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A B S T R A C T

The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to
address eminent problems in developing reliable computer aided detection and diagno-
sis endoscopy systems and suggest a pathway for clinical translation of technologies.
Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs,
there are several core challenges often faced by endoscopists, mainly: 1) presence of
multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identi-
fying subtle precancerous precursors and cancer abnormalities. Artefacts often affect
the robustness of deep learning methods applied to the gastrointestinal tract organs as
they can be confused with tissue of interest. EndoCV2020 challenges are designed to
address research questions in these remits. In this paper, we present a summary of
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methods developed by the top 17 teams and provide an objective comparison of state-
of-the-art methods and methods designed by the participants for two sub-challenges:
i) artefact detection and segmentation (EAD2020), and ii) disease detection and seg-
mentation (EDD2020). Multi-center, multi-organ, multi-class, and multi-modal clinical
endoscopy datasets were compiled for both EAD2020 and EDD2020 sub-challenges.
The out-of-sample generalization ability of detection algorithms was also evaluated.
Whilst most teams focused on accuracy improvements, only a few methods hold credi-
bility for clinical usability. The best performing teams provided solutions to tackle class
imbalance, and variabilities in size, origin, modality and occurrences by exploring data
augmentation, data fusion, and optimal class thresholding techniques.

© 2021 Elsevier B. V. All rights reserved.

1. Introduction

Endoscopy is a widely used imaging technique for both di-
agnosis and treatment of patients with complications in hollow
organs such as esophagus, stomach, colon, bladder, kidney and
nasopharynx. During the endoscopic procedure, an endoscope,
a long thin tube with a light source and a camera at its tip, is
inserted into the organ cavity. The imaging procedure is usu-
ally displayed on a monitor on-the-fly and is often recorded for
post analysis. Each organ imposes very specific constraints to
the use of endoscopes, but the most common obstructions in
all endoscopic surveillance consists of artefacts caused by mo-
tion, specularities, low contrast, bubbles, debris, bodily fluid
and blood. These artefacts hinder the visual interpretation of
clinical endoscopists (Ali et al., 2020c). Missed detection rates
of precancerous and cancerous lesions are another limitation.
Gastrointestinal (GI) cancer (especially colorectal cancer) has
high mortality rates and 5-year relative survival rates for stage
IIB is around 65% (Rawla et al., 2019). In general, the missed
detection rates in endoscopic surveillance is considerably high,
at over 15% (Lee et al., 2017). Therefore, the requirement for
technology that can be effectively used in clinical settings dur-
ing endoscopy imaging is necessary.

While a dedicated endoscopic procedure is followed for each
specific organ, often these procedures are very similar, in partic-
ular for the GI tract organs like the esophagus, stomach, small
intestine, colon and rectum. Notably, some precancerous ab-
normalities such as inflammation or dysplasia and even cancer
lesions in these GI organs naturally look very similar. Often
automated methods are only trained for a specific abnormal-
ity, organ and imaging modality (Zhang et al., 2019), whereas
multiple different types of abnormalities can be present in dif-
ferent organs and several imaging protocols are used during en-
doscopy. Also, methods that are built for colonoscopy cannot be
used during a gastroscopy (in the esophagus, stomach and small
intestine), despite the nature and occurrence of many abnormal-
ities being similar in these organs. Artefacts are prevalent in all
endoscopy surveillance and are usually confused with lesions,
which can lead to unreliable outcomes.

A pathway to develop and reliably deploy methods in clin-
ical settings is by benchmarking methods on a curated multi-
center, multi-modal, multi-organ and multi-disease dataset and
through a thorough evaluation of built methods using standard

imaging metrics and metrics that can test their clinical appli-
cability, for example ranking based on accuracy, robustness
and computational efficiency (Ali et al., 2020c). Most publicly
available datasets are specific to a particular organ, modality
or a single abnormality class, e.g., polyp detection and seg-
mentation challenges (Bernal et al., 2017; Jorge and Aymeric,
2017). While dedicated organ specific challenges help to iden-
tify one particular disease type, they do not resemble the clin-
ical workflow where the endoscopists are interested in biopsy
and treatment of such abnormalities when of potential threat.
For polyp class, it is required to identify different stages of
polyp such as benign, dysplastic or cancer. Recently, it was
shown that polyps and artefacts can be confused mostly due
to specularity (Soberanis-Mukul et al., 2020). Artefacts are
the fundamental and inevitable issue in endoscopy that often
add confusion in detecting tissue abnormalities in these organs.
It is therefore vital to accelerate research in identifying these
classes and restore frames where possible (Ali et al., 2021) or
reduce the false detections by adding uncertainties for such con-
fusions (Soberanis-Mukul et al., 2020). Other ways to address
artefact problems in the endoscopy data is by using syntheti-
cally generated frames (Mahmood et al., 2018; Formosa et al.,
2020; Incetan et al., 2020). Mahmood et al. (2018) used self-
regularized transformer network that allowed to transform the
real images into synthetic-like images with preserved clinically-
relevant features. This allowed the authors to estimate depth in
colonoscopy data robustly without being affected by adverse
artefact problems. Incetan et al. (2020) demonstrated the use
of a virtual active capsule environment that can simulate wide
range of normal and abnormal tissue conditions such as inflated,
dry and wet; organ types and endoscopy camera designs in cap-
sule endoscopy. This allowed to optimize the analysis software
for varied real conditions.

The Endoscopy Computer Vision Challenge (EndoCV2020)1

is another crowd-sourcing initiative to address fundamen-
tal problems in clinical endoscopy and consists of: 1) En-
doscopy artefact detection and segmentation (EAD2020), and
2) Endoscopy disease detection and segmentation (EDD2020).
EndoCV2020 releases diverse datasets that include multi-
center, multi-modal, multi-organ, multi-disease/abnormality,

1https://endocv.grand-challenge.org
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and multi-class artefacts. Among the two sub-challenges,
EAD2020 is an extended sub-challenge of EAD2019 (Ali et al.,
2019), however, unlike EAD2019 it includes both frame and se-
quence data with an addition of nearly 500 frames and a total of
41,832 annotations for detection task and 10,739 for segmenta-
tion task.

In this paper, we summarise and analyse the results of the
top 17 (out of 43) teams participating in the EndoCV2020 chal-
lenge. Additionally, we benchmark these methods with the cur-
rent state-of-the-art detection and segmentation methods. Each
method is also evaluated for its efficacy to detect and segment
multi-class instances. In addition to the standard computer vi-
sion metrics used to evaluate methods during the challenge, we
perform a holistic analysis of individual methods to measure
their clinical applicability.

2. Related work

With the advancements in deep learning for computer vision,
object detection and segmentation algorithms have shown rapid
development in recent years. This is due to the hidden feature
representations provided by Convolutional Neutral Networks
(CNNs) that show significant improvement over hand-crafted
features. CNN-based methods quickly gained the attention of
the Medical Imaging community and are now widely used for
automating the diagnosis and treatment for a range of imaging
modalities, e.g. radiographs, CT, MRI, and endoscopy imag-
ing. Below we present an overview of the recent deep learning-
based object detection and segmentation techniques and discuss
the related work in the context to medical image analysis with
a particular focus on endoscopy imaging applications.

2.1. Detection and localization

Object detection and localization refers to determining the
instances of an object (from a list of predefined object cate-
gories) that exist in an image. Object detection approaches can
be broadly divided into three categories: single-stage, multi-
stage and anchor-free detectors. A brief survey of these is pre-
sented below.

Single-stage detectors. Single-stage networks perform a single
pass on the data and incorporate anchor boxes to tackle multi-
ple object detection on the same image grid such as in YOLO-
v2 (Redmon et al., 2016). Similarly, Liu et al. (Liu et al., 2016)
proposed the Single Shot MultiBox Detector (SSD) with addi-
tional layers to allow detection of multiple scales and aspect ra-
tios. RetinaNet was introduced by Lin et al. (Lin et al., 2017b)
where the authors introduced focal loss that puts the focus on
the sparse hard examples enabling a boost in performance and
speed.

The domain of Gastroenterology has started to benefit from
the success of single-stage object detectors. Wang et al. (Wang
et al., 2018) proposed a model that is based on SegNet (Badri-
narayanan et al., 2017) architecture to detect polyps during
colonoscopy. Urban et al. (Urban et al., 2018) used YOLO
to detect polyps from colonoscopy images in real-time. Horie
et al. (Horie et al., 2019) used SSD to detect superficial and

Fig. 1: EndoCV2020 train data samples. (a) Endoscopy artefact detection
and segmentation sub-challenge (EAD2020) samples. Both single frame sam-
ples (top) and sequence frames (bottom) were released. While detection anno-
tations involve 8 classes, segmentation classes were limited to 5 distinct class
instances, mostly large indefinable shapes that include specularity, saturation,
imaging artefact, bubbles and instrument. It can be observed that for sequence
data most artefact instances follow upto few sequential frames so it is desirable
to achieve such training datasets. 4th sample in the single frame data for seg-
mentation shows that even though bounding boxes for detection are provided
for all specular regions, some segmentation labels were missing. This shows
the presence of annotator variability in the data. (b) Endoscopy disease de-
tection and segmentation training samples for sub-challenge EDD2020. First
four samples belong to esophageal endoscopy while the last two frames were
acquired during colonoscopy. It can be observed that disease classes in esoph-
agus confuse often, mostly the patient choice here is Barrett’s where clearly
suspected and high-grade dysplasia appear jointly. Similarly, for colonoscopy
data protruded polyps can easily be confused with the surrounding ridge-like
openings and specular areas.

advanced esophagal cancer. RetinaNet was the most popu-
lar detector in the first EAD challenge held in 2019. Reti-
naNet detector with focal loss was used by some top performing
teams (Kayser et al., 2019; Oksuz et al., 2019)

Multi-stage detectors. Multi-stage detectors use a region pro-
posal network to find regions of interest for objects and then
a classifier to refine the search to get the final predictions. A
two-stage architecture R-CNN using the classical region pro-
posal method was proposed by Girshick et al. (Girshick et al.,
2014) whose speed was improved later by integrating an end-
to-end trainable region proposal network (RPN), widely known
as Faster R-CNN (Ren et al., 2015). Due to the high precision
of the Faster R-CNN, its architecture has become the base for
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many successful models in the object detection and segmenta-
tion domains, such as Cascade R-CNN (Cai and Vasconcelos,
2018) and Mask R-CNN (He et al., 2017). Although these two-
stage networks have shown successful results on public datasets
such as Pascal VOC (Everingham et al., 2012) and COCO (Lin
et al., 2014), they are slow compared to the single-stage object
detectors due to their region proposal mechanism.

In the field of Gastroenterology, Yamada et al. (Yamada
et al., 2019) used Faster R-CNN with VGG16 as the back-
bone to detect challenging lesions which are generally missed
by colonoscopy procedures. Their reported prediction speed
was not suitable for real-time examination. Shin et.al. (Shin
et al., 2018) detected Polyps using the Fast R-CNN architec-
ture with a region proposal network and an inception ResNet
backbone. The two-stage detectors tend to yield better results
than their single-stage contemporaries and have performed bet-
ter at medical image analysis challenges. In the EAD2019
challenge, the top performing team (Suhui Yang, 2019) used
a Cascade R-CNN with a feature pyramid network (FPN) mod-
ule and a ResNet backbone. Similarly, Pengyi Zhang et.al.
(Pengyi Zhang, 2019) who used Mask aided R-CNN with an
ensemble of different ResNet backbones finished second.

