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Abstract—In the context of text detection evaluation, it is
essential to use protocols that are capable of describing both the
quality and the quantity aspects of detection results. In this paper
we propose a novel visual representation and evaluation tool that
captures the whole nature of a detector by using histograms. First,
two histograms (coverage and accuracy) are generated to visualize
the different characteristics of a detector. Secondly, we compare
these two histograms to a so called optimal one to compute
representative and comparable scores. To do so, we introduce
the usage of the Earth Mover’s Distance as a reliable evaluation
tool to estimate recall and precision scores. Results obtained
on the ICDAR 2013 dataset show that this method intuitively
characterizes the accuracy of a text detector and gives at a glance
various useful characteristics of the analyzed algorithm.

I. INTRODUCTION

Text detection applications have become very popular in
the last years. Due to the growing number of approaches in
the literature, the need of relying on viable ranking systems has
increased considerably. Evaluation protocols are essential tools
for researchers to compare their results with those provided
by state-of-the art methods but also to quantify the possible
improvements of their text detectors. During text detection
evaluations, the output results are compared to a ground truth
(GT) throughout a matching procedure. Final scores are then
generated using performance metrics. Recall and precision
metrics are generally used in the literature due to their ability
to characterize different aspects of a detection: recall represents
the proportion of detected texts in the GT, whereas precision
describes the proportion of accurate detections with respect to
the GT.

However, these two indicators, individually, do not provide
sufficient information about a detection. As first stated by Wolf
and Jolion in [1], it is important to differentiate the quantity
aspect of a detection (“how many GT objects/false alarms have
been detected?”) from its quality aspect (“how accurate is the
detection of the objects?”). Fig. 1 illustrates the importance of
this distinction when using these two metrics. One can observe
that the same recall and precision scores (computed with the
evaluation protocol of Sec. II) can correspond to different
detection outputs. Intuitively, it is then hard to correctly
interpret a detection through one value, hence the need to
highlight separately the quantity and quality characteristics.

To globally evaluate a detection at a dataset level (an image
or multiple images), one first needs to evaluate each detection
individually (at object level). This could consist in assigning
quality measurements to each GT object and detection with

(a) Two of the four objects fully detected. (b) All objects detected half.

(c) One of the three objects fully detected.
Two false positives.

(d) All objects detected one third.

Fig. 1. Four examples illustrating the GT objects with red rectangles and the
detections with green plain rectangles: (a)-(b) two examples for which recall
R = 0.5; (c)-(d) two examples for which precision P = 0.33.

respect to some predefined matching rules. For example, in
Fig. 1b all four GT objects have been detected with a quality
score of 0.5, corresponding to the coverage area.

Once the quality scores are produced at object level, it
is necessary to quantify them to characterize the detection at
dataset level. In the literature, the general way to quantify these
object level scores consists in averaging them. This mean is
computed depending, either on the number of objects [2], [3],
or on the total object area [4]. In [5], Hua et al. proposed to
compute an overall detection rate by averaging the detection
qualities of all GT text boxes with respect to the sum of their
detection importance levels. However, none of these methods
provides a visual representation of the detection evaluation.
Conversely, Wolf and Jolion proposed performance graphs
in [1] to illustrate the quality and quantity detection nature of
an algorithm. The method generates two graphs by varying two
quality area constraints (for recall and precision) over a wide
range of values. The area under the curve (AUC) obtained by
varying these constraints is then used to represent the overall
recall and precision measures. This is equivalent to averaging
the sum of all object level measurements computed over all
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Fig. 2. Workflow of the proposed approach; left image: four GT objects (red rectangles) and 4 detections (green plain rectangles).

possible constraint values. It is not always sufficient to only
consider global recall and precision scores when comparing
two detectors. For example, one might be interested to know
which algorithm produced more false positives (Figs. 1c, 1d),
or which one detected more GT objects entirely, instead of
only partially (Figs. 1a, 1b). This kind of information cannot
be retrieved by only interpreting the global scores.

The contribution of this paper is twofold and comes as
a smart alternative solution to the existing methods: first, we
propose a new way to visually represent text detection results
using histograms, that can, as we will show, capture both their
quality and quantity aspects; secondly, we use a histogram
distance to derive global recall and precision scores. For that,
we rely on a “local” evaluation that produces quality scores at
object level. However, this local evaluation is not in the scope
of this paper, since the quality features might vary depending
on the targeted characteristics of a detection. This makes our
approach independent of the used quality features.

