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Abstract. Current text segmentation evaluation protocols are often in-
capable of properly handling different scenarios (broken/merged/partial
characters). This leads to scores that incorrectly reflect the segmentation
accuracy. In this article we propose a new evaluation scheme that over-
comes most of the existent drawbacks by extending the EvaLTex pro-
tocol (initially designed to evaluate text detection at region level). This
new unified platform has numerous advantages: it is able to evaluate a
text understanding system at every detection stage and granularity level
(paragraph/line/word and now character) by using the same metrics and
matching rules; it is robust to all segmentation scenarios; it provides a
qualitative and quantitative evaluation and a visual score representation
that captures the whole behavior of a segmentation algorithm. Experi-
mental results on nine segmentation algorithms using different evaluation
frameworks are also provided to emphasize the interest of our method.

Keywords: Evaluation protocol, evaluation metrics, text segmentation.

1 Introduction

During the last decade, text understanding systems have received a lot of at-
tentions from both the research and the industry communities. In particular,
end-to-end systems became popular due to their complex processing chain. Such
systems rely on different processing stages, such as text segmentation, text group-
ing, text classification, text localization, text rectification or text recognition.
Among these stages, text segmentation is a phase of crucial importance not only
for many end-to-end systems but also for other applications that rely on it, such
as the image inpaiting (e.g. subtitle removal [21]). The interest in this stage is
also reflected by the organization of numerous competitions around this topic,
such as ICDAR 2013 [15] and 2015 [13] Robust Reading Competition (Task 2)
with Challenge 1 on born-digital images and Challenge 2 on natural scenes.

The different stages of an end-to-end system are evaluated in different ways,
with respect to the type of text representation at each level. For example, text
segmentation implies evaluating a binary representation, while text localization

ECCV2016 - workshop RR
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2 S. Calarasanu et al.

is usually done by comparing bounding box positions in an image. Finally, the
text recognition is evaluated based on the transcription obtained by using an
OCR. Frequently, the evaluation of the transcription is also used as a final result
for many end-to-end systems. This result provides a combined evaluation based
on the recognition accuracy of the used OCR and the localization precision.
Since text segmentation can be a vital pre-processing or post-processing stage
in a document analysis application, it is important to quantify its contribution
and quality independently.

Most of the times the output of the text segmentation is a binary image
in which the foreground (white pixels) represents potential text objects (i.e.
characters) and the background (black pixels) corresponds to the remainder.

As pointed in [20], among the existing evaluation choices (user-interaction,
output OCR, pixel-based...) the most valuable evaluation procedure seems to
be the pixel comparison between the ground truth (GT) and detection images.
Nevertheless, evaluating text segmentation remains a difficult task due to a set
of problems that can alter the evaluation scores such as: variation of characters’
thickness, merged characters, partially detected characters or fragmented char-
acters. For example, the variation of characters’ thickness can often impact the
evaluation scores when dealing with natural scene images, in which illumination
properties and cluttered backgrounds can severely influence the accuracy of the
character segmentation. We note that, due to these difficulties, some protocols
have common drawbacks, the three most penalizing ones being:

– In pixel-based evaluation protocols, the penalty due to a character’s seg-
mentation failure varies usually with respect to the character’s surface size,
although the surface is not related to the size of the character.

– Conversely, many character-based evaluation protocols imply a binary ap-
proach to decide whether a character is well segmented or not; this leads to
inaccurate evaluations of degraded character segmentations.

– Lastly, dealing with binary decisions implies a threshold dependency of crit-
ical parameters which are most of the times difficult to set up.

In this article we propose to overcome these issues by firstly adapting the
EvaLTex protocol exposed in [2] initially designed for text localization and
secondly using the visualization tool in [1], to evaluate text segmentation results.
The advantages of the adaptation of this framework are numerous:

– It provides a more representative set of scores than classical evaluation meth-
ods.

– It comes with a visualization system which gives at a glance an overview of
the accuracy of the evaluated methods and helps to compare different sets
of results.

– It handles all types of atom detections: partial, broken, merged, broken and
merged, missed.

– It produces an equal evaluation of all characters regardless of their size.
– It proposes a non-binary local evaluation which allows a proper evaluation

of partial, broken and merged character detections.
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From text detection to text segmentation: a unified evaluation scheme 3

– It is robust to character thickness variation.