Anchor-free detectors. A newly emerging detector type are the
anchor-free detectors. Single and multi-stage detectors rely on
the presence of anchors. Anchor free architectures claim to
detect objects while skipping the process of anchor definition.
They rely on different geometrical characteristics like the center
or corner points of objects (Law and Deng, 2018; Duan et al.,
2019). Duan et al. (Duan et al., 2019) utilized the upper left
and lower right corner to mark an object. The authors used
classical backbones to generate a heatmap from the feature map
showing potential spots of the object corners. A corner pooling
technique was then used to create the classic bounding box of
object detection. Zhou et al. (Zhou et al., 2019) used a similar
approach but instead they used a single point as the center of
the bounding box.

Because of real-time dependencies in medical applications
like the detection of polyps which have to be removed directly
(Wang et al., 2019), anchor-free detectors are receiving more
attention. Wang et al. (Wang et al., 2019) designed an anchor-
free automatic polyp detector which achieved the state-of-the-
art results while maintaining real-time applicability. Liu et al.
(Liu et al., 2020) showed an anchor-free detector with state-of-
the-art performance while maintaining real-time performance.

2.2. Semantic segmentation

Semantic segmentation involves pixel-level partitioning of an
image into multiple segments where each segment represents a
pre-defined object or scene category. Based on the success of
deep learning approaches on medical imaging data for segmen-
tation, we can divide these approaches broadly into the follow-
ing groups:

Models based on fully convolutional networks. Fully Convolu-
tional Network (FCN) architectures include only convolutional
layers that enable them to take any arbitrary size input image

to output a segmentation mask of the same size. These mod-
els are mostly based on the architecture developed by Long et
al. (Long et al., 2015) for semantic image segmentation.

Sun et al. (Sun et al., 2017) proposed a multi-channel FCN
(MC-FCN) to segment liver tumors from multi-phase contrast-
enhanced CT images. Kaul et al. (Kaul et al., 2019) proposed
FocusNet for skin cancer and lung lesion segmentation. A
benchmark study for polyp segmentation using FCNs was con-
ducted by (Gao et al., 2017). Similarly, Patrick et al. (Brandao
et al., 2017) used FCN architecture with VGG backbone for a
polyp segmentation task. The same group explored integration
of depth information to improve segmentation accuracy in their
FCN-based model (Brandao et al., 2018).

Models based on encoder-decoder architecture. U-Net (Ron-
neberger et al., 2015), an encoder-decoder architecture, has be-
come widely popular in medical image analysis community.
U-Net based models have shown tremendous success, from
cell segmentation (Falk et al., 2019) to liver tumor segmenta-
tion (Chlebus et al., 2017) and beyond (Sevastopolsky, 2017;
Norman et al., 2018).

In endoscopy imaging, U-Net-based models were used for
instrument segmentation on GI endoscopy data (Jha et al.,
2020). Khan and Choo (Khan and Choo, 2019) developed
a model based on U-Net architecture for endoscopy artefact
segmentation. Bano et al. (Bano et al., 2020) directly used
U-Net architecture for segmenting placental vessels from Fe-
toscopy imaging. Motion induced segmentation exploiting U-
Net in the framework was used to segment kidney stones in the
Uteroscopy data (Gupta et al., 2020).

Models based on pyramid-based architecture. In both detec-
tion and segmentation tasks, a crucial part is being able to iden-
tify objects and features of varying scales and sizes. One ap-
proach to this problem is to incorporate convolutional feature
maps of varying resolutions during classification, which yields
information about different scales of the image, making it eas-
ier to detect both small and big objects. Such architectures are
referred to as pyramid networks. PSPNet (Zhao et al., 2017)
is one of such design that incorporates global context informa-
tion for the task of scene parsing using a pyramid pooling mod-
ule. A similar pyramid-based approach can be found in the task
of object detection with Feature Pyramid Network (FPN) (Lin
et al., 2017a). FPN extracts feature maps on a per-resolution-
basis from the two bottom-up and top-down pathways of a pre-
trained architecture. The output maps can then be upsampled
and concatenated to output a segmentation map (Seferbekov
et al., 2018).

Guo et al. (Guo et al., 2019) used PSPNet as part of an en-
semble model including a U-Net and SegNet architecture for
the task of automated polyp segmentation in colonoscopy im-
ages. Jia et al. (Jia et al., 2020) trained a two-stage polyp de-
tector named PLPNet which utilizes FPN for multiscale feature
representation using both CVC-ColonDB (Bernal et al., 2012)
and CVC-ClinicDB (Bernal et al., 2015). Their experimen-
tal results show that PLPNet outperforms other architectures in
most regions on CVC-612 dataset (Bernal et al., 2015) and per-
forms similarly on the ETIS dataset (Silva et al., 2014). Zhang
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and Xie (Zhang and Xie, 2019) utilized an FPN combined with
a Cascade R-CNN for artefact detection in endoscopic images.

Models based on dilated convolution architecture. One of the
challenges in the construction of semantic segmentation net-
works is to effectively control the size of the receptive field,
providing adequate contextual information for pixel-level deci-
sions while, at the same time, maintaining high spatial resolu-
tion and computational efficiency. The dilated or atrous convo-
lution was proposed to address these challenges (Yu and Koltun,
2015). Chen at al. (Chen et al., 2018) proposed a family of
very effective semantic segmentation architectures, collectively
named DeepLab (also an encoder-decoder network), all using
the dilated convolution. DeepLabv3+ uses atrous kernels within
the spatial pyramid pooling (ASPP) module and depth-wise
separable convolution to improve the computational efficiency.

Guo et al. (Guo et al., 2020a) proposed a fully convolu-
tional network based on atrous kernels to segment polyps in en-
doscopy images, with their network winning the GIANA 2017
challenge (Jorge and Aymeric, 2017). Nguyen et al. (Nguyen
et al., 2020a) augmented DeepLabv3+ architecture, showing
its favourable performance when compared with other state-
of-the-art methods on the CVC-ClinicDB Bernal et al. (2015)
and ETIS-Larib (Silva et al., 2014) datasets. Ali et at. (Ali
et al., 2020a) used DeepLabv3+ with ResNet50 backbone to
segment Barrett’s area from esophageal endoscopy data. Yang
and Cheng (Yang and Cheng, 2019) developed a model based
on DeepLabv3+ for multi-class artefact segmentation used with
different backbone architectures.

2.3. Endoscopy computer vision challenges

Biomedical challenges allow to set-up a benchmark for dif-
ferent computer vision methods. Several sub-challenge cate-
gories for the development of automated methods for wide-
range of problems in endoscopy including surgical instru-
ment segmentation (Ross et al., 2020), robotic scene segmen-
tation (Allan et al., 2020), and computer aided detection and
segmentation for polyps (Bernal et al., 2017, 2018) and Bar-
rett’s cancer detection2 have been initiated under MICCAI En-
doVis challenge3. Endoscopy artefact detection (EAD2019) is
another challenge which was first initiated in 2019 and launched
in conjunction with IEEE International Symposium on Biomed-
ical Imaging (ISBI) 2019 (Ali et al., 2020c).

3. The EndoCV challenge: Dataset, evaluation and submis-
sion

In this section, we present the dataset compiled for the En-
doCV2020 challenge, the protocol used to obtain the ground
truth for this data, evaluation metrics that were defined to as-
sess participants methods and a brief summary on the challenge
setup and ranking procedure.

3.1. Dataset and challenge tasks

The EndoCV2020 challenge consists of two sub-challenges
critical in clinical endoscopy. The EAD20204 sub-challenge
comprises of diverse endoscopy video frames collected from
seven institutions worldwide, including three different modali-
ties and five different human organs (see Figure 2). Endoscopy
video frames were annotated for detection and localization of
eight different artefact class occurrences identified by clini-
cal experts in the challenge team. These include specularity,
saturation, misc. artefacts, blur, contrast, bubbles, instrument
and blood. A total of 280 patient videos from multiple organs
and institutions have been used for curating this dataset. Over
45,478 annotations were performed for this challenge on both
single frame and sequence video data. Example annotations are
shown in Figure 1. Training data for the detection task con-
sisted of total 2,531 frames with 31,069 bounding boxes while
643 frames with 7,511 binary masks were released for the seg-
mentation task (except for blur, blood and contrast). The se-
quence data were sampled by manually observing the amount
of changes in artefact categories in the selected sequence. Se-
quences were required to change from large areas of artefacts
to small or no artefact frames and vice versa mimicking nat-
ural occurrence in endoscopic procedures. Sequence data for
training included 5 sequences (232 frames) for detection and
2 sequences (70 frames) for semantic segmentation tasks sam-
pled from 3 videos of 3 different patients. For the test set, two
sequence (80 frames) for detection task were used from 2 inde-
pendent patient videos. As observed in Figure 2, due to the na-
ture of occurrence of various artefact classes, the proportion of
annotations for each class is different (Figure 3). However, the
proportion of training and test samples per-class were matched
in the test data (also see Table 1).

Separately, EDD20205 is a new disease detection and seg-
mentation sub-challenge that consists of five disease cate-
gories Ali et al. (2020b). The provided training set consisted of
total 385 video frames comprising of 137 different patients used
in this study with a total of 817 individual annotations. The an-
notations included non-dysplastic Barrett’s esophagus (NDBE),
suspicious, high-grade dysplasia (HGD), cancer, and polyp cat-
egories (also see Figure 1). These disease classes were from
three different endoscopic modalities (white light, narrow-band
imaging, and chromoendoscopy) acquired from four different
clinical centers, investigating four different GI organs. By in-
cluding varied range of endoscopy data acquired from multi-
ple organs like GI tract and liver in EAD sub-challenge and
both upper and lower GI tract data for EDD sub-challenge, En-
doCV2020 challenge aimed at developing more general meth-
ods that can potentially be applied in different endoscopy rou-
tine procedures independent to organ type. To our knowledge,
this is the first comprehensive dataset for the multi-class detec-
tion and segmentation tasks. More details on the dataset are

2https://endovissub-barrett.grand-challenge.org
3https://endovis.grand-challenge.org
4https://ead2020.grand-challenge.org
5https://edd2020.grand-challenge.org
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Ambroise Paré Hospital, Paris, France

University Hospital Vaudois, Switzerland

Centro Riferimento Oncol., IRCCS, Italy

ICL Cancer Institute, Nancy, France

Botkin Clinical City Hospital, Moscow, Russia

Istituto Oncologico Veneto, Padova, Italy

John Radcliffe Hospital, Oxford, UK

Train data Train and test data
EAD2020 EDD2020

Test data
Out-of-sample
test data

Institutes (Outer circle)

386 + 48
frames

White light (WL)

Narrow band imaging (NBI)

Chromo endoscopy

Modality (Middle circle)
Oesophagus

Stomach

Colon

Small intestine

Other

Organ (Inner circle)

Mean box width and heightTrain data Test data

specularity saturation artifact blur contrast bubbles instrument blood

Mean box width and height

Mean box width and height

BE suspicious HGD cancer polyp

Train data Test data

b. EAD2020 train and test sample with per class width and height for detection dataset

c. EDD2020 train and test sample with per class width and height for detection dataset

a. EndoCV2020 multi-center data cohort: Train and test data for each sub-challenge

Fig. 2: Endoscopy computer vision EndoCV2020 challenge dataset details. (a) Multi-center, multi-modality and multi-organ dataset for EAD and EDD sub-
challenges. For EAD2020, 2532 frames with 8 class bounding boxes for the detection task out-of which 573 included ground truth masks for segmentation task were
provided. Participants were assessed on 317 frames for detection and 162 frames for segmentation tasks. An additional 99 frames were used to test out-of-sample
generalization task for EAD sub-challenge. While EDD2020 consisted of 384 train samples and 43 test samples for 5 disease classes. (b-c) The distribution of 8
artefact classes of EAD and 5 disease classes of EDD w.r.t. their size compared to their height and width of image is provided. Each class size variability is also
shown on right as blobs with mean at center and radius as standard deviation.

provided in Figure 2. The detailed breakdown of training set
and test set for each specific task is provided in Table 1.