The organization of this paper is as follows. In Sec. II we
give an overview of the “local” evaluation (quality measure-
ments) used to evaluate the text detection outputs. We then
describe in Sec. III our proposed approach which introduces
the histogram representation of text detections and histogram
distance derived metrics to evaluate a full text detection output.
Results and experiments are presented in Sec. IV. Finally,
concluding remarks and perspectives are given in Sec. V.

II. INTRODUCTION ON QUALITY MEASUREMENTS

In this section, we describe the procedure used to compute
qualitative scores at object level. As mentioned before, this
protocol is an independent module and could be replaced by
any other quality evaluation protocol.

Consider G = (G1, G2, ..., Gm) a set of GT text boxes
and D = (D1, D2, ..., Dn) a set of detection boxes, with m
and n the number of objects in G, resp. in D. Based on the

(a) One-to-one (b) One-to-many (c) Many-to-one (d) Many-to-many
Fig. 3. Matching cases (GT is represented by dashed rectangles and detections
by plain line rectangles).

nature of a detection, we can identify four types of matchings,
as illustrated in Fig. 3: (a) one-to-one: one text box in G
matches one text box in D; (b) one-to-many: one text box in
G matches multiple text boxes in D; (c) many-to-one: multiple
text boxes in G match one text box in D; (d) many-to-many:
conditions (b) and (c) are simultaneously satisfied. We compute

a coverage (the capacity to detect text) and an accuracy (the
precision of the detection) score for each GT object separately,
based on the matching type, as it can be seen in the following
subsections.

a) One-to-one match: For each GT-detection pair of
objects (Gi,Dj) involved in a one-to-one match, we define
the coverage Covi, and the accuracy Acci, based on the true
overlap area between the two objects:

Covi =
Area(Gi

⋂
Dj)

Area(Gi)
, Acci =

Area(Gi

⋂
Dj)

Area(Dj)
. (1)

b) One-to-many match: During one-to-many matches,
the coverage and accuracy scores are given by:

Covi =

⋃si
j=1

Area(Gi

⋂
Dj)

Area(Gi)
·Fi, Acci =

⋃si
j=1

Area(Gi

⋂
Dj)⋃si

j=1
Area(Dj)

where Fi is a fragmentation penalty, defined in [4] by Fi =
1

1+ln(si)
, and si is the number of detections associated to Gi.

c) Many-to-one match: This corresponds to “many”
one-to-one cases. To compute the accuracy rate for each
GT Gi, we first assign it a detection area. We split the
detection area between its corresponding mj (merge level
of the detection box Dj) GT objects, with respect to their
areas. We define TextAreaDj

= Area(
⋃mj

i=1(Gi

⋂
Dj))

as the area resulting from the union of all intersections
between the GT text boxes and the detection box, and
nonTextAreaDj

= Area(Dj)− TextAreaDj
as the detection

area excluding TextAreaDj
. Hence, the coverage and accuracy

for each GT text box Gi, i ∈ [1,mj ], are defined by:

Covi =
Area(Gi

⋂
Dj)

Area(Gi)
, Acci =

Area(Gi

⋂
Dj)

Area(Dj,i)
, (2)

where Area(Dj,i) =
Area(Gi)

TextAreaDj
·nonTextAreaDj

represents
the corresponding detection area for each Gi.

d) Many-to-many match: This occurs when one-to-
many and many-to-one detections overlap the same GT ob-
jects and are evaluated accordingly to coverage and accuracy
equations given in Sec. II-b and II-c.

III. PROPOSED APPROACH

In this paper we propose to use histograms as an efficient
way to represent and evaluate a detection. Because histograms
are graphical representations of frequency distributions over
a set of data, they can be also seen as convenient tools
to represent simultaneously the quality and quantity aspects
of a detection. Here, the quality aspect is described by the
histogram’s bin intervals, while the detection quantity feature
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Fig. 4. Corresponding non-normalized coverage and accuracy detection
histograms (respectively hCov and hAcc) for the example in Figure 2.

is represented by the bin values. The quality results, given
by the protocol described in Sec. II, are then quantified and
represented throughout two detection histograms for coverage
and accuracy values. Finally, global recall and precision scores
are generated by computing the distances between the two de-
tection histograms and an “optimal” histogram. The overview
of the proposed method is illustrated in Fig. 2.

