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Abstract. A glioma is a fast-growing and aggressive tumor that starts
in the glial cells of the brain. They make up about 30% of all brain
tumors, and 80% of all malignant brain tumors. Gliomas are considered
to be rare tumors, affecting less than 10,000 people each year, with a
5-year survival rate of 6%. If intercepted at an early stage, they pose
no danger; however, providing an accurate diagnosis has proven to be
difficult. In this paper, we propose a cascade approach using state-of-
the-art Convolutional Neural Networks, in order to maximize accuracy
in tumor detection. Various U-Net-like networks have been implemented
and tested in order to select the network best suited for this problem.

Keywords: Neural Networks Cascade, Deep Learning, Brain Tumor
Segmentation, U-Net, Res-U-Net, U-Net++, Attention U-Net, Attention
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1 Introduction

The MICCAI BraTS[1] is a challenge that occurs every year since 2012, organized
by the Radiological Society of North America, the American Society of Neurora-
diology and the Medical Image Computing and Computer Assisted Interventions
society (RSNA-ASNR-MICCAI BraTS). The goal of the competition is the eval-
uation of state-of-the-art methods for the segmentation of intrinsically hetero-
geneous glioblastoma sub-regions in mpMRI[2] scans using multi-institutional
pre-operative baseline multi-parametric magnetic resonance imaging scans[4][3].

As stated in the abstract, intercepting the glioma at an early stage greatly
increases the patient’s survival rate. However, in order to intercept the tumor,
it must be accurately diagnosed. Unfortunately, most modern hospitals are not
equipped with the technology capable of automatically detecting gliomas[13],
thus causing the tumor to grow until it becomes deadly.
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We have been provided with clinically acquired training data, as well as the
corresponding segmentation labels of the different glioma sub-regions: Enhancing
Tumor (ET), Tumor Core (TC) and the Whole Tumor (WT).

(a) T1 (b) T2 (c) T1CE (d) Flair

(e) WT (f) TC (g) ET

Fig. 1: Modalities and corresponding labels.

As depicted in 1, the WT describes the complete extent of the tumor. It
entails the TC and ET, which is typically depicted by hyper-intense signal in
FLAIR. The TC describes the bulk of the tumor. The TC entails the ET, as well
as the necrotic parts of the tumor (NCR). The ET is described by areas that
show hyper-intensity in T1CE when compared to T1, but also when compared
to "healthy" white matter in T1CE. The voxel values for these images are:

– 1: Necrotic Tumor
– 2: Peritumoral edematous/invaded tissue
– 4: Enhancing tumor
– 0: Everything else

Furthermore, by applying the logical bitwise or operation on these voxel values,
we can find the different tumor regions.

– 1 ∪ 2 ∪ 4: Whole Tumor
– 1 ∪ 4: Tumor Core
– 4: Enhanced Tumor

In this paper, we propose a three-stage cascaded network, implementing a
state-of-the-art variation of the U-Net at each stage. Each U-Net model will
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specialize in segmenting the whole tumor, the tumor core and the enhanced
tumor, in that order.

2 State-of-the-Art

2.1 Main architectures in biomedical image segmentation

Since the apparition of the U-Net [19] in 2016 in the biomedical image seg-
mentation community, it has been established as the gold standard of medi-
cal image segmentation ever since.[14] We’ve seen numerous variations of the
model, such as the U-Net++ [24], the ResU-Net [5][6], or the Attention U-
Net [16][15]. Many different state-of-the-art architectures have since been pro-
posed and benchmarked in previous iterations of the BraTS challenge[14]. Con-
cerning these different architectures, let us recall their main advantages com-
pared to the standard U-Net.

2.2 U-Net++

The U-Net++ [23] is a dense network, rendering it capable to extract rather
minute details from an image or a volume. Moreover, the network also presents
two output methods: a regular single output image, or deep supervision[9], with
multiple outputs. Since each output has its own loss, we are able to calculate a
weighted sum of the loss, allowing us to have more accurate results, at the cost of
slower computation. In contrast, the single output mode is slightly less accurate
than the deep supervision mode, however computation time will be much shorter
as there is only a single output. It was selected for its versatility.