EndoCV2020 posed three specific challenge tasks (see Fig-
ure 4) that included: 1) detection and localization task, 2) se-
mantic segmentation task and 3) out-of-sample generalization

task. For detection and generalization tasks, participants were
provided with both frame label annotations for single and se-
quence images for the EAD2020 challenge while only single
frames were released for EDD2020. The generalization task
was only evaluated for the EAD2020 and only consisted of
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EndoCV Tasks # of classes # of frames # of annotations
Train Test Train Test

EAD2020
Detection task 8

single: 2299
seq.: 232

single: 237
seq.: 80 31069 7750

Segmentation task 5 643 162 7511 3228
Generalization task 8 na 99 na 3013

EDD2020 Detection task 5 386 43 749 68
Segmentation task 5 386 43 749 68

Table 1: Breakdown of data: Number of samples and annotations released for EndoCV2020 challenge.

Fig. 3: EndoCV2020 train and test per-class sample proportion: Train and test annotations for sub-challenge on artefact (A,B) and disease (C) detection and
segmentation for each class label.

test data from an unseen institution that was not present in
any training set. It is to be noted that test samples for all
other tasks were taken from different patients as well even
though they were collected from the same centers as that in the
training set. EAD2020 attracted nearly 700 participants with
29 teams on the leaderboard and EDD2020 recorded nearly
550 participants with 14 teams on the leaderboard. Participa-
tion was permitted in either one or both sub-challenges. Both
challenge datasets are publicly available for research and ed-
ucation. EAD2020 challenge data is available at Mendeley
Data (10.17632/c7fjbxcgj9.3) and EDD2020 dataset
is available at IEEE dataPort (http://dx.doi.org/10.
21227/f8xg-wb80).

3.1.1. Ethical and privacy aspects of the data
Data for EAD2020 were collected from 7 different centers

while for EDD2020 were from 4 centers. Each center was re-
sponsible for handling the ethical, legal and privacy of the rel-
evant data sent to the challenge organizers. The data collection
from each center included either two or all essential steps de-
scribed below:

1. Patient consenting procedure at the home institution (re-
quired)

2. Review of the data collection plan by a local medical ethics
committee or an institutional review board

3. Anonymization of the video or image frames (including
demographic information) prior to sending to the organiz-
ers (required)

Table 2 illustrates the ethical and legal processes fulfilled by
each center along with the endoscopy equipment and recorders
used for the data collected for this challenge.

3.1.2. Annotation protocol
A team of two clinical experts and one post-doctoral re-

searcher determined the class labels for the artefact detection
challenge while for the disease detection challenge we con-
sulted with four senior Gastroenterologists (over 20 years ex-
perience) regarding the class labels in the GI tract endoscopy.
For each sub-challenge senior Gastroenterologists sampled the
video frames from a small sub-set of video data collected from
various institutions and multi-patient data cohort (see Figure 2).
These frames were then taken as reference to produce bound-
ing box annotations for the remaining train-test dataset by four
experienced postdoctoral fellows. Finally, further validation by
three clinical endoscopists independently was carried out to as-
sure the reference standard. The ground-truth labels were ran-
domly sampled (1 per 20 frames) during this process. How-
ever, after the completion of this phase the entire annotation
was discussed and reviewed together with the team of senior
Gastroenterologists. Priority was given to indecisive frame an-
notations to have a collective opinion from experts. Following
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Fig. 4: EndoCV2020 challenge task descriptions for each sub-challenge. The three tasks of the EndoCV2020 challenge includes: (a) The “detection” task
aimed at the coarse localization and classification. Given an input image (left) a detection model (middle) outputs the artefact/disease class and coordinates of
the containing bounding box. (b) The “segmentation” task is aimed at precise delineation of artefact/disease object boundaries. The model predicts binary output
images denoting the presence (‘1’) or absence (‘0’) of each class. (c) The “out-of-sample generalization” task is aimed at assessing the ability of a model trained on
different dataset to generalize on an unseen dataset usually coming from a different center.

general annotation strategies were used by clinical experts and
researchers:

• For the same region, multiple boxes (for detec-
tion/generalization) or pixel-wise delineation (for seman-
tic segmentation) were performed if the region belonged
to more than 1 class

• The minimal box sizes were used to describe the class re-
gion and similarly possible small annotation areas for se-
mantic segmentation were merged instead of having mul-
tiple small boxes/regions

• Each class type was determined to be distinctive and gen-
eral across all datasets
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Centers System info. Ethical approval Patient consenting type
John Radcliffe Hospital, Oxford, UK Olympus GIF-H260Z, REC Ref: 16/YH/0247 Universal consent

EVIS Lucera CV260
Ambroise Paré Hospital, Paris, France Olympus Exera 195 N° IDRCB: 2019-A01602-55 Endospectral study
Istituto Oncologico Veneto, Padova, Italy Olympus endoscope H190 NA Generic patients consent
Centro Riferimento Oncologico, IRCCS, Italy Olympus VG-165, CV180, H185 NA Generic patients consent
ICL, Cancer Institute, Nancy, France Karl Storz 27005BA NA Generic patients consent
University Hospital Vaudois, Switzerland NA (flexible cystoscopy) NA Generic patients consent
Botkin Clinical City Hospital, Moscow, Russia BioSpec NA Generic patients consent

Table 2: Data collection information for each center: Data acquisition system and patient consenting information.

For EAD dataset, defined class categories used included be-
low descriptions (Ali et al., 2021). Related samples are pre-
sented in Fig. 1 (a).

1. blur→ fast camera motion
2. bubbles→ a thin film of liquid with air that distorts tissue

appearance
3. specularity→ mirror-like reflection
4. saturation→ overexposed bright pixel areas
5. contrast→ low contrast areas from underexposure
6. misc. artifact→ chromatic aberration, debris etc.
7. instrument→ biopsy or any other instrument
8. blood → flow of red colored liquid due to biopsy or

surgery

For EDD dataset, both upper-GI (gastroscopy) and lower-GI
(colonoscopy) data were used with below defined class cate-
gories (please refer to the samples in Fig. 1 (b)):

1. NDBE or BE→ non-dysplastic Barrett’s esophagus deter-
mined by a squamo-columnar junction above the gastric
fold in the esophagus (Eluri and Shaheen, 2017)

2. HDG→ high-grade dysplasia or early adenocarcinoma de-
termined by irregular mucosal appearance (Wang et al.,
2012)

3. suspected → aka low-grade dysplasia, an early sign of
pathology (Eluri and Shaheen, 2017)

4. cancer→ abnormal growth (Boland et al., 2005)
5. polyp → abnormal protrusion of the mucosa (Williams

et al., 2013)

For the annotations of disease classes, pathology reports were
also used to validate the class category for non-dysplastic Bar-
rett’s esophagus (BE), high-grade dysplasia (HGD), suspected
(dysplasia or low-grade dysplasia), and cancer categories. That
is, expert annotations (three senior gastroenterologists) were
taken and supported with the pathology report for most disease
categories including some indecisive cases. However, for the
polyp class, both the protruded and flat polyps were marked
by two experienced post-doctoral researchers and checked by
a senior lower-GI specialist (no further categorization based on
pathology report was done except for cancer cases).

3.2. Evaluation metrics
The challenge problems fall into three distinct categories. For

each there already exist well-defined evaluation metrics used
by the wider imaging community which we use for evaluation

here. Codes related to all evaluation metrics used in this chal-
lenge are also available online6.

3.2.1. Spatial localization and classification task
Metrics used for multi-class disease detection:

• IoU - intersection over union: This metric measures the
overlap between two bounding boxes A and B, where A is
segmented region and B is annotated GT. It is evaluated as
the ratio between the overlapped area A ∩ B over the total
area A ∪ B occupied by the two boxes:

IoU =
A ∩ B
A ∪ B

(1)

where ∩, ∪ denote the intersection and union respectively.
In terms of numbers of true positives (TP), false positives
(FP) and false negatives (FN), IoU (aka Jaccard JC) can be
defined as:

IoU/JC =
T P

T P + FP + FN
(2)

• mAP - mean average precision: mAP of detected class
instances is evaluated based on precision (p) defined as
p = T P

T P+FP and recall (r) as r = T P
T P+FN . This metric mea-

sures the ability of an object detector to accurately retrieve
all instances of the ground truth bounding boxes. Aver-
age precision (AP) is computed as the Area Under Curve
(AUC) of the precision-recall curve of detection sampled
at all unique recall values (r1, r2, ...) whenever the maxi-
mum precision value drops:

AP =
∑

n

{
(rn+1 − rn) pinterp(rn+1)

}
, (3)

with pinterp(rn+1) = max
r̃≥rn+1

p(r̃). Here, p(rn) denotes the pre-

cision value at a given recall value. This definition ensures
monotonically decreasing precision. The mAP is the mean
of AP over all N classes given as

mAP =
1
N

N∑

i=0

APi (4)

6https://github.com/sharibox/EndoCV2020
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This definition was popularised in the PASCAL VOC chal-
lenge (Everingham et al., 2012). The final mAP (mAPd)
was computed as an average mAPs for IoU from 0.25 to
0.75 with a step-size of 0.05 which means an average over
11 IoU levels is used for 5 categories in the competition
(mAP @[.25 : .05 : .75] ).

Participants were finally ranked on a final mean score (scored),
a weighted score of mAP and IoU represented as:

scored = 0.6 ×mAPd + 0.4 × IoUd (5)

Standard deviation between the computed mAPs (±σscored ) are
taken into account when the participants have the same scored.
Scores on both single frame data and sequence data were first
separately computed and then averaged to get the final scored

of the detection task.

3.2.2. Segmentation task
Metrics widely used for multi-class semantic segmentation

of disease classes have been used for scoring semantic segmen-
tation. The final semantic score scores comprises of an average
score of F1-score (Dice Coefficient, DSC), F2-score, precision
(PPV), recall (Rec) and accuracy (Acc).