Furthermore, the EvaLTex protocol, by design, is able to evaluate text de-
tection systems at paragraph/line/word level. The adaptation of EvaLTex pro-
tocol for text segmentation unifies the evaluation at all detection levels: para-
graph/line/word and now character. It is hence possible to evaluate an end-to-
end system, at each step, by using a single tool.

This article is organized as follows. Section 2 presents a survey of the state-of-
the-art evaluation methods used for text segmentation. This section also presents
the EvaLTex protocol that is next adapted for the segmentation evaluation.
Section 3 presents the evaluation framework details and its applicability to text
segmentation evaluation tasks. Section 4 is dedicated to experiments and dis-
cussions on the scores obtained with different evaluation methods. Finally, con-
cluding remarks and perspectives are given in Section 5.

2 Related work

Text segmentation can be evaluated in different manners. For example, by user-
interaction [25,26,4,12,6], in which humans are supposed to count manually the
number of correct and incorrect matches between the GT and the detections.
This approach is not sufficiently reliable as it inevitably implies a high level of
subjectivity: different users can produce different evaluation scores.

Another approach for text segmentation evaluation consists in using the
OCR recognition rate [10,27,3]. In such cases, the scores do not only depend
on the segmentation correctness but also on the OCR recognition accuracy. For
example, a good segmentation output can produce a low score if the used OCR
does not recognize correctly all the characters.

The pixel-based evaluation methods [22,20,8,23,16,30] compute the differ-
ence between a binary GT image and a detection image and count the num-
ber of pixels that correctly match. In [22] five performance measurements were
used to evaluate the binarization outputs: misclassification error (ME), edge
mismatch (EMM), relative foreground area error (RAE), modified Hausdorff
distance (MHD), and region non-uniformity (NU). Authors in [8] opted for re-
call, precision, accuracy and specificity rates to interpret historical documents
binarization results. A normalized cross-correlation value between binarized and
GT images has been employed in [16] to evaluate the degraded character level
in color images. The main drawback of these approaches is the fact that the
evaluation is done exclusively at pixel level and hence it depends on the char-
acter area size making it less robust to thickness variations. In [23], the authors
presented an evaluation protocol for binarization methods, based on four met-
rics: pixel error (PERR), square error (MSE), signal to noise ratio (SNR) and
peak signal to noise ratio (PSNR). The advantage of this method is that it
comes together with a GT annotation technique consisting of adding noise to a
clean document and hence assuring an objective pixel-based evaluation. In [30],
authors also opted for the PSNR metric, together with a negative rate metric
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4 S. Calarasanu et al.

(NRM) and a misclassification penalty metric (MPM). In [20] the evaluation is
also done at pixel level by producing a set of eight evaluation metrics computed
directly on binarized images: F-measure, recall, precision, broken text, missing
text, merge-deformation, deformation and false alarm. The advantage of this
work is that it provides a method to produce a reliable GT by using skeletons.
Hence, the method is not sensitive to character thickness variations and does
not alter the scores. This protocol was used during the ICDAR 2015 Robust
Reading competition (Challenge 1 and 2, Task 2). The advantage of this work is
that it provides a method to produce a reliable GT by using skeletons. Hence,
the method is not sensitive to character thickness variations and does not al-
ter the scores. This protocol was used during the ICDAR 2015 Robust Reading
competition (Challenge 1 and 2, Task 2).