2.3 Attention ResU-Net

The Attention ResU-Net [12], is a combination of the Attention U-Net [16][15]
and the ResU-Net [5][6], seeking to make use of each of these network’s ad-
vantages. The ResU-Net is interesting, since it uses residual blocks in order to
eliminate gradient related issues, such as the vanishing gradient problem. The At-
tention U-Net highlights only the relevant activations during training, meaning
that the relevant parts of the image get large weights, thus reducing computa-
tional resources that are wasted on irrelevant activations of certain weights[17].

2.4 Existing Cascade Networks

Note that we also found several research papers related to cascades of networks
used in the context of biomedical image segmentation. Among them, we can cite
Wang G. et al. [22] who propose a cascade designed to decompose the multi-class
segmentation problem into a sequence of three binary segmentation problems
according to the sub region hierarchy. Y. Guo et al. [8] proposed a Bidirectional
Symmetric Cascade Network (BSCN), such that each layer is supervised by vessel
contour labels of specific diameter scale instead of the usual supervised approach
which consists of using a ground truth to train different network layers.
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3 Methodology

As stated in the opening abstract, this task was carried out using the Python
machine learning frameworks Tensorflow 2.9.1 as well as numpy and nibabel for
handling volumes. We used OVHCloud, as well as the ROMEO supercomputer
from the University of Reims Champagne-Ardenne in order to train the models.
When we worked on the OVH platform, we had 4 Tesla V100S GPU’s in parallel
with each 32 Gb of VRAM, and when we worked on ROMEO, we got 4 Tesla
P100-SXM2 GPU’s with each 16Gb of VRAM. We obtained our benchmark
results from testing with 200 patients from the dataset.

3.1 Motivation

Due to the nature of the segmentation problem, we propose a three-stage cas-
caded model, with variations of state-of-the-art U-Net models at each stage. We
seek to train each model of our cascaded ensemble to specialize in the segmen-
tation of different sub-regions of the glioblastoma. Since each sub-region of the
brain tumor is contained within its predecessor, we can provide the subsequent
models of our cascade with additional information pertaining to the location of
the tumor. Moreover, using a three-stage cascaded model allows us to approach
the problem with modularity in mind. We are not restricted to using the same
model for each stage of our cascade. Instead, we can experiment with different
types of U-Net-like models at different stages, for optimal performance.

3.2 Memory management

In previous years, the MICCAI BraTS challenge provided competitors with a
dataset containing the scans of approximately 350 patients. This year we have
1251 patients. The main issue of these data sets is known to be the heterogeneity
of the data. Managing and accessing the entirety of the data posed to us an
infrastructure problem, especially for regular computers with very little amounts
of RAM and VRAM, as we simply cannot load all of the data into one big array.

Much part of our time time has been spent designing and setting up the
framework in which we would tackle the problem. After having come up with a
solution to store all the data in numpy arrays on the disk using the NumPy’s
memmap function, we quickly implemented a framework in order to generate
the data and build the models.

3.3 Data formatting

The medical volumes of this challenge are of dimensions (240, 240, 155), and we
decided to combine each modality (T1, T2, T1CE, FLAIR) into a single volume
with 4 channels; thus giving us a dimension of (240, 240, 155, 4) for our input
data. The ground truth’s dimensions remained the same.
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Due to this year’s limitations in VRAM (limited to 16GB), running a fully
3-dimensional network has proven to be a difficult and time consuming task. In
order to preserve the information pertaining to the shape of the tumor in 3D, we
opted for a 2.5D approach, that is, for each modality we fed the network with
three horizontal slices of a single patient, instead of the whole 3D volume.