Precision, recall, Fβ-scores: These measures evaluate the
fraction of correctly predicted instances. Given a number of
true instances #GT (ground-truth bounding boxes or pixels in
image segmentation) and number of predicted instances #Pred
by a method, precision is the fraction of predicted instances
that were correctly found, PPV = #TP

#Pred. where #TP denotes
number of true positives and recall is the fraction of ground-
truth instances that were correctly predicted, Rec = #TP

#GT . Ide-
ally, the best methods should have jointly high precision and
recall. Fβ-scores gives a single score to capture this desirability
through a weighted (β) harmonic means of precision and recall,
Fβ = (1 + β2) · PPV ·Rec

(β2·PPV)+Rec .
Participants are ranked based on the value of their semantic

performance score given by:

scores = 0.25 × (p + r + F1 + F2) (6)

Standard deviation between each of the subscores are computed
and averaged to obtain the final ±σscores which is used during
evaluation for participants with same final semantics score. We
have also used provided accuracy of each semantic method in
this paper for scientific completeness. Accuracy (Acc) can be
defined as Acc = T P+T N

T P+T N+FP+FN .

3.2.3. Out-of-sample generalization task
Out-of-sample generalization of disease detection is defined

as the ability of an algorithm to achieve similar performance
when applied to a completely different institution data. To as-
sess this, participants were challenged to apply their trained
models on video frames that were neither included in the train-
ing nor in the test data of the other tasks. Assuming that par-
ticipants applied the same trained weights, the out-of-sample
generalization ability was estimated as the mean deviation be-
tween the mAP score of the detection and out-of-sample gener-
alization test datasets of each class i for deviation greater than a

tolerance of {0.1 × mAPi
d}.

devg =
1
N

∑

i

devg
i (7)

devg
i =


0, for |mAPd

i −mAPg
i|/mAPd

i ≤ 0.1
|mAPd

i −mAPg
i|, for |mAPd

i −mAPg
i|/mAPd

i > 0.1
(8)

The best algorithm should have high mAPg and low devg(→ 0).
Participants were finally ranked using a weighted ranking score
for out-of-sample generalization as Rgen = 1/3 · Rank(devg) +
2/3 · Rank(mAPg) where Rank(mAPg) is the rank of a partici-
pant when sorted by mAPg in ascending order.

3.3. Challenge setup, and ranking procedure
The challenge proposal was submitted to the IEEE ISBI

challenge organisers and was peer-reviewed by two reviewers.
Upon the acceptance, the challenge website7 was launched on
1st November 2019. Training datasets for each sub-challenge
(EAD and EDD) were first provided (via AWS amazon S3
for EAD data and IEEE data portal for EDD data8). The test
data was released nearly 20 days before the leaderboard clos-
ing through a docker container set-up. A docker based on-
line leaderboard was established separately for EAD20209 and
EDD202010 where each participating team was allowed to sub-
mit a maximum of 2 submissions per day on the final test data.
A wiki-page11 was set-up for the submission guidelines and a
code repository with evaluation metrics used in the challenge
was also provided12.

For the ranking of different task categories, we used the met-
rics described in Section 3.2. The participants were able to see
only the final score in the leaderboard and all other sub-scores
were hidden for the final test data. This was done to avoid any
class specific refinement on the released test set. Notably, the
detection task was bounded by two IoU thresholds (mAP @
IoU thresholds [.25 : .05 : .75]) and the overall IoU scores
itself. For the detection task, participants were ranked on a fi-
nal weighted score of mAP and IoU (see Eq. (5)), while for
the segmentation task, participants were ranked based on a fi-
nal weighted average of DSC or F1-score, F2-score, precision
and recall (see Eq. (6)). For the generalization task, both the
mAP score gap devg and mAP on generalization data mAPg
were taken into account.

4. Method summary of the participants

In this Section, we present summary of top participating
teams for both EAD2020 and EDD2020 sub-challenges. Each

7https://endocv.grand-challenge.org
8https://ieee-dataport.org/competitions/

endoscopy-disease-detection-and-segmentation-edd2020
9https://ead2020.grand-challenge.org/evaluation/

leaderboard/
10https://edd2020.grand-challenge.org/evaluation/

leaderboard/
11https://github.com/sharibox/EndoCV2020/wiki
12https://github.com/sharibox/EndoCV2020
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Team EAD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code

Detection GPU Test time

polatgorkem
(METU DLCV)

Faster RCNN +
CascadeRCNN +
Retinanet

Resize
Normalise Ensemble Accuracy++

ResNet50,
ResNet101 Yes (R, F)† COCO RTX 2080 0.76 GorkemP/EAD

qzheng5
(CVML) Faster RCNN

Resize
Normalise Context Accuracy+ ResNet101 Yes (R, T, LD)† COCO GTX1060 0.20 CVML/EAD2020

xiaohong1
YOLACT +
NMS-within-class None Context

Accuracy+
, speed+ ResNet101 None ImageNet Tesla K80 0.14 yolact

mathew666
Faster RCNN +
NMS None Context Accuracy+ ResNet101 Yes NA RTX 2080 NA NA

VinBDI EfficientDet D0
Resize
(512x512)

Multiscale
scalable Speed++ EfficientNet B0

Yes (S, Sc, R,
N, MU)† COCO RTX 2080TI NA endocv2020-seg

higersky Cascade R-CNN None Cascading Accuracy++ ResNeXt101 Yes NA GTX1080 Ti NA NA

StarStarG Cascade R-CNN
Resize
Normalise Cascading Accuracy++ ResNeXt101 Yes (F, S)† NA RTX 2080 NA NA

anand subu RetinaNet
Resize
Normalise Context

Accuracy+
, speed+

ResNet101
Yes (R, Sh, F, C,
B, St, H)† ImageNet GTX1050Ti 0.36 anand-subu/EAD2020

arnavchavan04
RetinaNet +
FasterRCNN
(FPN + DC5)

Resize
(512x512) Ensemble Accuracy++

ResNet50;
ResNeXt101 Yes (F, C, R)† ImageNet Tesla T4 NA ubamba98/EAD2020

MXY
Cascase RCNN +
FPN

Resize
Normalise Cascading Accuracy+ ResNet101 Yes (F)† ImageNet RTX 2080 Ti 0.80 Carboxy/EAD2020

mimykgcp
Faster RCNN +
+ RetinaNet

Resize
Normalise Ensemble

Accuracy+
, speed+ ResNeXt101 Yes (RA)† COCO GTX 1080Ti 0.58 NA

DuyHUYNH
(LRDE) YOLOv3 Normalise Multiscale

Accuracy+
, speed++ Darknet53 Yes (RA)† COCO GTX1080 Ti 0.07 dhuynh/endocv2020

Segmentation

qzheng5
(CVML) DeepLabv3+

Resize
(513x513)
Normalise

Encoder-decoder,
mutiscale Accuracy++ SE-ResNeXt50 (R, T, LD + TTA)† ImageNet GTX1080Ti

0.50;
5 (+TTA) CVML/EAD2020

mouradai ox Pyramid dilated module
Resize
(512x512)
Normalise

Multiscale
Accuracy+
, speed+ ResNet50 Yes (T, R, LD)† ImageNet Colab 0.37 NA

arnavchavan04
FPN +
EfficientNet

Resize
(512x512) Ensemble Accuracy+ EfficientNet Yes (F, C, R)† ImageNet Tesla T4 NA ubamba98/EAD2020

VinBDI
U-Net +
BiFPN

Resize
(512x512)

Ensemble,
Endcoder-decoder

Accuracy++
, speed+

EfficientNet B4;
ResNet50 Yes (S, Sc, R, F)†

COCO
ImageNet RTX 2080TI NA endocv2020-seg

higersky DeepLabv3+ None
Encoder-decoder,
mutiscale Accuracy+ ResNet101 Yes (F;S;Sc;Bl)† ImageNet GTX1080 Ti NA NA

anand subu U-Net
Resize
(512x512) Encoder-decoder Accuracy+ ResNet50

Yes (S, F, R, N,
Cr, Bl, H, St,
C, Sp)†

ImageNet GTX1050Ti 0.17 anand-subu/EAD2020

DuyHUYNH
(LRDE) U-Net++ Normalise Encoder-decoder

Accuracy+,
speed+ EfficientNet B1

Yes (R, S, F,
Sc, LD, TTA)† ImageNet GTX1080 Ti 0.97 dhuynh/endocv2020

mimykgcp U-Net
Resize
Normalise Encoder-decoder

Accuracy+,
speed+ ResNeXt50 Yes (RA)† ImageNet RTX 2070 0.25 NA

† B: brightness, C: contrast, F: Flip, H: hue, LD: Local deformation, N: noise, R: Rotation, RA: RandAugment, S: Shift, Sc: scaling Sh: shear,
St: saturation, Mu: mixup, T: Translation, TTA: test-time augmentation

Table 3: Endoscopy artefact detection and segmentation (EAD2020) method summary for top 13 teams (out-of 33 valid submissions).

Team EDD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code

Detection GPU Test time

Adrian
YOLOv3+
Faster R-CNN Resize Ensemble

Accuracy+
, speed+

Darnet53
ResNet101 Yes (F, D)†

COCO
public polyp
dataset

Tesla P100 0.41 Adrian398/EDD

shahadate Mask R-CNN
Resize
Normalise Multiscale

Accuracy
, speed+ ResNet101

Yes (Sc, R, F,
Cr, S, N)† COCO RTX2060 NA EDD-Mask-rcnn

VinBDI EfficientDet D0
Resize
(512x512) Ensemble Speed++ EfficientNet B0

Yes (S, Sc,
R, N, MU)† COCO RTX 2080TI NA endocv2020-seg

YH Choi CenterNet NA Context Accuracy++ ResNet50
Yes(Du, R,
F, C, B)†

PASCAL
VOC2012 RTX 2080 2 NA

DuyHUYNH
(LRDE) U-Net++ Normalise Encoder-decoder Speed EfficientNet B1

Yes (R, S, F,
Sc, LD, TTA)† ImageNet GTX1080 Ti 1.53 dhuynh/endocv2020

mimykgcp
(vishnusai)

Faster RCNN +
RetinaNet

Resize
(256x256) normalise Ensemble

Accuracy+
, speed+ ResNeXt101 Yes (RA)† COCO GTX1080Ti 0.58 NA

Segmentation

Adrian
YOLOv3 +
Faster R-CNN +
Cascade RCNN

Resize Ensemble Accuracy++
Darnet53
ResNet101 Yes (F, D)†

COCO
public polyp
dataset

Tesla P100 Adrian398/EDD2020

shahadate MaskRCNN
Resize
Normalise Multiscale

Accuracy
, speed+ ResNet101

Yes (Sc, R, F,
Cr, S, N)† COCO RTX2060 EDD-Mask-rcnn

VinBDI
U-Net +
BiFPN Resized (512x512)

Ensemble
Endcoder-decoder

Accuracy++
, speed+

EfficientNet B4
ResNet50

Yes (S, Sc,
R, F)†

COCO
ImageNet RTX 2080 Ti NA endocv2020-seg

YH Choi U-Net NA Encoder-decoder Accuracy+ ResNet50
Yes(Du, R, F,
C, B)†

PASCAL
VOC2012 RTX 2080 7 NA

DuyHUYNH
(LRDE) U-Net++ Normalise Encoder-decoder

Accuracy+
, speed+ EfficientNet B1

Yes (R, S, F,
Sc, LD, TTA)† ImageNet GTX1080 Ti 1.53 endocv2020

drvelmuruganb SUMNet NA Encoder-decoder
Accuracy+
, speed++ VGG11

Yes(R, A, Sc,
P, and Cr)† ImageNet GTX1080 Ti 0.16 drvelmuruganb/EDD2020

mimykgcp U-Net
Resize
Normalise Encoder-decoder Accuracy+ ResNeXt50 Yes (RA)† ImageNet RTX2070 1.25 NA

† A: affine, B: brightness, C: contrast, Cr: cropping, D: distortion, Du: duplication, F: flip, H: hue, LD: local deformation, Mu: mixup, N: noise, P: perspective transformation, R: rotation, RA: RandAugment library,
S: shift, Sc: scaling, Sh: shear, St: saturation, T: translation, TTA: test-time augmentation

Table 4: Endoscopy disease detection and segmentation (EDD2020) method summary for top 7 teams (out-of 14 submission).
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of these teams has participated in either detection task or seg-
mentation task or both.