Finally, the atom-based evaluation [5,9,2] consists in comparing atom-level
objects (i.e. characters). Compared to pixel-based evaluations, this kind of ap-
proaches treats all characters in the same way, independently of their sizes. This
is a major advantage with respect to pixel-based evaluations, because it can dif-
ferentiate between various segmentation scenarios. Clavelli et al. [5] proposed a
multi-level annotation scheme that represents text objects at pixel (text part),
atom (e.g character), word and line levels. This framework, also used for the
ICDAR 2015 Robust Reading competition (Challenge 1 and 2, Task 2) can eval-
uate text segmentation tasks, when text objects are represented at pixel and
part levels. The matching protocol is based on two thresholds: Tmin and Tmax,
used to validate the matchings between a GT and a detection represented by a
set of connected components (CCs). The default values are set to: Tmin = 0.9,
Tmax = min(5, 0.5 · T ), where T corresponds to the thickness of the text part.
Based on this, the detection CCs are classified into several categories: back-
ground, fraction, whole, multiple, fraction & multiple and mixed. The main
disadvantages of this method are the binary local evaluation approach and the
fact that it does not handle broken character segmentations, which leads to low
recall values when such cases occur. The ZoneMap metric proposed in [9] is a
generalization of the metric proposed in [18] and of the deteval framework [28]
used for evaluating page segmentation and area classification in documents. It is
computed based on the matching scenarios and different error rates. EvaLTex
[2] is a framework introduced to evaluate text localization results. The main
core of this protocol consists of a two-level ground truth annotation for each
image: first, each word is bounded by a rectangular box; then, several words are
grouped and bounded into text regions. This two-level annotation is then used
to compare the GT text objects with the detection results. Based on the overlap
between the GT and the detection objects, four types of matchings are identi-
fied: one-to-one, one-to-many, many-to-one or many-to-many. Depending on the
matching type, a dedicated set of local performance metrics for each GT object
is computed. Finally, seven global scores (global, quantity and quality recall and
precision and F-Score) are computed for a dataset, by providing both a quality
and a quantity evaluation of the detection results. This protocol represents the
starting point for the evaluation scheme presented in this paper.
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From text detection to text segmentation: a unified evaluation scheme 5

3 Revision of EvaLTex and adaptation to text
segmentation

In this section we show how, by respecting and adapting some of the metrics
and rules of EvaLTex, we can evaluate not only text localization, but also text
segmentation.

GT annotation. In order to evaluate a result, a GT is needed. For the char-
acter segmentation evaluation, we will consider the annotation representation to
be a mask for a connected component (CC) or a set of CCs having the same
label in the segmented image. In practice, in the Latin alphabet, a character is
usually defined by one CC but it can also be defined by two or three CCs (i.e.
characters with accents or tittles). An example of the used ground truth anno-
tation is given in Fig. 1. In the following section we will discuss the matching
rules and the metrics used to evaluate the text segmentation.

Fig. 1: Example of a text segmentation image with labeled CCs.

Matching strategies. Initially, the EvaLTex framework was designed to
evaluate the localization of text regions such as words and lines represented
through bounding boxes or blobs. It relies on the computation of two measure-
ments: the coverage and the accuracy. The coverage measures the ratio between
the matching surface of two objects with respect to the GT object, while the
accuracy measures the ratio of the matching surface and the detection one. In
order to provide a representative evaluation, these two measurements take into
account many different detection situations. Simple cases involve an object from
the GT being matched with a single object in the detection (one-to-one match).
More challenging cases include GT objects being matched with multiple detec-
tions (one-to-many) or multiple detections matching the same object in the GT
(many-to-one). Finally, it is possible that many objects in the GT match many
objects in the detection (many-to-many). As the EvaLTex framework is able to
handle all these cases and as it does not perform a binary evaluation but always
provides a ratio of quality of the matching, the evaluation is more representative
than many other frameworks that do not handle all different cases or simply
perform a binary evaluation (match or failure). Furthermore, EvaLTex frame-
work always considers slight variations of detected text elements by enlarging
and reducing their surrounding regions during the comparison.

In order to apply the principles of EvaLTex to evaluate text segmentation
one needs to move from the word/line/region representation to a character level
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6 S. Calarasanu et al.

using a connected component (CC) annotation. Similarly to text detection, text
segmentation requires managing different matching scenarios. When a GT CC
corresponds to a CC in the detection set, even if the coverage between the two is
not complete, we deal with a whole or partial atom detection. When a CC in the
GT is covered by multiple CCs in the detection set, we deal with a fragmented
atom detection. The third case, which consists in multiple characters in the de-
tection being linked together, is referred to a merged atom detection where a
CC in the detection set corresponds to multiple CCs in the GT. Lastly, a frag-
mented and merged detection occurs when detections are fragmented and linked
to other characters at the same time. One can observe that the matching cases
that occur in text detection can be retrieved in the segmentation scenarios, mak-
ing EvaLTex a good starting point to evaluate text segmentation algorithms.
To do so, let us consider G = {Gi}i=1,...,NG

a set of NG gt text boxes and
D = {Dj}j=1,...,ND

a set of ND detections.