A. Histogram representation

Consider a 1D finite valued function f that contains values
f(j) ∈ [0, 1], j = 1, . . . , n. Its quantified histogram into B
intervals (bins) is a 1D numerical function h defined by h(b) =
nb where nb is the number of values of f that belong to interval
[ bB , b+1

B [, for b = 0, . . . , B − 2 and [ bB , b+1
B ] for b = B − 1.

The evaluation protocol described in Sec. II provides two
sets: fCov for coverage scores and fAcc for accuracy scores.
These sets can then be described by quantified histograms
hCov and hAcc, corresponding to coverage and accuracy
histograms. The detection example in Fig. 2 (left) illustrates
the case of four GT objects (“i”, “Tourist”, “information”
and “Castle”) and four detections, among which, one is a
false positive. In this example, using the protocol described
in Sec. II we get the coverage scores {0.0, 0.55, 0.8, 1.0} and
the accuracy scores {0.0, 0.45, 1.0, 1.0}. Their representation
using histograms with B = 10 bins is given in Fig. 4.
This representation consists in quantifying all coverage and
accuracy scores obtained by an algorithm in all images of a
dataset (in our example: 1 image and 4 detections). Next, we
will consider normalized histograms, so that

∑B−1
b=0 h(b) = 1

(histograms of Fig. 4 are not normalized). We will call these
histograms h̃Cov and h̃Acc.

The histogram representation provides both a quantitative
(i.e. values of bins) and a qualitative (i.e. number of bins)
representation of the detection. A perfect algorithm should get
maximal accuracy and coverage values for all detections, e.g.
their corresponding histogram representation should have only
one populated bin, the last one (for example, for B = 10, with
all values belonging to [0.9, 1]). This histogram is referred to as
the optimal histogram. We then propose to measure a detector’s
performance as the distance between h̃Cov (and h̃Acc) and
the optimal histogram. We describe the way we measure this
distance in the next section.

B. Global metrics generation throughout histogram distances

Although histograms can be seen as powerful tools for
characterizing the whole nature of a detection, their represen-
tation does not immediately conduct to an overall performance

measurement. This can be achieved by computing a distance
between histograms: the lower the distance, the higher the
similarity between the histograms.

Let h̃O be the normalized optimal histogram, whose all
bins except the last one are empty. We then have:

h̃O(b) =

{
1 if b = B − 1
0 otherwise ∀b ∈ [0, B − 1] (3)

By computing the distance between h̃Cov and h̃Acc and the
optimal histogram h̃O we get two global detection performance
measures (recall and precision). There are two main families
of distances between histograms [6]. Bin-by-bin distances
only consider bin content (or size) and often make a linear
combination of similarities measured between same bins of
the two considered histograms (for example, the Euclidean
distance). This assumes histograms are aligned and have the
same size. Cross-bin distances also consider the topology of
histograms by integrating into the computation the distance
between bins.

Taking into account the topology of histograms is very
important in our case. For example, if we consider the case
where all bins of h̃Cov but one are empty (same reasoning for
h̃Acc), then the Euclidean distance between h̃Cov and h̃O will
give the value 0 if bin h̃Cov(B − 1) = 1 (case of a perfect
match), 1 otherwise (any case where h̃Cov(b) = 1, b 6= B−1).
However, we would like the distance to be lower when the only
populated bin of h̃Cov is close to the last bin B − 1, because
this corresponds to better recall scores on all the database. That
is why it is required to both consider the bin content and the
distance between bins (as a kind of relationship between bins).
Hence, a cross-bin distance is a better choice for computing the
histogram dissimilarity in the given context. Although many
cross-bin distances were proposed in the literature (see [7] for
a review), we have chosen to use the Earth Mover’s Distance
(EMD) for two reasons: it captures the perceptual dissimilarity
better than other cross-bin distances [8]; and it can be used as
a true metric [8]. A brief description of the EMD is given in
the next paragraph.