4.1. EAD2020 Participating teams

• Team polatgorkem (Polat et al., 2020) The team used
an ensemble of three object detectors: Faster R-CNN
(ResNet50 with FPN), Cascade R-CNN (ResNet50 with
FPN), RetinaNet (ResNet101 with FPN). Class-agnostic
NMS operation, where the model predictions were passed
through the NMS procedure together for all classes, was
applied to the output of each individual model. During en-
semble, only the bounding boxes for which majority of the
models agree were kept. False-positive elimination was
applied as a post-processing step to eliminate same-type
predicted boxes located close to each other. For each class,
an IoU threshold was determined.

• Team CVML (Guo et al., 2020b) CVML team’s model
was inspired by DeepLabV3+. The team experimented
with several changes including the backbone, the global
pooling, the dilated kernels and the convolution kernels
with dilation rates. Moreover, the squeeze-and-excitation
module is added behind the balanced ASPP module to in-
troduce attention gating at the output of the original en-
coder to better utilize the information available in the com-
puted feature maps. In addition, the original multi-class
classifier is replaced with 5 binary classifiers to enable
segmentation of the overlapping objects. At test time,
they used some post-processing techniques such as rota-
tion, holes filling and removal of objects from the image
boundary.

• Team mouradai ox (Gridach and Voiculescu, 2020) The
team proposed a novel neural network called OxEndoNet
to tackle the segmentation challenge. The network uses
the pyramid dilated module (PDM) consisting of multiple
dilated convolutions stacked in parallel. For each input
image, pre-trained ResNet50 (on ImageNet) was used as
the backbone to extract the feature map followed by mul-
tiple PDM layers to form an end-to-end trainable network.
In the final architecture, they used four PDM layers; each
layer used four parallel dilated convolutions with a filter
size of 3 × 3 and dilation rates of 1, 2, 3, and 4. They
fed the final PDM layer to a convolution layer followed by
a bilinear interpolation to up-scale the feature map to the
original image size.

• Team mimykgcp(Y et al., 2020) The team re-trained the
ResNeXt101 backbone with the cardinality parameter set
to 64. To enable detection of artefacts at different scales,
an FPN was integrated into the object detectors. Data-
Augmentation techniques based on RandAugment (Cubuk
et al., 2019) were incorporated to improve the generaliza-
tion capability. For the segmentation task, a U-Net with an
ImageNet pre-trained ResNext50 backbone was used.

• Team DuyHUYNH (Huynh and Boutry, 2020) For seg-
mentation, the team exploited a model based on U-Net++

using pre-trained EfficientNet on ImageNet as the back-
bone. The model was trained to minimize F2-loss using
the Adam optimizer. At the test-time the team used five
transformations: horizontal, vertical flipping, and three ro-
tations. For detection, the team used the bounding boxes
deduced from the results of their segmentation model on
the EDD dataset, while for EAD, they used YOLOv3 pre-
trained on COCO.

• Team mathew666 (Hu and Guo)The team used Cascade
RCNN architecture with the ResNeXt backbone in a FPN
based feature extraction paradigm. Data augmentation
with probability of 0.5 for horizontal flip was applied. The
team also utilised multi-scale detection to tackle with vari-
able sized object detection.

• Team arnavchavan04 (Jadhav et al., 2020) For the ob-
ject detection task, the team used an ensemble of three
models: Faster R-CNN (ResNext101 + FPN), RetinaNet
(ResNet101 + FPN) and Faster R-CNN (ResNext101 +
DC5). For the segmentation task, an ensemble of multi-
ple depth EfficientNet models with FPN trained on multi-
ple optimization plateaus (DSC, BCE, IoU) was designed.
Data augmentation techniques like horizontal and verti-
cal flip, cutout (random holes), random contrast, gamma,
brightness, rotation along with CutMix (Yun et al., 2019)
strategy for the segmentation task were incorporated to im-
prove generalization capability.

• Team anand subu (Subramanian and Srivatsan, 2020)
The team used RetinaNet with ResNet101 backbone. For
the segmentation task, the team used an ensemble network
with U-Net with a ResNet50 backbone and DeepLabV3.
However, the team reported U-Net with ResNet101 as
their best architecture of choice. All the backbones were
pre-trained on the ImageNet. Real-time augmentation
techniques like rotation, shear, random-image-flip, image
contrast, brightness, saturation, and hue variations were
incorporated while training to improve the generalization
capability of the network.

• Team higersky (Chen et al., 2020) The team imple-
mented Hyper Task Cascade and Cascade R-CNN with
ResNeXt101 backbone as a feature extractor and FPN
module for multi-scale feature representation for the ob-
ject detection task. They applied Soft-NMS (Bodla et al.,
2017) to avoid mistakenly discarded bounding-boxes. For
the semantic segmentation task, the team incorporated
DeepLabV3+ with ResNet101 backbone and trained with
BCE and DICE losses. The backbones for both tasks were
pre-trained on ImageNet.

• Team MXY (Yu and Guo, 2020) The team used a Cascade
R-CNN with an ImageNet pre-trained ResNet101 back-
bone and a FPN module. Post-detection, soft-NMS was
added to remove false predictions. The dataset was aug-
mented by random resizing technique to improve the final
output scores. The team used more weight for the losses
of specularity, artefact, and bubbles classes to overcome
classification difficulties between those classes.
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• Team StarStarG The team used Cascade-RCNN as net-
work architecture and adopted COCO2017 pre-trained
ResNeXt as backbone with FPN and multi-stage RCNN
framework. The authors also integrated Deformable Con-
volutional Networks in backbone to improve the model
performance.

• Tesam xiaohong1 (Gao and Braden, 2020) The team built
their detection and segmentation method upon Yolact-
based instance segmentation system. Yolact (Bolya et al.,
2019) adds a segmentation component to the RetinaNet
to ensure the tasks of detection, classification and delin-
eation which are performed simultaneously. The network
uses ResNet101 as an imageNet pretrained backbone.

4.2. EDD2020 Participating teams

• Team Adrian (Krenzer et al., 2020) The team compared
two different models: YOLOv3 with darknet-53 backbone
and Faster R-CNN with ResNet-101 backbone. For post-
processing, both algorithms in the final architecture were
combined. For the second task, the team leveraged the
state-of-the-art Cascade Mask R-CNN with ResNeXt-151
as a backbone. The team trained YOLOv3 using categori-
cal cross-entropy for classification and default localization
loss, while for Cascade Mask-RCNN, they used binary
cross entropy for classification and mask, and L1 smooth
for boundary box regression.

• Team Shahadate (Rezvy et al., 2020) The team imple-
mented a modified benchmark Mask R-CNN infrastruc-
ture model on the EDD2020 dataset. They used COCO
trained weights and biases with the ResNet101 back-
bone as an initial feature extractor. The network head
of the backbone model was replaced with new untrained
layers that consisted of a fully-connected classifier with
five classes and an additional background class. Non-
maximum suppression was used to reduce overlapped de-
tection. Finally, the team merged multiple bounding boxes
for the same class label as one bounding box to match with
the mask annotation.

• Team VinBDI (Nguyen et al., 2020b) For the object detec-
tion task, the team designed an ensemble of six Efficient-
Det models (with BiFPN modules) trained on six different
EfficientNet backbones. A total of eleven augmentation
techniques were incorporated to increase the output pre-
diction scores of the model. For the segmentation task, an
ensemble of U-Net and EfficientNet-B4 and BiFPN with
the ResNet50 backbone was devised. The same team also
participated in the EAD2020 sub-challenge.

• Team YH Choi (Choi et al., 2020) The team implemented
a CenterNet-based model with the PASCAL VOC pre-
trained ResNet50 backbone for the object detection task.
A similar backbone with U-Net was devised for the seg-
mentation task. The dataset was randomly duplicated to
tackle class-imbalance. To improve generalization perfor-
mance, each image was augmented 86 times by randomly

Team
names mAP25 mAP50 mAP75

overall
mAPd

overall
mIoUd

mAPδ scored ± δ
polatgorkem 26.886 17.883 5.608 17.486 36.579 7.124 25.123 ± 7.124
qzheng5 33.134 20.084 5.570 19.720 27.185 8.820 22.706 ± 8.820
xiahong1 30.627 19.384 4.935 18.512 26.388 8.428 21.663 ± 8.428
mathew666 20.360 19.440 7.783 18.091 32.692 5.617 23.931 ± 5.617
VinBDI 38.429 25.426 7.053 24.069 12.644 10.291 19.499 ± 10.291
higersky 36.920 25.770 9.452 24.771 17.298 8.707 21.781 ± 8.707
StarStarG 41.800 29.984 10.733 28.380 16.250 10.042 23.528 ± 10.042
anand subu 29.755 19.893 5.271 18.886 24.029 7.619 20.943 ± 7.619
arnavchavan04 38.752 27.247 9.858 26.021 21.165 9.342 24.079 ± 9.342
MXY 25.373 18.967 7.171 17.82 28.056 5.754 21.914 ± 5.754
mimykgcp 39.897 26.296 6.839 25.082 10.209 10.765 19.133 ± 10.765
DuyHUYNH 20.512 12.234 2.978 11.894 27.063 5.671 17.962 ± 5.671

baselines
YOLOv3 22.798 13.736 2.804 13.249 24.883 6.525 17.903 ± 6.525
RetinaNet
(ResNet101) 15.270 8.927 2.061 8.754 23.202 4.275 14.533 ± 4.275

Table 5: EAD2020 results for the detection task on the single frame dataset.
mAP at IoU thresholds 25%, 50% and 75% are provided along with overall
mAP and overall IoU computations. Overall scores are computed at 11 IoU
thresholds and averaged. Weighted detection score scored is computed between
overall mAP and IoU scores only. Three best scores for each metric criteria are
in bold.