Whole and partial atom detection. To locally evaluate the quality of the matching
between a GT atom Gi and a detection Dj we can use the coverage and the
accuracy metrics defined in [2] (this corresponds to a one-to-one case). The
coverage value is computed using the reduced GT object, while the accuracy
using the enlarged GT object in order to remain robust to small detection size
variations. When moving from the evaluation of words to characters, we want to
keep this property by remaining robust to slight character thickness variations.
However, applying the erosion could make small characters disappear. Hence,
we will consider the computation of the coverage value, not by eroding the GT
object but by dilating the detection atom. This change will further be reflected
in the evaluation of all four types of atom detections. For a partial or whole
segmented CC, the coverage and accuracy between Gi and Dj is computed in
the following manner:

Covi =
Area(Gi

⋂
Ddj)

Area(Gi)
, Acci =

Area(Gdi
⋂
Dj)

Area(Dj)
, (1)

where Gdi and Ddj represent the dilated GT and detection CCs. In our experi-
ments we use a square structuring element of size equal to 1.

Fragmented atom detection. In the case of a fragmented CC (corresponding to
a one-to-many detection scenario), the same GT CC is detected multiple times.
Here again, the coverage [2] is computed by taking into account all the inter-
sections between the GT CC and the dilated detection CCs in the following
manner:

Covi =

⋃jsi
j=j1

Area(Gi

⋂
Ddj)−

⋂jsi
j=j1

Ddj

Area(Gi)
· Fi, (2)

Acci =

⋃jsi
j=j1

Area(Gdi
⋂
Dj)−

⋂jsi
j=j1

Ddj⋃si
j=1 Area(Dj)

(3)

where si represents the number of fragmentations associated to Gi and Fi a
fragmentation penalization applied to each GT CC. Contrary to the penalization
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From text detection to text segmentation: a unified evaluation scheme 7

proposed in [2], we propose here a smoother one, defined as:

Fi =
1

1 + ln(si) · ln(si)
· 0.6 + 0.4 (4)

Merged atom detection. A merged atom case (equivalent to a many-to-one sce-
nario) considers the coverage rate used during partial and whole atom detection
(see Eq. 1), while the accuracy is computed as in [2]:

Acci =
Area(Gdi

⋂
Dj)

Area(Dj,i)
, (5)

where Area(Dj,i) represents the corresponding detection area for each Gi and is
defined as:

Area(Dj,i) =
Area(Gdi)

TextAreaDj

· nonTextAreaDj , (6)

where TextAreaDj and nonTextAreaDj correspond to, respectively the total text
area and the non text area, defined as:

TextAreaDj = Area(

mj⋃

i=1

(Gdi
⋂
Dj)) (7)

nonTextAreaDj = Area(Dj)− TextAreaDj , (8)

where mj represents the number of merged GT CCs.

Fragmented and merged. The coverage for the fragmented and merged scenarios
(corresponding to many-to-many cases) is derived from the fragmented case (see
Eq. 2). In [2], the accuracy is computed exclusively using Eq. 5. However, since
this case involves a merged and fragmented atom detection, we redefine the
accuracy and compute it by combining Eq. 3 and 5. The accuracy then becomes
the ratio between the union of all intersection areas between the GT CC Gi and
the union of all detections ki CC that are generated from the merged mappings
as well as all si CC detections generated from the whole or partial mappings:

Acci =

⋃jsi+ki
j=j1

Area(Gdi
⋂
Dj)−

⋂jsi
j=j1

Dj

(
⋃jsi

j=j1
Area(Dj)−

⋂jsi
j=j1

Dj)
⋃

(
⋃jki

j=j1
Area(Dk,i))

(9)

4 Experiments and interpretation of results

In this section we evaluate our evaluation scheme and compare our results
with other evaluation protocols. This evaluation is performed on the segmenta-
tion results1 of nine detection methods that participated to the ICDAR 2013
and 2015 Robust Reading Competition [15,13]. The EvaLTex tool and the
corresponding GT format for the ICDAR datasets are available at https:

//www.lrde.epita.fr/wiki/Evaltex.

1 Publicly available at http://rrc.cvc.uab.es/ [13]
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8 S. Calarasanu et al.