So we compared the 2D and the 2.5D approach for each architecture and
each cascade, and found that the 2.5D approach resulted in far more accurate
predictions, as more data was being fed into the network at each epoch.

3.4 Normalization

For the normalization step, we proceed in the following manner. Let N be the
number of voxels of a given modality x among the T1, T1CE, T2, FLAIR
modalities, then the indices i of the voxels of x belonging to [0, N [ with N =
240× 240× 155. This leads to:

∀i ∈ [1, N ], xnorm
i = min

(
max

(
xi − µ

5 σ
,−1.0

)
, 1.0

)
(1)

with
µ =

1

#(NZ)

∑
i∈NZ

xi,

σ =
1

#(NZ)

√ ∑
i∈NZ

(xi − µ)2.

where the indexes of the non zeros values of the modality x is denoted by
NZ = # {i ; xi ̸= 0} and # denotes the cardinality. Note that the operators
min and max are used here to ensure that each value of the normalized input
xnorm lies in [−1, 1].

3.5 Learning step

We used Keras’ built-in Adam optimizer, with a constant learning rate of α0 =
10−4. The maximal number of epochs was set at 100 and we used an early stop-
ping based on the validation loss with a patience equal to 5. In order to ensure
that we preserved the best network weights, we used the checkpoint callback
with the best weights restoration to True.

3.6 Loss function

For this segmentation task, a voxel can belong to either one of two classes.
One label for the tumor, and one for everything else. Knowing this, we can use
binary cross-entropy loss at each stage of our cascade to calculate the difference
between the network’s prediction of the tumor, and the ground truth. We define
the binary cross-entropy function BCE:
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BCE = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (2)

3.7 Evaluation of the model

Once the model is trained, we can predict an output X, and use the Dice function
to check the similarity with the ground truth Y . A value ϵ > 0 is added to avoid
a division by zero error, it is set to a very small number as not to modify the
accuracy of the Dice function. We recall the Dice formula (up to the added ϵ
avoiding divisions by zero):

Dice =
2 ∗ |X| ∩ |Y |
|X|+ |Y |+ ϵ

, with ϵ = 10−6. (3)

The closer the Dice coefficient is to 1, the more accurate the prediction is.

4 Our contributions

The main architectures that won the first places in the BraTS MICCAI challenge
in 2020 [1] were all based on U-Net models [18,20,10].

Having noticed this, we decided that it would be interesting to test variations
of U-Net networks in order to find the network that is best suited for the task of
brain tumor segmentation. Some of these networks, however, have not yet been
implemented in Python, so we took it upon ourselves to implement some of these
networks. For example, we designed and implemented an algorithm4 capable of
generating a U-Net++ network of size L, as its size can vary.

The main difference between Wang. G et al. [22] and our approach is that
here we consider at each step the optimal network in a set of networks which
will be described in subsection 4.2.

4.1 Data analysis

In an effort to understand the data that was provided to us by the MICCAI
BraTS challenge, we took it upon ourselves to compute the histogram of the
cardinality of non-zero voxels in each patient’s volume (we used the FLAIR
modality as a reference). For the sake of clarity, we ordered these cardinalities in
an increasing manner. We found that there was a sizeable amount of corrupted
data, with patients either lacking in voxels, or having an over abundance of voxels
in their volumes. We applied this analysis on the entirety of the 1251 patients,
as well as the 219 patients in the validation data.

As expected, the distribution of the validation data was the same as the
training data, as depicted on Figure 2. However we were not able to define a
threshold corresponding to the minimal size of the brain volume ensuring that
data is not “corrupted”.
4 https://github.com/sudomane/unetpp/blob/main/unetpp/unetpp.py

https://github.com/sudomane/unetpp/blob/main/unetpp/unetpp.py
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Fig. 2: Brains volumes distributions of training (left) and validation (right) pa-
tients

4.2 Proposing a new Cascade of Neural Networks

Fig. 3: Flow of data in a cascade model with 3 networks

The idea in this challenge is to build a cascaded model implementing three
different U-Net-like networks with sigmoidal outputs (so that each output re-
mains between 0 and 1). Each step of the cascade corresponds to the U-Net-like
model with the best accuracy. The accuracy is evaluated with the Dice function
in Eq. 3 defined earlier. Ultimately, the cascade will be composed of nothing but
the most accurate networks at each step (see Figure 5).