Team
names mAP25 mAP50 mAP75

overall
mAPseq

overall
mIoUseq

mAPδ scored ± δ
polatgorkem 38.464 24.803 4.138 23.137 29.117 10.326 25.529 ± 10.326
qzheng5 48.210 25.717 3.997 25.665 20.949 14.222 23.779 ± 14.222
xiahong1 46.087 25.813 2.684 25.136 18.398 15.128 22.441 ± 15.128
mathew666 31.599 21.878 3.053 19.623 20.858 9.718 20.117 ± 9.718
VinBDI 45.295 26.723 4.396 25.285 23.426 13.972 24.542 ± 13.972
higersky 47.716 29.841 4.473 28.334 12.865 14.579 22.147 ± 14.579
StarStarG 46.965 30.202 5.432 28.107 8.371 13.367 20.213 ± 13.367
anand subu 38.352 25.535 3.843 23.014 20.703 10.859 22.089 ± 10.859
arnavchavan04 34.511 21.524 4.886 20.700 11.827 9.839 17.151 ± 9.839
MXY 31.391 19.838 3.620 18.601 21.504 8.688 19.762 ± 8.688
mimykgcp 44.972 26.780 4.400 25.937 6.892 13.697 18.319 ± 13.697
DuyHUYNH 28.632 15.524 0.815 15.468 16.968 9.381 16.068 ± 9.381

baselines
YOLOv3 32.199 18.473 1.137 17.176 16.351 10.596 16.846 ± 10.596
RetinaNet
(ResNet101) 17.646 6.447 0.767 8.079 10.000 5.151 9.252 ± 5.151

Table 6: EAD2020 results for the sequence dataset. mAP at IoU thresh-
olds 25%, 50% and 75% are provided along with overall mAP and overall IoU
computations. Overall scores are averaged with 11 IoU thresholds. Weighted
detection score scored is computed between overall mAP and IoU scores only.
Three best scores for each metric criteria are in bold.

choosing augmentation techniques from the pool of rota-
tion, flipping, contrast enhancement and brightness adjust-
ment.

• Team drvelmuruganb (Balasubramanian et al., 2020) For
the segmentation of disease classes the team used an
encoder-decoder based SUMNet architecture with the Im-
ageNet pretrained VGG11 backbone. The authors also
applied several augmentation strategies including variable
brightness and HSV values, multiple crops and geometric
transformations such as rotation, affine, scaling and pro-
jective were also applied to improve the accuracy.

5. Results

For the EAD2020 sub-challenge, we present the results of 12
participating teams for multi-class artefact detection task and
8 teams for segmentation task. Similarly, for EDD2020 sub-
challenge, we have included top 6 teams for detection and 7
teams for segmentation of multi-class diseases. In this section
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we present the quantitative and qualitative results for each team
based on the evaluation metrics discussed in Section 3.2. For
the EAD2020 sub-challenge, 3 different test dataset were re-
leased: 1) single-frame data for detection and segmentation, 2)
sequence dataset for detection only and 3) out-of-sample data
for generalization task only. For the detection task, the aver-
age of the aggregated sum of the detection scores for the single
frame data and the sequence data were considered for final scor-
ing. While, for the EDD2020 challenge only single frame de-
tection and segmentation data were released. Below we present
the result for each sub-challenges separately.

5.1. Quantitative results
5.1.1. EAD2020 sub-challenge

In this section, the results of the participant teams in the
EAD2020 challenge to detect and segment artifacts are pre-
sented.

Detection task for EAD2020. Table 5 and Table 6 present the
mAP values computed at different IoU thresholds (i.e., 25%,
50%, and 75%), overall mAP, overall IoU, and the final score
for the detection of the artefacts from single frame and sequence
data, respectively. Additionally, we also provide results of base-
line methods that include YOLOv3 and RetinaNet with dark-
net53 and ResNet101 backbones, respectively. In Table 5 (i.e.,
single frame detection), it can be observed that the team polat-
gorkem that implemented ensemble technique with Cascaded
RCNN, Faster-RCNN and RetinaNet surpassed the other teams
by achieving the highest final score on the leaderboard (scored,
Eq. 5) of 25.123 ± 7.124 with the best overall mIoU of 36.579
providing a high overlap ratio between the generated bounding
box with ground truth per frame. The method proposed by the
team arnavchavan04 comes in the second place with scored of
24.079 ± 9.342 with 9% more mAP than the winning team but
large sacrifice in the mean IoU. Similarly, for sequence data in
Table 6, team polatgorkem maintained the first position with a
final score of 25.529 ± 10.326. While the second scorer team
VinBDI suggested a method that obtained a better balanced be-
tween mAP and mIoU scores.

Furthermore, Table 7 shows the overall ranking for the teams
in terms of Score (Rscored ), mAP (RmAP), and generalizability
performance (Rg) in addition to, mAPd, mAPseq, scored, mAPg

and devg. The baseline RetinaNet recorded the least deviation
but also the least mAPs. On considering the mAPg and devg

together for the final ranking of the generalization task, teams
VinBDI and StarStarG secured the first place. On observing at
the class-wise performance in Figure 5 (a) (i.e., single frame),
it can be seen that there was a high detection score (scored) and
AP for larger artefact instances such as saturation and contrast.
Similarly, most of the teams had a high IoU with the ground
truth when detecting the instrument class. On the other hand,
the detection and localization of smaller artefact instances such
as bubble and saturation showed the degraded performances by
all the participating teams and by the baseline methods.

Segmentation task for EAD2020. Table 8 presents the JC, DSC,
F2, PPV, recall, and accuracy obtained by each team and base-
line methods. As shown, the method proposed by team ar-

Team
Names mAPd mAPseq

final
IoU

final
scored

mAPg devg Rscored RmAP Rgen

polatgorkem 17.486 23.137 32.848 25.326 21.008 9.359 1 9 6
qzheng5 19.720 24.174 23.751 22.668 23.749 8.522 2 6 5
xiahong1 18.512 25.136 22.393 22.051 24.579 8.169 3 7 3
mathew666 18.091 19.651 26.783 22.035 16.714 5.674 4 10 4
VinBDI 24.069 25.282 18.033 22.018 24.140 5.607 5 4 1
higersky 24.771 28.252 15.061 21.931 24.850 7.686 6 2 2
StarStarG 28.380 28.107 12.311 21.870 25.340 7.537 7 1 1
anand subu 18.886 23.004 22.359 21.510 20.203 7.896 8 8 5
arnavchavan04 26.021 20.700 16.496 20.614 21.138 6.968 10 5 3
MXY 17.820 18.597 24.779 20.836 17.294 6.077 9 11 4
mimykgcp 25.082 25.843 8.536 18.691 23.929 7.999 11 3 4
DuyHUYNH 11.894 15.468 22.016 17.015 11.304 4.807 13 13 4

baselines
YOLOv3 13.249 17.176 20.617 17.374 15.456 4.397 12 12 3
RetinaNet
(ResNet101) 8.754 8.079 16.601 11.690 7.763 1.985 14 14 3

Table 7: EAD2020 team ranking based on different metric criteria for de-
tection and generalization task. Overall mAPs (mAPd and mAPseq) com-
puted on single frame and sequence data are averaged. Final scored is then
computed as the weighted value between the final IoUd and the averaged mAP.
Rankings for each metric are also provided based on ascending order of the
scores except for deviation score for out-of-sample data. Three best scores for
each metric criteria are in bold.

Team
Names JC DSC F2 PPV Rec Acc Scores Rscores

qzheng5 0.477 0.532 0.561 0.556 0.835 0.973 0.621 8
VinBDI 0.628 0.673 0.670 0.837 0.738 0.978 0.730 2
higersky 0.529 0.579 0.587 0.675 0.758 0.975 0.650 5
anand subu 0.304 0.354 0.361 0.430 0.747 0.975 0.473 14
arnavchavan04 0.622 0.673 0.683 0.800 0.767 0.977 0.731 1
DuyHUYNH 0.502 0.557 0.583 0.593 0.829 0.974 0.640 6
mimykgcp 0.531 0.576 0.579 0.723 0.726 0.977 0.651 4
mouradai ox 0.581 0.632 0.647 0.711 0.800 0.974 0.697 3
baselines
FCN8 0.500 0.548 0.550 0.670 0.708 0.976 0.619 9
UNet-ResNet34 0.310 0.364 0.373 0.419 0.766 0.974 0.481 13
PSPNet 0.497 0.541 0.534 0.698 0.680 0.975 0.613 10
DeepLabv3
(ResNet50) 0.448 0.495 0.492 0.599 0.704 0.974 0.572 12

DeepLabv3+
(ResNet50) 0.485 0.533 0.535 0.646 0.726 0.976 0.610 11

DeepLabv3+
(ResNet101) 0.501 0.547 0.546 0.683 0.718 0.973 0.624 7

Table 8: Evaluation of the artefact segmentation task. Top three best scores
for each metric criteria are in bold.

navchavan04 and team VinBDI had the best performance in
terms of JC (> 62%), DSC (> 67%), F2 (> 67%) and PPV (>
80%) proving the ability to segment less false positive regions.
However, the method suggested by team qzheng5 and team
DuyHUYNH segmented more true positive regions compared
to other teams obtaining top recall values of 0.8352 and 0.828.
The baseline methods showed a low performance in terms of
final score compared to the methods proposed by the partici-
pants. Furthermore, Figure 6 (a) shows class-wise scores for
DSC, PPV and Recall. Similar to detection, segmenting larger
instances like the saturation and the instrument obtained the
high scores. Specularity, bubble and the artefact classes were
among least performing classes for many teams and baseline
methods.

5.1.2. EDD2020 sub-challenge
In this section, we report the performance of the participating

teams in the EDD2020 challenge for the detection and segmen-
tation.
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Fig. 5: Detection and out-of-sample generalization tasks for EAD2020 sub-challenge. a) Error bars and swarm plots for the intersection over union (IoU, top),
average precision (AP, middle) and challenge detection score (mAPd , bottom) for each team is presented on 237 single frame test data. b-c) Comparison of mAPd
w.r.t. mAPseq (mAP on sequence test data with 80 frames) and mAPg (mAP on out-of-sample data 99 frames) are provided. a-c) On the right, results from baseline
detection methods: YOLOv3 and RetinaNet (with ResNet101 backbone) are also presented. Teams are arranged by decreasing overall detection ranking Rscored
(see Table 7).
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Fig. 6: Semantic segmentation for EAD and EDD sub-challenges: Error bars with overlayed swarm plots for dice similarity coefficient (DSC), positive predictive
value (PPV) or precision and recall are presented for each team and baseline methods for the EAD2020 (a) and EDD2020 (b) challenges. 6 different baseline
methods are also provided for comparison.

Detection task for EDD2020. In Table 9, the team adrian
achieved the highest score among other participants and the
baseline methods with a final scored of 33.602 ± 8.523 with
the highest overall mAP (37.594) and the second highest over-
all mIoU (27.614). The best localization score was obtained

by the team sahadate but with nearly 5% lower mAP than the
top scorer team. Furthermore, the baseline method RetinaNet
with the ResNet101 backbone performed better than most of
the participating teams. From Table 10, it is evident that most
teams and baselines failed to detect suspicious class instance
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Team
names mAP25 mAP50 mAP75

overall
mAPd

overall
mIoUd

mAPδ scored ± δ
adrian 48.402 33.562 27.098 37.594 27.614 8.523 33.602 ± 8.523
sahadate 37.612 23.284 15.837 26.834 32.420 8.325 29.068 ± 8.325
VinBDI 43.202 26.981 17.001 30.219 17.773 9.478 25.241 ± 9.478
YHChoi 23.183 11.082 8.800 15.783 24.623 6.216 19.319 ± 6.216
DuyHUYNH 23.959 9.587 5.659 12.479 13.829 6.284 13.019 ± 6.284
mimykgcp 34.884 20.982 4.463 20.742 2.270 9.359 13.353 ± 9.359
drvelmuruganb 31.018 18.421 11.768 21.790 7.322 7.424 16.002 ± 7.424

baselines
YOLOv3 34.305 21.227 14.650 22.980 24.351 6.456 23.528 ± 6.456
RetinaNet (ResNet50) 26.833 14.441 9.907 17.552 25.580 6.464 20.763 ± 6.464
RetinaNet (ResNet101) 42.579 27.000 11.194 27.974 26.434 11.949 27.358 ± 11.949

Table 9: EDD2020 results for the detection task on the single frame dataset.
mAP at IoU thresholds 25%, 50% and 75% are provided along with overall
mAP and overall IoU computations. Overall scores are computed at 11 IoU
thresholds and averaged. Weighted detection score scored is computed between
overall mAP and IoU scores only. Three best scores for each metric criteria are
in bold.