Evaluating an evaluation method is neither an easy, nor an obvious task. First
of all, there are no precise rules that can decide the precision or correctness of
such a protocol. Moreover, there is undoubtedly, always a level of subjectivity
involved in the proposition of such a new protocol, either due to its metrics or
its matching strategies. This raises a straightforward question of whether we
can state that one evaluation protocol is better than other. While this state-
ment seems too strong, we can however debate on the reliability of some metrics
and computed scores in a given context. To validate at best our protocol, we
first propose a qualitative evaluation (Sec. 4.1) using three evaluation methods:
ours, one pixel-based [20] and one atom-based [5]. Next (Sec. 4.2), global scores
on the entire dataset are computed using the different evaluation methods and
compared. Lastly, in Sec. 4.3 we show the suitability of the histogram visual-
ization tool to provide, at a glance, a more detailed overview of the behavior of
segmentation methods.

4.1 Qualitative evaluation

The purpose of having a qualitative comparison is to stimulate the analysis of
concrete examples and interpret the representativity of certain scores with re-
spect to others in order to illustrate possible inconsistencies and their impact on
the scores produced by current used protocols. Fig. 2 illustrates multiple com-
mon segmentation situations that will be used as a basis for further discussions.
In this figure, from top to bottom, the first picture is the original image, the
second picture is the expected segmentation (the GT) while the third represents
the segmentation result. The next images correspond to the analysis of a pixel
based evaluation, followed by an atom based evaluation analysis2. The sixth
image corresponds to the histogram visualization of coverage and accuracy dis-
tributions for each segmentation example. Table 1 provides the scores computed
using the atom-based, pixel-based and our evaluation method.

In Fig. 2.a one can observe that all text characters have been segmented.
However, due to hole filled characters (“o”, “d”, “D” and “O”) the atom-based
evaluation does not consider the characters as segmented (in red) and underesti-
mates the recall (78%). As the evaluation is a binary one, the computed recall for
this image is the same as if these letters would have been completely missed. The
first conclusion is that such an evaluation does not allow precise comparisons.
Moreover, the detected letters are considered as false positive which produces
similar precision scores (70%) which is clearly underestimated. The atom-based
protocol considers better to miss the “o” than to detect it with its hole filled.
The second conclusion is that the obtained scores with this framework are not
a faithful representation of what we would intuitively expect.

Fig. 2.b illustrates an example of merged characters (“U” and “T”), which
are correctly identified by the atom-based evaluator, but not taken into ac-
count when computing the recall value. This leads to a recall of 60%, which is
clearly not consistent with the segmentation efficiency. In the example depicted

2 All pictures publicly available at http://rrc.cvc.uab.es/ [13]
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Table 1: Recall, Precision and F-Score obtained using different evaluation meth-
ods on the segmentation examples depicted in Fig. 2.

Pixel [20] Atom [5] Our evaluation

Fig. R P F R P F R P F

2.a 94.04 46.22 61.98 77.78 70 73.68 99.96 83.72 91.12
2.b 92.18 57.25 70.63 60 42.86 50 99.08 53.19 69.22
2.c 82.96 93.75 88.02 66.67 69.23 67.92 72.12 79.79 75.76
2.d 92.9 68.05 78.56 66.67 75 70.59 88.88 79.24 83.79

in Fig. 2.c, we can observe the outline (i.e. border) segmentation of characters
“c”,“o” and “m”. Such cases of partial segmentation are not handled by the
atom-based evaluator and counted as false positives, although the boundaries
of these characters perfectly approximate their shapes and hence could success-
fully be recognized by an OCR. This example also illustrates a frequent problem
involving characters with tittles (character “j”), which are missing from the seg-
mentation result. The consequence is that the atom-based method considers the
entire character “j” as not being segmented (false positive), decreasing both the
recall (66.67%) and precision (75%).

In Fig. 2.d, one can see that the thickness of the segmentation of characters
are slightly thicker than the GT. Here again the binary matching approach deci-
sion does not provide relevant comparisons between different segmentation cases.
Due to the thickness variation, correct detections are counted as false positives
and consequently both the recall and precision are under estimated (66.67% and
75%). This example also shows the difficulty of setting up correctly the decision
thresholds and the huge impact of these parameters on the final scores.