The training procedure is carried out in four steps: one for each network
fed with the predictions of the previous ones, and a fourth step to combine the
outputs of each networks. Let us define Ξk as the function corresponding to the
kth network, we obtain the following formulas:

W̃T = Ξ1(FLAIR,T1 ,T1CE ,T2 ),
T̃C = Ξ2(FLAIR,T1 ,T1CE ,T2 , W̃T ),

ẼT = Ξ3(FLAIR,T1 ,T1CE ,T2 , W̃T , T̃C).

We then apply a voxel-wise binarization operator that sets the value of our
voxel to 1 if its original value is greater than 0.5, and 0 otherwise. We define this
binarization function b:

∀x ∈ [0, 1], b(x) =

{
1 if x > 0.5
0 otherwise
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Now that we have defined our binarization function, we can proceed to recon-
struct the 3D volume of our prediction by using the output from each stage of
our cascade. Let us establish the formula to reconstruct the prediction volume:

4∗b(ẼT )∗b(T̃C)∗b(W̃T )+2∗(1−b(T̃C))∗b(W̃T )+(1−b(ẼT ))∗b(T̃C)∗b(W̃T ).

5 Results

5.1 Scores on training data set

Table 1: WT Dice results

Mean Std. Dev 1st Quartile 3rd Quartile
U-Net 86.42% 13.77% 82.68% 95.51%
U-Net++ 88.54% 12.04% 86.95% 95.75%
ResU-Net 88.41% 12.59% 87.38% 95.82%
Attention U-Net 83.39% 20.88% 83.00% 95.22%
Attention ResU-Net 86.02% 17.81% 85.46% 95.38%

Table 2: TC Dice results

Mean Std. Dev 1st Quartile 3rd Quartile
U-Net 89.26% 17.26% 89.97% 97.54%
U-Net++ 84.31% 21.35% 84.11% 95.42%
ResU-Net 82.97% 24.20% 81.22% 96.71%
Attention U-Net 81.14% 26.83% 82.42% 96.01%
Attention ResU-Net 85.10% 23.86% 88.13% 97.07%

Table 3: ET Dice results

Mean Std. Dev 1st Quartile 3rd Quartile
U-Net 88.19% 20.84% 90.94% 97.44%
U-Net++ 80.57% 23.67% 79.12% 93.71%
ResU-Net 89.59% 20.14% 92.39% 98.09%
Attention U-Net 89.62% 20.44% 91.70% 98.36%
Attention ResU-Net 89.94% 20.61% 93.00% 98.37%

Note: The U-Net++ model was tested in single output mode.

After having run the predictions on the entirety of the train data set, we
collected the information pertaining to the accuracy of the models given to us
by the Dice evaluation (see Tables 1,2,3).



An Efficient Cascade of U-Net-like Convolutional Neural Networks ... 9

5.2 Scores on validation data

Table 4: Dice and HD95 of our optimal model.

Dice WT (Mean) WT (Std) TC (Mean) TC (Std) ET (Mean) ET (Std)
88.68% 12.43% 80.67% 25.07% 75.35% 27.67%

HD95 WT (Mean) WT (Std) TC (Mean) TC (Std) ET (Mean) ET (Std)
11.54 21.23 17.79 56.83 27.79 87.84

6 Discussion

Fig. 4: Prediction on validation data with the complete cascade implementation.
In the top row, from left to right: WT prediction, TC prediction, ET prediction,
complete prediction.