Teams
EDD2020 NDBE suspicious HGD cancer polyp δ

adrian 28.911 1.776 32.727 64.286 60.269 22.841
sahadate 46.193 1.099 22.727 10.000 54.152 20.414
VinBDI 48.489 3.497 25.852 10.000 63.260 22.660
YHChoi 26.900 0.000 22.727 0.000 29.289 13.057
DuyHUYNH 20.281 1.499 11.364 0.000 29.254 11.134
mimykgcp 50.089 4.592 23.064 5.852 20.112 16.429
drvelmuruganb 34.775 0.000 22.727 0.000 51.446 19.993

baselines
YOLOv3 (darknet53) 38.839 0.000 6.970 16.667 52.426 19.712
RetinaNet (ResNet50) 23.636 0.000 18.182 0.000 45.943 17.086
RetinaNet (ResNet101 ) 29.483 0.000 22.727 31.818 55.840 17.909

Table 10: Per class evaluation results for the detection task of the EDD2020
sub-challenge.

while most teams performed comparatively better on polyp and
NDBE classes. Only the winning team adrian and RetinaNet
(ResNet101) provided a descent score for cancer class with
most teams recording mAP below 10. For HGD class category,
top performing teams were adrian andVinBDI with mAP over
25.

Segmentation task for EDD2020. From Table 11, it can be ob-
served that the three teams (Adrian, sahadate and nhanthanhn-
guyen94) achieved a DSC over 0.80. Moreover, they main-
tained the high performance for other metrics as well that in-
clude JC (>0.78), F2 (>0.81), and PPV (>0.85) securing first,

Team
Names JC DSC F2 PPV Rec Acc Scores Rscores

adrian 0.820 0.836 0.842 0.921 0.894 0.955 0.873 1
sahadate 0.797 0.816 0.819 0.906 0.883 0.955 0.856 2
VinBDI 0.788 0.805 0.812 0.859 0.912 0.952 0.847 3
DuyHUYNH 0.6843 0.7058 0.718 0.762 0.905 0.931 0.773 9
drvelmuruganb 0.7166 0.7349 0.734 0.819 0.857 0.959 0.786 6
mimykgcp 0.7561 0.7721 0.770 0.893 0.845 0.957 0.820 4
YHChoi 0.314 0.340 0.356 0.385 0.896 0.892 0.494 13

baselines
FCN8 0.687 0.705 0.709 0.811 0.850 0.953 0.769 10
UNet-ResNet34 0.617 0.637 0.638 0.732 0.868 0.958 0.719 11
pspnet 0.698 0.721 0.723 0.797 0.876 0.959 0.779 8
DeepLabv3
(RetinaNet50) 0.704 0.724 0.724 0.810 0.878 0.962 0.784 7

DeepLabv3+
(RetinaNet50) 0.725 0.744 0.749 0.818 0.882 0.960 0.798 5

DeepLabv3+
(RetinaNet1010 0.608 0.627 0.629 0.698 0.880 0.962 0.709 12

Table 11: Evaluation of the disease segmentation methods proposed by the
participating teams and the baseline methods. Top three evaluation criteria
are highlighted in bold.

second and third ranks, respectively. Teams VinBDI and Duy-
HUYNH were able to segment more true positive regions reach-
ing the top recall values. Fig. 6 (b) represents per-class metric
values. It can be observed that unlike detection task, most teams
reported high performance for cancer class. Also, most teams
showed higher DSC, PPV and recall for BE class instance as
well (> 0.8 for top three teams). However, similar to the detec-
tion task, most team and baseline methods reported least values
for the suspicious class.

5.2. Qualitative results

Detection task
Figure 7 shows the best (panel a) and the worse (panel b) per-

forming frames from single frame dataset for EAD2020. It can
be observed that specularity and artefacts are detected and well
localized by top teams (see Figure 7 a). Similarly, in the bot-
tom example, saturation is also detected by all the participants.
Even though, blur is not present for this sample, most methods
also detected it. While for the worse performing frame (see Fig-
ure 7 b), instrument class is confused with contrast or artefact
on the top sample, while in the bottom sample instrument is de-
tected by some teams but often either detected only partially or
overlapped by different classes such as saturation or artefact.

For out-of-sample generalization task, it can be seen in Fig-
ure 8 (a) that besides YOLOv3 baseline method, all the base-
lines and teams detected saturation class. While some teams
(mathew666, VinBDI, higersky) detected multiple bounding
boxes for the same class, they also detected blur class for this
frame. While for worse performing frame (see Figure 8 (b)),
instrument class (at the center of the image) is well localized
only by the team xiahong1 while most teams either partially
detected the instrument (e.g., team qzheng5) or could not de-
tect the instrument class at all (e.g., team polatgorkem). In
both cases, the three teams VinBDI, higersky and StarStarG pro-
duced multiple overlapping and different size bounding boxes.
Qualitative results for the EDD2020 challenge is shown in Fig-
ure 9. The best performing samples in Figure 9 (a) shows polyp
class (at the top); non-dysplastic Barrett’s esophagus (NDBE)
and suspicious classes on the bottom. It can be observed that
polyp class is detected and well localized by all the teams and
baseline methods. However, for bottom row NDBE is detected
by most of the methods while confusion is observed across the
suspicious class with high-grade dysplasia (HGD) class. Team
mimykgcp produced numerous bounding boxes failing to op-
timally localize adherent disease classes. For the worse per-
forming frames (Figure 9 (b)), cancer class (top) in the ground
truth is confused with the polyp class instance for most of the
teams and the baseline methods. While, for the NDBE class in
the bottom of Figure 9 (b), teams were either not able to de-
tect the NDBE class (except team adrian, team YHChoi and
YOLOv3) at all or partially detected the NDBE areas (e.g.,
teams VinBDI and drvvelmuruganb). Again, for the presented
case, team mimykgep detected numerous bounding boxes.

Segmentation task
Endoscopic artefact segmentation samples representing best

and worse performing teams is provided in Figure 10. For the
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Fig. 7: EAD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top ranked team results. b) Worse performing
samples for the same teams in (a). Results with baseline methods are also included together with ground truth sample.

b. Worse performinga. Best performing

Ground truth YOLOv3
RetinaNet

(ResNet101)

polatgorkemhigersky qzheng5xiahong1 mathew666

VinBDI StarStarG

specularity saturation artifact contrast blur bubbles instrument blood

Ground truth YOLOv3
RetinaNet

(ResNet101)

polatgorkemhigersky qzheng5xiahong1 mathew666

VinBDI StarStarG

Fig. 8: EAD2020 best and worse performing samples for the generalization task. a) Best performing samples for 7 top ranked team results. b) Worse performing
samples for the same teams in (a). Results with baseline methods are also included together with ground truth sample.

sample with only the instrument class (see Figure 10 a, top
panel) it can be observed that almost all the baseline and teams
were able to predict precise delineation of the instrument class.
Similarly, in the bottom panel of Figure 10 (a), specularity, sat-
uration and artefact classes were segmented well by most of the
teams and baseline methods. Even though, a single instrument
class is present in the sample image in Figure 10 (b), none of
the methods were able to segment the instrument. Also, for the
bottom panel in the Figure 10 (b), specularity areas were seg-
mented well by the teams mouradaiox and mimykgcp. How-
ever, saturation area was under segmented by most of the teams
and baseline methods. Figure 11 (a) represents the polyp class
(at the top); NDBE and suspicious classes (at the bottom). It can

be observed that polyp is segmented well by all the baselines
and most teams (except team drvelmuruganb who misclassified
the pixels to suspicious class). While, most teams and baselines
were able to precisely delineate NDBE class for the frame in
the bottom panel but missed suspicious area. In the worse per-
forming sample (see Figure 11 (b)), most teams were able to
segment NDBE area but large HGD area was missed by all the
teams. Also, some teams confused HGD area with suspicious
class. For the bottom panel in Figure 11 (b), instead of suspi-
cious class present in the ground truth, almost all the teams de-
tected this as polyp or cancer. However, the region delineation
was close to the ground truth for most teams.
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Fig. 9: EDD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top ranked team results. b) Worse performing
samples for the same teams in (a). Results with baseline methods are also included together with ground truth sample.

b. Worse performinga. Best performing
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(ResNet50)

higerskyVinBDI mimykgcparnavchavan04 mouradaiox
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Ground truth FCN8 UNetResNet34 PSPNet
DeepLabv3+
(ResNet50) Ground truth FCN8 UNetResNet34 PSPNet

DeepLabv3+
(ResNet50)

higerskyVinBDI mimykgcparnavchavan04 mouradaiox

specularity saturation artifact contrast blur bubbles instrument blood

Fig. 10: EAD2020 best and worse performing samples. a) Best performing samples for 5 top ranked team results. b) Worse performing samples for the same
teams in (a). Results with baseline methods are also included together with ground truth sample (top). Single class samples are chosen at the top and multi-class
samples are at the bottom in each category.
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Fig. 11: EDD2020 best and worse performing samples. a) Best performing samples for 5 top team results. b) Worse performing samples for the same teams in
(a). Results with baseline methods are also included together with ground truth sample (top).

Fig. 12: EndoCV2020 method categories in blob-representation. Model oc-
currences are presented for detection (a) and segmentation (b) tasks for both
EAD2020 and EDD2020 sub-challenges. The number of occurrences is pro-
vided inside each blob.

6. Discussion

Deep learning methods are rapidly being translated for the
use of computer aided detection (CADe) and diagnosis (CADx)
of diseases in complex clinical settings including endoscopy.
However, the amount of data variability particularly in en-
doscopy is significantly higher than in natural scenes which
possess a significant challenge in the process. It is therefore
vital to determine an effective translational pathway in en-
doscopy. Majority of challenges in endoscopy are due to its
complex surveillance that lead to severe artefacts that may con-
fuse with disease. Similarly, a system designed for a particular
organ may not generalize to be used in the other.

Most deep learning methods that were used in the En-
doCV2020 challenge can be categorised into multiscale, sym-
biotic, ensemble, encoder-decoder and cascading nature, or a

combination of these (see Table 3 and Table 4). Figure 12
presents the overview of the used methods for the detection (a)
and segmentation (b) challenge tasks based on the architecture
usage. It can be observed that the majority of detection meth-
ods used two-stage Faster-RCNN with 4/7 teams combining it
with one-stage RetinaNet or YOLOv3 or a combination of all.
Cascade R-CNN which is built upon Faster R-CNN cascaded
architecture was exploited by 4 teams. Similarly, U-Net-based
architectures were utilised by most teams for semantic segmen-
tation task with 4 teams exploring pyramid module-based ar-
chitectures and 2 teams used Deeplabv3+ architecture. Faster
RCNN-based model was also explored with additional thresh-
olding (e.g., team adrian) or per pixel prediction heads (e.g.,
team sahadate). Even though similar techniques were used in
EAD2019 challenge (Ali et al., 2020c), a direct comparison
is not possible. This is due to the inclusion of more data for
EAD2020 in both train and test sets. Also, EAD2020 includes
sequence data which was not provided in EAD2019 challenge.