Contrary to atom-based protocols, the pixel-based ones count all pixels that
match the GT and reject all others. In the cases of Fig. 2.a, b and d, the recall
seems to be more representative than that of the atom-based one. In Fig. 2.a,
the four letters are well counted and the “filling” areas within the characters
are considered as false positive pixels decreasing only the precision rate. The
merged characters in Fig. 2.b are evaluate more fair than with the atom-based
evaluation leading to a recall value of 92%. In Fig. 2.d, the thickness variation
does not penalize the pixel-based recall (92.9%) as much as the atom-based one
does (66.67). The large character area contributes however to an overestimation
of recall (82.96%) and precision (93.75%) in Fig. 2.c. Here, the pixel evaluation
method does not differentiate between the false positive pixels from character
out-of-border pixels. Moreover, not all letters have the same weight, but highly
depending on their area. For example, the characters in the word “life” con-
tribute less to the overall recall than the characters of the word “jungle” because
they have a bigger size. Similarly, because of the surface of the false positives in
Fig. 2.a, the precision is severely underestimated (less then 50%).

With our proposed method the filling of characters in Figure 2.a does not af-
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fect the recall, which correctly states that all characters were segmented (99.96%).
The filling, however is penalized by the precision value. Similarly, the merged
characters are correctly evaluated, producing an almost perfect recall score of
99.08%. The thickness variation that exceeds the allowed dilation of the charac-
ter together with the three false positives lead to a precision score of 53%, which
is rather logic if we assume that we have five out eight nearly correct segmen-
tations. For the examples in Fig. 2.c the recall values are in between the ones
produced by the atom-based and pixel evaluation protocols. This is consistent
with the reasoning that the recall is over-estimated by the pixel evaluation due to
the large text area and under-estimated by the atom-based one due to the mini-
mal segmented area thresholds. The same is valid for the recall score obtained in
Fig 2.d. In this picture, 8 characters are detected among the 9 characters. This
leads to 88% of recall, which is the expected value correctly computed in spite of
the thickness variation. The precision however seems over-estimated (79.24%) if
compared to the rates obtained with pixel and atom based methods. This is due
to two reasons: firstly, we count only one false positive (“A”) instead of three as
in the case of the atom-base evaluation, and secondly, by allowing the thickness
variation we are more permissive than the pixel method.

4.2 Quantitative evaluation

Table 2 summarizes the rankings produced by the overall evaluation of nine text
segmentation methods using four different protocols presented in Tables 3 and 4.
As characterized by the standard deviation σ in Table 2 there is a significant
discrepancy between some of the rankings produced by the pixel and atom-based
evaluations (for example in the case of the NSTextractor). The difficulty now is
to select the method that is the most reliable. To answer to this question, we
have computed the mean of the ranking for each segmentation. First, one can
observe that our method gives the nearest results to this mean. In a second time,
we have ordered the segmentation results according to this mean. This gives us
an average ranking. One can expect that, by collecting the rankings from various
methods, the ranking would be smoothed and the impact of artifacts reduced in
the evaluation protocols. Again our method is the nearest to this new ranking.
This comparison to the mean ranking and to the new ranking is not an absolute
prove but it provides however a reasonable clue for selecting the most appropriate
evaluation method.

4.3 Results visualization

Fig. 3 illustrates the histogram representation [1] of the evaluation results of
three segmentation methods (NSTsegmentator [19], OCTYMIST [17] and Strad-
Vision [24]) on the ICDAR 2015 natural scene dataset. This visualization tool
is very useful as it provides at a glance important characteristics of the global
segmentation efficiency, namely the distribution of coverage and accuracy values
over an entire dataset. The first bin of the accuracy histogram represents the
false positives, the last bin (i.e. ]0.9,1]) represents the rate of perfect detections,
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Fig. 2: Four examples (a, b, c and d). For each example, from top to bottom: the original
image, the GT, the segmentation, the pixel-based classification (false positive in red,
correct in green, non-segmented in white), the atom-based classification (non-detected
in red, correct in green, merged in blue) and the histogram visualization.

while all other bins represent the detection rates with accuracy values between
0.1 and 0.9. Similarly, the first bin of the coverage histogram represents the
rate of GT objects not detected, while the last bin symbolizes the number of
GT atoms that have been perfectly segmented. All other bins represent the GT
atoms with coverage ratio between 0.1 and 0.9.