The EMD, first introduced by Rubner et al. [8], is a
cross-bin distance function that computes the dissimilarity
between two signatures. Let P = {(pi, wpi

)}mi=1 and Q =
{(qj , wqj )}nj=1 be two signatures of sizes m and n, where pi
and qj represent the position of ith, respectively jth element
and wpi

and wqj their weight. The EMD searches for a flow
F = [fij ] between pi and qj , that minimizes the cost to
transform P into Q:

COST (P,Q, F ) =

m∑

i=1

n∑

j=1

dijfij , (4)

where dij is the ground distance between clusters pi and qj ;
the cost minimization is done under the following constraints:

fij ≥ 0,

n∑

j=1

fij ≤ wpi ,

m∑

i=1

fij ≤ wqj , i ∈ [1,m], j ∈ [1, n]

m∑

i=1

n∑

j=1

fij = min(

m∑

i=1

wpi ,

n∑

j=1

wqj ), i ∈ [1,m], j ∈ [1, n]

The EMD distance is then defined as:

EMD(P,Q) =

∑m

i=1

∑n

j=1
dijfij∑m

i=1

∑n

j=1
fij

(5)



Rubner et. al proved in [8] that when the ground distance
is a metric and the total weights of the two signatures are
equal, the EMD is a true metric. Therefore, by considering d
as the Euclidean distance and h̃Cov and h̃Acc as signatures [9],
we can use the EMD as a valid dissimilarity measure. In such
cases, a bin is a cluster (p and q) and its value is a weight (w).
For example, if we consider the right histogram of Fig. 4b
after its normalization, then its corresponding signature is
{(0, 0.25), (0.1, 0), (0.2, 0), (0.3, 0.25), (0.4, 0), (0.5, 0), (0.6, 0),
(0.7, 0), (0.8, 0), (0.9, 0.5)}.

We then derive the two global similarity metrics [10], recall
RG and precision PG:

RG = 1− EMD(h̃Cov, h̃O) (6)
PG = 1− EMD(h̃Acc, h̃O) (7)

IV. RESULTS AND DISCUSSION

The dataset used during our experiments is the one pro-
posed during the ICDAR 2013 Robust Reading (Challenge 2)
competition [11]. It contains 233 images of natural scene texts
and a word level annotation. Fig. 5 illustrates three examples of
detections, their corresponding non-normalized coverage and
accuracy histograms with B = 10 bins and the resulting global
recall and precision scores. The interpretation of these two
histograms is straightforward. For example, the first bin of
hCov (orange) encloses the total number of non-detected (or
poorly detected, coverage ≤ 0.1) GT objects, while the first
bin of hAcc (blue) encloses the number of false positives (or
detections with poor precision, accuracy ≤ 0.1). In Fig. 5a,
the scattered coverage values of hCov indicate the presence of
either partial (“A120” ([0.3, 0.4[) and “A133” ([0.2, 0.3[)) or
one-to-many (“Yarmouth” ([0.4, 0.5[)) detections. On the other
hand, all accuracy values are accumulated into the last bin of
hAcc which means that all detections were truthful with respect
to the GT. By analyzing the histograms of Fig. 5b, we observe
that the first bin value of hCov equals the sum of values of the
other bins. This shows that only half of the GT objects were
detected (“INTRODUCTION”, “TO”, “DATABASE”, “SYS-
TEMS”, “DATE”), while the other half was missed or poorly
detected (“AN”, “C.”, “J.”, “SIXTH”, “EDITION”). hAcc of
Fig. 5c, suggests there are three possible false positives. The
values 1 of bin intervals [0.7, 0.8[ and [0.9, 1] correspond to
one detection that exceeds its corresponding GT boundary
object (“RIVERSIDE”) and one accurate detection (“WALK”)
respectively. More results are given here 1.