For the detection task, the top performing teams on the chal-
lenge metric in both EAD (team polatgorkem) and EDD (team
adrian) were those using ensemble networks, i.e., maneuvering
outputs from multiple architectures. However, these networks
sacrifice the speed of detection which can be observed from the
computational time which were significantly higher than teams
that used a single architecture (see Table 7 and Table 9). Other
teams that used such an approach included team arnavchavan04
and mimykgcp who combined Faster R-CNN with RetinaNet
but both teams were respectively on 10th and 11th ranking. Just
using Faster R-CNN alone with ResNet101 backbone, teams
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qzhang5 and mathew666 were able to detect both small and
large size bounding boxes with sub-optimal accuracy that put
them at 2nd and 4th positions, respectively. Similarly, team sa-
hadate claimed 2nd position on EDD detection task using Mask
R-CNN which is based on the Faster R-CNN architecture. For
EAD2019 challenge (Ali et al., 2020c), team yangsuhui also
used an ensemble network with Cascade RCNN and FPN ap-
proach for the detection task similar to the EAD2020 top scorer
team polatgorkem.

An intelligent choice for improved speed and accuracy us-
ing a scalable network was presented by the teams xiahong1
(used YOLACT) and VinBDI (used EfficientDet D0) which
were placed 3rd and 5th, respectively, on the final detection
score of the EAD2020. On the sequence data, team VinBDI
was the 2nd best method demonstrating the reliability of the
used EfficientNet and FPN architectures. However, for almost
all team methods the standard deviation was higher than for sin-
gle frame data. No team exploited the sequence data provided
for training. Team VinBDI was also ranked 3rd on the EDD
detection task. Teams higerssky, StarStarG and MXY that used
cascaded R-CNN were ranked respectively on 6th, 7th and 9th
positions. Additionally, the team StarStarG was ranked 1st and
team higersky was ranked 2nd on the overall mAP. However,
it is to be noted that taking only mAP scores into account for
detection could lead to over detection of the bounding boxes
that increases the chance of finding a particular class but at the
same time weakens the localization capability of the algorithm
(see Figure 7). Similar observations were found for the EDD
dataset where the team mimykgcp obtained an overall mAP of
20.742 but only 2.270 for the overall IoU (see Table 9). As a
result, over detection of the bounding boxes can be seen in Fig-
ure 9. In order to deal with the over detection of the bounding
boxes, YOLACT architecture used by xiahong1 suppressed the
duplicate detections using already-removed detections in paral-
lel (fast NMS). Similarly, teams such as polatgorkem from the
EAD and adrian from the EDD were able to eliminate the du-
plicate detections using ensemble network and a class agnostic
NMS.

Hypothesis I: In the presence of multiple class objects, ob-
ject detection methods may fail to precisely regress the bound-
ing boxes. Methods need better penalisation on the bounding
box regression or a technique to perform effective non-maximal
suppression.

The choice of networks from each team depended on their
ambition of either obtaining very high accuracy without focus-
ing on speed or a trade-off between the speed and the accuracy
or focusing on both and thinking out-of the box to use more re-
cent developed methods which beats faster networks (such as
YOLOv3) that included EfficientDet D0 architecture used by
the team VinBDI (see Table 3). Due to the efficiency of the Ef-
ficientDet D0 network that used biFPN and efficientNet back-
bone, team VinBDI achieved second least deviation in mAP
(i.e., devg = 5.607) with competitive mAPg (= 24.140) and
won the generalization task together with the team StarStarG
who had slightly higher mAPg (= 25.340) but larger mAP de-
viation between detection and generalization datasets. Most
methods for the detection task on both the EAD and EDD

dataset performed better than the baseline one-stage methods
(YOLOv3 and RetinaNet). However, it was found that even
though team polatgorkem won the detection task, the method
failed on generalization data where the team was ranked only
last. The main reason behind this could be because the gener-
alization gap mAPg was estimated between two mAP’s (mAPd

and mAPg) and not IoU. Also, the final ranking was done tak-
ing into account the rank of devg and mAPg only. It can be
observed in Figure 8 that the bounding box localization of team
polatgorkem is precise in (a) while it misses instrument area
at the center in (b). However, the winning teams VinBDI and
StarStarG both over detect the boxes. The generalization abil-
ity of the methods were not explored for EDD dataset.

Hypothesis II: Metrics are critical but using a single metric
does not always gives the right answer. Weighted metrics are
desired in object detection task to establish a good trade-off
between detection and precise localization.

A major problem in the detection of EDD dataset was class
confusion mostly for suspicious, HGD and cancer classes. This
could be because of smaller number of samples for each of
these classes compared to NDBE and polyp (see Figure 3).
While most methods were able to detect and localize NDBE
and polyp class in general (3/7 teams with an overall mAP > 45
and 4/7 teams with > 50), all teams failed in suspicious class
(overall mAP < 5.0) and most teams for cancer class (over-
all mAP < 15.0) (see Table 10). Figure 9 shows that polyp is
detected and localized very well by most teams (a, top). Simi-
larly, NDBE is localized by most methods, however, in this case
suspicious class is confused mostly with the HGD. Also, in Fig-
ure 9 (b, top), it can be observed that the cancer class instance
is confused with mostly polyp class.

Hypothesis III: Detection bounding boxes confuse with
classes that have similar morphology and smaller number of
samples failing to learn the contextual features. To improve
detection, such samples need to be identified and more data
demonstrating such attributes need to be injected (both positive
and negative samples).

Similar to the detection task, teams that used ensemble tech-
niques were among the best performing teams for the segmen-
tation task. Teams arnavchavan04 and VinBDI secured first
(scores = 0.731) and second (scores = 0.730) positions, re-
spectively, on the EAD2020 segmentation task (see Table 8) and
the team adrian won the EDD2020 segmentation task challenge
with scores of 0.873 (see Table 11). The team arnavchavan04
used multiple augmentation techniques including cutmix and
a feature pyramid network with a combination of EfficientNet
backbones from B3 to B5. Similarly, team VinBDI ensembled
a U-Net architecture with EfficientNet B4 and BiFPN network
with ResNet50 backbone. Compared to EAD2019 where the
winning team yangsuhui used DeepLabV3+ model with two
different backbones, both of the top scorer teams of 2020 re-
vealed the strength of recent EfficientNet and FPN-based seg-
mentation approaches.

In the EDD2020 segmentation task, the team adrian com-
bined predictions from three object detection architectures
where the YOLOv3 and Faster R-CNN class predictions were
used to correct the instance segmentation masks from Cascade
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R-CNN. A direct instance segmentation approach used by the
team sahadate secured second position (scores = 0.856) on
the same while ensemble network of the team VinBDI secured
the third position (scores = 0.847). Direct usage of a single
existing state-of-the-art methods utilising different augmenta-
tion techniques (e.g., DuyHUYNH) or different backbones (e.g.,
mimykgcp, qzheng5) resulted in improved results compared to
the original baseline methods, however, much lower than the
top performing methods (see Table 8 and Table 11).

Hypothesis IV: The choice of combinatorial networks that
well synthesises width, depth and resolution to capture opti-
mal receptive field, and a domain agnostic knowledge transfer
mechanism are critical to tackle heterogeneous (multi-center
and variable size) multi-class object segmentation task.

From Figure 6 it can be observed that the top three perform-
ing teams of the EAD2020 segmentation task (arnavchavan04,
VinBDI, mouradai ox) has high DSC value (0.538, 0.548 and
0.492 respectively) compared to most methods for the specular-
ity class instance. It is to be noted that the specularities are of-
ten confused with either artifact or bubbles which makes them
hard to differentiate. For the instrument, saturation and bub-
bles class instances (see Figure 10 a.), most methods obtained
high performance compared to other classes (e.g., the top three
teams obtained 0.853, 0.844, 0.848 for the instrument; 0.722,
0.758, 0.703 for the saturation; and 0.738, 0.693, 0.693 for the
bubbles class instance, respectively), artefact (DSC < 0.520)
was among the worst class for most teams and for the baseline
methods. This is mostly due to the variable size of artefacts;
and the bubbles class instance is predominantly confused with
either artefact or the specularity class (see Figure 10 b.). Ad-
ditionally, due to small sized and sparsely scattered specularity
or bubble regions in some cases (for e.g., 4th image from left in
Fig. 3 (a)), the annotator variability for these samples can have
affected method performances for these classes. While check-
ing for such biases is beyond the conducted study, we refer to
the work by Rolnick et al. (2017). The authors suggested that in
general deep learning models are capable of generalizing from
training data where the correct labels are outnumbered by the
incorrect ones. However, the authors also acknowledged that a
decrease in performance is inevitable and necessary steps such
as using larger batch size and downscaling learning rate can
help mitigate these issues.

Unlike the EAD2020, the EDD2020 segmentation task com-
prised of larger shaped regions and only a few classes confused
(see 1 b.). Most methods scored comparably high DSC val-
ues with over 75% for most of the disease classes except for
suspicious class by most of the team. However, Figure 11 (b)
(top) shows that while majority of teams were able to segment
NDBE class area, the teams either missed the HGD area or miss
classified HGD as suspicious class instance. It is to be noted
that there is a very subtle difference between the HGD and the
suspicious region even for the expert endoscopists. Similar ob-
servation can be found for the segmentation of protruded struc-
tures (Figure 11 (b), bottom) where most methods confused the
class with the polyp class and the top two teams (adrian, saha-
date) classified it as cancer class. Looking up into our expert
consensus notes we found that these samples had hard to reach

agreement cases (i.e., suspicious and HGD classes; and cancer
and polyp region).

Hypothesis V: Instead of hard scoring of predicted mask
classes that penalizes the method performance heavily in pres-
ence of marginal visual difference between classes and vari-
ability due to existing expert consensus in the dataset, proba-
bility maps can be used to mitigate such problem. Additionally,
teams should be encouraged to report results for different batch
size and learning rates for obtaining better insight regarding
performance especially when datasets are prone to have some
incorrect labels.

7. Conclusion

We provide a comprehensive analysis of the deep learning
methods built to tackle two distinct challenges in the gastroin-
testinal endoscopy: a) artefact detection and segmentation and
b) disease detection and segmentation. This has been possi-
ble by the crowd-sourcing initiative of the EndoCV2020 chal-
lenges. We have provided the summary of the methods de-
veloped by the top 17 participating teams and compared their
methods with the state-of-the-art detection and segmentation
methods. Additionally, the paper dissects different paradigms
used by the teams and present a detailed analysis and discussion
of the outcomes. We also suggested pathways to improve the
methods for building reliable and clinically transferable meth-
ods. In future, we aim towards more holistic comparison of the
built methods for clinical deployability by testing for hardware
and software reliability in clinical setting.
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