
Benign URLs are extracted from the Alexa top 1 mil-
lion sites dataset 20. The same filtering process is ap-
plied, except for the Safe Browsing API filter. We use
approximately the same number of training examples
in both classes in order to obtain a balanced dataset.

After the filtering steps, the overall dataset con-
tains 4633 high quality URLs: 2300 benign and 2333
phishing, where 70% are used for training and 30%
for testing. Graph matrices are built from the crawled
URLs of the dataset. These graphs possess the fol-
lowing statistics: 90 average and 31 median nodes,
ranging from 1 to 5185 nodes, 138 average and 45
median edges, ranging from 0 to 5214 edges.

4.3 Numerical Results and Discussion

4.3.1 Evaluation of Existing GNNs

A total of 7 well-known GNNs have been imple-
mented and trained on the crawled dataset. Every
model was implemented in Python using the PyTorch
Geometric library. In this section, we describe the

20https://www.kaggle.com/datasets/cheedcheed/top1m

benchmarking performances of the models based on
the raw features, without considering the PhishGNN
implementation. For each GNN architecture, the net-
work is trained for 10 epochs using Adam optimizer
with a learning rate of 0.01, a weight decay of 1e−5
and a batch size of 32. The loss is computed at
each epoch using cross-entropy. Implemented mod-
els are GIN (Xu et al., 2018), GAT (Veličković et al.,
2017), MemPooling (Ahmadi, 2020), GCN (Kipf and
Welling, 2016), GraphSage (Hamilton et al., 2017)
and ClusterGCN (Chiang et al., 2019). GCN2 and
GCN3 are respectively implementations of GCN with
2 and 3 GCN layers. Training has been done on a
NVIDIA Tesla K80 GPU using 16, 32 and 64 hid-
den neurons, where the setting with 32 hidden neu-
rons gave the best accuracy. The obtained results are
therefore based on models trained with hidden layers
of size 32. Corresponding accuracies (mean ± stan-
dard deviation) and the average execution times are
listed in Figure 4.

4.3.2 Evaluation of PhishGNN

In this section, we are interested in benchmarking
PhishGNN framework with every GNN architecture
implemented previously. Traditional Machine Learn-
ing techniques are also evaluated in order to find the
best classifier to integrate with PhishGNN. As Fig-
ure 6 describes, most traditional Machine Learning
methods achieve equivalent or even better results than
the previous GNNs. Thereby, the Random Forest

https://www.kaggle.com/datasets/cheedcheed/top1m


88 90 92 94 96 98 100

PhishGNN
Random Forest

kNN
RBF SVM

GCN

Logistic Regression
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Feed Forward Network

Naive Bayes
Linear SVM
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95.2
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Figure 6: Classification accuracies between traditional
Machine Learning methods, GCN and PhishGNN.

(i.e. the classifier with best accuracy) is chosen as
the default classifier used in the PhishGNN architec-
ture. By combining Random Forest predictions as
PRE-CLASSIFICATION step and GCN2 as MESSAGE-
PASSING step, we outperform every other result by a
large gap with an accuracy of 99.7%. The accuracy
has been computed according to Equation 3:

Acc =
C
N

(3)

where C is the number of correct predictions and N is
the total number of predictions. A detailed analysis
of true and false positives/negatives is demonstrated
in Figure 7.

Benign Phishing Total
Benign 688 3 691
Phishing 2 802 804

Total 690 805 1495
Figure 7: Confusion matrix for a test set of 1495 examples.

As Figure 5 shows, we achieve high scores
with every pooling method in only one epoch. As
predictions are already pre-computed in the PRE-
CLASSIFICATION step, there is no need to train the
GNN multiple times, as we want to propagate the in-
formation one time to obtain node embeddings.

To better understand the model predictions, node
embeddings have been extracted directly after the
pooling step and are plotted in Figure 8, using the T-
distributed Stochastic Neighbor Embedding (TSNE)
dimension reduction technique. Although the tradi-
tional GCN achieves great classification results, we
see in embedding space that the model fails to de-
limit many nodes. However, thanks to the the PRE-
CLASSIFICATION step in PhishGNN, node embed-
dings are more grouped and classes can be delimited
by a straight line, which leads to a better classifica-
tions.

Figure 8: Embeddings of two models trained on our
dataset. GCN2 without PhishGNN framework (left) and
with PhishGNN framework (right). Green: Benign; Red:

Phishing

5 CONCLUSION AND FUTURE
WORKS

To the best of our knowledge, we introduced the first
Graph Neural Network framework applied to web-
site hyperlink structure for the phishing classification
task. Our experiments has shown that GNNs directly
applied on the website graph structure is less efficient
than traditional Machine Learning methods applied to
features. However, by leveraging the semi-supervised
structure of the graph, a classifier can be trained on
supervised examples and make predictions on unsu-
pervised ones. The semi-supervised predictions are
then taken by a GNN as new input features and af-
ter message-passing, outperforms both traditional and
Machine Learning techniques. The best accuracy has
been achieved using a GCN combined with a Random
Forest classifier. Furthermore, our approach is easily
pluggable with any GNN architectures or other down-
stream classification methods. Hence, can be adjusted
and improved in future works.

For future works we will focus on the establish-
ment of a larger dataset, that contains more diverse ex-
amples. This dataset will be used in further research
to improve benchmarking capabilities for phishing
classification based on GNNs. We will also focus on
improving the accuracy of our approach via leverag-
ing edge features in the graph.
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