By analyzing the three histograms we can observe that the StradVision
method achieves the highest accuracy peek, while keeping its false positive rate
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Table 2: Ranking based on the F-Score and PERR scores in Tables 3 and 4. Mean and
standard deviation of ranking. New ranking based on means of ranking.

Ranking

Participants Pixel Atom Stathis Our’s Mean of σ Ranking based
[20] [5] [23] ranking on the means

BUCT YST [11] 3 2 4 2 2.75 0.96 3
I2R NUS [14] 4 6 3 4 4.25 1.26 4
I2R NUS FAR [14] 2 3 2 3 2.5 0.58 2
NSTextractor [19] 7 4 6 6 5.75 1,26 6
NSTsegmentator [19] 8 7 9 8 8 0.82 8
OTCYMIST [17] 9 9 8 9 8.75 0.5 9
StradVision [24] 1 1 1 1 1 0 1
TextDetection [7] 6 8 5 7 6,5 1.29 7
USTB FuStar [29] 5 5 7 5 5.5 1 5

close to zero. On the contrary, one can observe an approximately 40% rate of
false positives in the case of NSTsegmentator method, and a significantly larger
rate for the OCTYMIST method, around 60%. Concerning the coverage val-
ues, one can observe a narrower difference between the segmentation misses of
NSTsegmentator and that of StradVision, both around 70%. Another interesting
aspect of this analysis consists in the fair distribution of missed and perfect atom
segmentations produced by the OCTYMIST method (the value in the first and
last bin are very close). By looking at the three histograms we can identify the
same pattern, where most of the values fall in the first and last bins, meaning
that all GT atoms where either well segmented or not at all, or that all produced
segmentations perfectly match the GT atoms or they completely missed them.
However, distributions of the accuracy and coverage values also appear within
the bins between 0.1 and 0.9 as illustrated in the bottom of Fig. 3, although in
a less important number.

One of the advantage of unifying the localization evaluation of EvaLTex
with the segmentation evaluation is to benefit from this visualization scheme.
To our knowledge, such a visualization tool for analyzing the precision of seg-
mentation results does not yet exist. This visualization scheme can also be apply
independently on segmentation examples as seen in Fig 2.

5 Conclusion

In this article, we have presented a framework to evaluate text segmentation re-
sults. This framework was inspired from EvaLTex, a protocol initially designed
to evaluate text detection systems.

The proposed evaluation scheme is able to deal efficiently with different possi-
ble segmentation scenarios such as broken, merged characters, partially detected
characters or both broken and merged characters. Its robustness to slight vari-
ations in character thickness makes the protocol independent of the character’s
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Fig. 3: Histogram representation of the coverage and accuracy rates on the ICDAR
2015 natural scene dataset of three segmentation methods: (a) NSTsegmentator [19]; (b)
OCTYMIST [17]; (c) StradVision [24]. The bottom histograms represent the detailed
distribution of rates over the intervals between 0.1 and 0.8. One can observe that the
histograms provide a good inside on the behavior of a text segmentation algorithm.
For example, the most powerful method is StradVision as it has the highest accuracy
and coverage values in the last bin of the histogram. On the other hand, OCTYMIST
has a higher rate of false positives (green values in the first bin) than correct character
detections (green value in the last bin). Also, the number of true positives (magenta
value in the last bin) is equal to the number of missed detection (magenta value in the
first bin). The NSTsegmentator lies somewhere in between the two previous methods
as it has a lower number of missed detections and false positives than OCTYMIST but
higher than StradVision.

size. Moreover, the evaluation does not rely on a binary decision, which allows a
better discrimination between different segmentation scenarios. For all these rea-
sons, scores computed using this framework are not only representative for the
segmentation quality but they also allow to characterize and compare segmenta-
tion methods. To sum up, as this work handles the segmentation evaluation (at
character level) and is an adaptation of a framework capable of evaluating text
detection at paragraph/line or word levels, we can state that the presented work
is a unified tool to evaluate a text understanding chain at every stage of the
detection process. Furthermore, we have shown that we can successfully apply
the histogram visualization tool to segmentation evaluation results in order to
provide a more detailed overview of the segmentation method’s behavior.

In the future, a possible improvement would be to add an OCR evaluation
step in the EvaLTex framework. This platform is already able the provide the
correspondence between objects in the detection and objects in the GT. This
would indicate which character in the GT would be associated to which character
in the detection set. The release of this tool is equally planned.
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