At the first step (WT), we notice that the network with the best results is
the U-Net++, with a mean Dice score of 88.54%. Then at the second step (TC),
we notice that the network with the best results is a standard U-Net, with a
mean Dice score of 89.26%. Finally, at the third step (ET), we notice that the
network with the best results is the Attention ResU-Net, with a mean dice score
of 89.94%.

The label for the extended tumor (ET) has proven to be the most difficult to
segment, as it is defined with minute detail. However, the Attention ResU-Net
performs the best for this label (see Table 3). This can be due to the mechanisms
present in the model, such as the use of the attention mechanism, as well as
residual blocks which help in eliminating the vanishing gradient problem[12].
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Because of its inherent advantages, the Attention ResU-Net seems to be the
best suited for the task of segmenting fine detail in MRI scans.

In summary, a cascade model made up of a U-Net++ for the first step, a
standard U-Net for the second step, and an Attention ResU-Net for the third
step, would provide us with the best results (see Figure 4).

7 Proposed solution

Based on the benchmark results, we have chosen the following networks for each
region:

– Whole Tumor: U-Net++[23]
– Tumor Core: U-Net[19]
– Enhanced Tumor: Attention ResU-Net[12]

Now that we are able to determine the final architecture for the optimal cascaded
U-Net model, here is a graph of the proposed architecture.

Fig. 5: Optimal cascade with a U-Net++, U-Net and an Attention ResU-Net
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8 Final results

Here are the results on the test data set that MICCAI uses to evaluate the model.

Table 5: Results on African Data

Dice ET Dice TC Dice WT Hausdorff ET Hausdorff TC Hausdorff WT
Mean 0.8440 0.8943 0.9370 3.324 6.034 4.280
Std. 0.1450 0.1148 0.0615 2.911 8.454 6.695
Median 0.9042 0.9286 0.9540 2.911 4 2.236
1st quartile 0.8553 0.8874 0.9368 1.414 1.414 1.414
3rd quartile 0.9283 0.9623 0.9656 3.741 6.034 3.162

Table 6: Testing cohort

Dice ET Dice TC Dice WT Hausdorff ET Hausdorff TC Hausdorff WT
Mean 0.7938 0.8227 0.8803 22.19 21.70 11.69
Std. 0.2449 0.2628 0.1357 80.33 71.84 19.56
Median 0.8781 0.9268 0.9250 1.414 3 3.741
1st quartile 0.7912 0.8438 0.8686 1 1.414 2
3rd quartile 0.9316 0.9619 0.9514 3 8.124 8.747

Table 7: Results on Pediatric Data

Dice TC Dice WT Hausdorff TC Hausdorff WT
Mean 0.2288 0.6657 154.97 30.47
Std. 0.3275 0.2725 167.89 51.04
Median 0 0.7592 53.074 14.90
1st quartile 0 0.5662 10.998 5.692
3rd quartile 0.4429 0.8669 373.12 34.79

9 Conclusion

9.1 Future works

Despite the scores we obtained, we strongly believe in the potential of the three-
stage cascade method for the BraTS challenge. Each network of the cascade being
able to develop specific features devoted to segmenting a specific sub-region of
the glioblastoma. Moreover, each network providing additional information to
the subsequent stages in the cascade, causing a guiding effect for each network.

In the future, we would like to implement and test additional features in our
three-stage cascaded network. Here are some of the features we would like to
test:



12 P. Bouchet et al.

– Implement and benchmark the nn-U-Net [11].
– Benchmark with 851 patient instead of 200.
– Improve the overall quality of the training data set by preprocessing data.
– Implement cross-validation.

9.2 Summary

In this paper, we proposed a three-stage cascaded network devoted to brain tu-
mor segmentation. The U-Net-like network employed at each step of the cascade
was determined through benchmarking several U-Net variants in order to deter-
mine which network performs the best at a certain stage. Moreover, our 2.5D
method allows us to optimize the usage of the GPU’s VRAM, with minimal
performance loss.
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