A. Comparison of two algorithms

A good advantage of this representation is that, used on
a dataset, it allows to characterize and compare at a glance
text detectors. In Fig. 6 we illustrate the overall detection
behavior of two algorithms, detector 1 (Inkam) and detector 2
(TextSpotter), based on the detection results submitted to
ICDAR 2013 Robust Reading competition [11]. The left
plot shows coverage values (h̃Cov) of both algorithms. Both
coverage normalized histograms illustrate a similar tendency:
two high peaks on the first and last bins and a lower peak
around the value 0.5. This means that, for both algorithms,
most of the GT objects were either missed, either accurately

1www.lrde.epita.fr/∼calarasanu/ICDAR2015/supplementary material.pdf
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Fig. 5. Three examples of GT (red rectangles) and detections (green plain
rectangles) and their corresponding coverage/accuracy histograms (resp. hCov

(orange) and hAcc (blue)) and RG/PG scores.

detected, while only approximately 6% of the GT objects were
involved in partial or one-to-many detections. One can however
conclude that from the coverage aspect, detector 2 slightly
outperforms detector 1: the number of missed GT objects
(value of the first bin) is lower while the last bin’s value is
higher. This is confirmed by RG scores (see caption in Fig. 6).
The right plot shows accuracy values of both algorithms.
Contrary to the coverage similarity behavior discussed above,
the accuracy profiles of the two detectors are very different.
detector 1 produces a significantly higher number of false
positives than detector 2. The accuracy histogram of detector
2 has higher bin values in the quality intervals [0.7, 0.8[ and
[0.8, 0.9[. This is because detector 2 adds a large border to all
its detections [11], which decreases the object-level accuracies.
On the other hand, detector 1 produces as many false positives
as accurate detections (first and last bin values close to 0.4).
The corresponding PG scores, given in the caption of Fig. 6,
confirm that detector 2 outperforms detector 1 by about 20%.

We now compare our histogram representation with the
performance plots generated with DetEval tool [1] (see Fig. 7).
The representation in [1] is obtained by varying two quality
constraints for each measure (recall and precision) and count-
ing how many objects fall into a certain interval, whereas
our method implies a qualitative local evaluation from the
beginning. Although both approaches capture the quality and
quantity natures of a detection, we introduce a more compact
representation using only two plots for depicting a detection
(instead of generating four plots, two for recall and two for



precision, as proposed in [1]). Secondly, histograms have the
advantage of being more intuitive and easier to interpret in the
given context of text detection. One can easily visualize the
proportion of missed GT objects or false positives, as well as
the amount of detections that fall into any other coverage or
accuracy interval. Concerning the overall recall and precision
scores obtained with the two approaches, we can observe that
the results are different, which is due to the different object
level evaluation used by the two methods. However, both sets
of scores follow the same tendency and hence confirm the
ranking in which detector 2 outperforms both in recall and
precision, the performance of detector 1.
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Fig. 6. Coverage and accuracy normalized histograms associated to detector 1
(RG = 0.60, PG = 0.58) and detector 2 (RG = 0.70, PG = 0.80).
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Fig. 7. Performance plots generated with DetEval tool [1] (recall in purple,
precision in blue); top: detector 1 (ROV = 0.37, POV = 0.32); bottom:
detector 2 (ROV = 0.49, POV = 0.69).

B. Impact of tuning the number of bins

By using histograms to represent detections, the generated
global scores will depend on the chosen number of bins (B).
While a value of 10 bins is mostly appropriate for graphical
illustration purposes, when computing final scores, one should
however choose a higher number of bins to produce a more
precise evaluation result. Fig. 8 illustrates the variation of RG

and PG scores when B varies from 10 to 100 bins. The natural
tendency of these two metrics is to decrease when B increases.
When B exceeds 50 intervals, one can observe the stabilization
of these two global scores.

V. CONCLUSION

In this article we have presented a new approach for
visually representing and evaluating text detection results using
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Fig. 8. Variation of RG and PG scores depending on the number of bins
B (detection results provided by [12] on the ICDAR 2013 dataset).

histograms. It consists of firstly generating detection his-
tograms based on a “local” evaluation and secondly, employing
the Earth Mover’s Distance as a reliable evaluation tool for
computing global scores. In this paper, we used coverage and
accuracy features to illustrate the quality nature of a detection.
Depending on the targeted detection characteristics, other
quality features can be equally exploited (e.g. fragmentation
feature derived from one-to-many detections). As described
in Sec. IV, the histogram dynamics permits to intuitively
observe both the quality and the quantity aspects of a detection.
Compared to other methods, the proposed approach offers
a compact graphical visualization, a clear understanding of
a detector’s output, an easier comparison between different
detection behaviors at precise quality intervals and finally a
powerful similarity measure, based on the cross-bin Earth
Mover’s Distance, used to compute global detection scores.
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