A (fair?) comparison of many max-tree
computation algorithms.
Appendix

Edwin Carlinet! and Thierry Géraud!

EPITA Research and Development Laboratory (LRDE)
edwin.carlinet@lrde.epita.fr, thierry.geraud@lrde.epita.fr

A Immersion algorithms

A.1 Union-find without union-by-rank

The algorithm [I] is the union-find based max-tree algorithm as proposed by
Berger et al. [2]. It starts with sorting pixels that can be done with a counting
sort algorithm for low-quantized data or with a radix sort-based algorithm for
high quantized data[I].Then it annotates all pixels as unprocessed with —1 (in
standard implementations pixel are positive offsets in a pixel buffer). Later in
the algorithm, when a pixel p is processed it becomes the root of the component
i.e parent(p) = p with p # —1, thus testing parent(p) # —1 stands for is p
already processed. Since S is processed in reverse order and merge-set sets the
root of the tree to the current pixel p (parent(r) < p), it ensures that the parent
p will be seen before its child r when traversing S in the direct order.

Algorithm 1 Union find without union-by-rank

function FIND-ROOT(par, p)
if par(p) # p then par(p) < FIND-ROOT(par, par(p))
return par(p)

function MAXTREE(ima)
‘ for all p do parent(p) + —1

S < sorts pixels increasing
for all p € S backward do
parent(p) + p; zpar(p) « p > make-set
for all n € N, such that parent(n) # —1 do
r — FIND-ROOT(zpar, n)
if r # p then
‘ zpar(r) < p; parent(r) < p > merge-set
CANONIZE(parent, S)
return (parent, S)

A.2 Union-find with union-by-rank

The algorithm [2] is similar to algorithm [1] but augmented with union-by-rank.
It first introduces a new image rank. The make-set step creates a tree with
a single node, thus with a rank set to 0. The rank image is then used when
merging two connected sets in zpar. Let z, the root of the connected component
of p, and z, the root of connected component of n € N (p). When merging two
components, we have to decide whether z, or z, becomes the new root w.r.t
their rank. If rank(z,) < rank(z,), z, becomes the root, z, otherwise. If both
zp and z, have the same rank then we can choose either z, or z, as the new
root, but the rank should be incremented by one. On the other hand, the relation
parent is unaffected by the union-by-rank, p becomes the new root whatever the
rank of z, and z,. Whereas without balancing the root of any point p in zpar
matches the root of p in parent, this is not the case anymore. For every connected
components we have to keep a connection between the root of the component in
zpar and the root of the max-tree in parent. Thus, we introduce an new image
repr that keeps this connection updated.

Algorithm 2 Union find with union-by-rank

procedure MAXTREE(ima)
‘ for all p do parent(p) <+ —1

S < sorts pixels increasing
for all p € S backward do
parent(p) < p; zpar(p) « p > make-set
rank(p) < 0; repr(p) < p
Zp <P
for all n € N, such that parent(n) # —1 do
Zn 4 FIND-ROOT(zpar, n)
if z, # zp then
parent(repr(zn)) < p
if rank(zp) < rank(z,) then swap(zp,zn)
zpar(zn) < 2p > merge-set
repr(zp) < p
if rank(zp) = rank(z,) then
‘ rank(zp) < rank(zp) + 1

CANONIZE(parent, S)
return (parent, S)

A.3 Canonization

Both algorithms call the CANONIZE(p)rocedure to ensure that any node’s parent
is a canonical node. In algorithm [3] canonical property is broadcast downward. S
is traversed in direct order such that when processing a pixel p, its parent g has

the canonical property that is parent(q) is a canonical element. Hence, if ¢ and
parent(q) belongs to the same node i.e ima(q) = ima(parent(q)), the parent of
p is set to the component’s canonical element: parent(q).

Algorithm 3 Canonization algorithm

procedure CANONIZE(ima, parent, S)
for all p in S forward do
q < parent(p)
if ima(q) = ima(parent(q)) then
| parent(p) < parent(q)

A.4 Level compression

Union-by-rank provides time complexity guaranties at the price of an extra mem-
ory requirement. When dealing with huge images this results in a significant
drawback (e.g. RAM overflow...). Since the last point processed always be-
comes the root, union-find without rank technique tends to create degenerated
trees in flat zones. Level compression avoids this behavior by a special handling
of flat zones. In algorithm |4} p is the point in process at level A = ima(p), n
a neighbor of p already processed, z, the root of Pz;\ (at first z, = p), 2z the
root of P.. We suppose ima(z,) = ima(z,), thus z, and z, belong to the same
node and we can choose any of them as a canonical element. Normally p should
become the root with child z, but level compression inverts the relation: z, is
kept as the root and z, becomes a child. Since parent may be inverted, S array is
not valid anymore. Hence S is reconstructed, as soon as a point p gets attached
to a root node, p will be not be processed anymore so it is inserted in back of .S.
At the end S only misses the tree root which is parent[S[0]].

B Flooding algorithms

B.1 Salembier’s algorithm

Salembier et al. [5] proposed the first efficient algorithm to compute the max-
tree. A propagation starts from the root that is the pixel at lowest level Ly,ip.
Pixels in the propagation front are stored in a hierarchical queue that allows a
direct access to pixels at a given level in the queue. The flood (A, r) procedure
(see algorithm [5)) is in charge of flooding the peak component P} and building
the corresponding sub max-tree rooted in r. It proceeds as follows: first pixels at
level X\ are retrieved from the queue, their parent pointer is set to the canonical
element r and their neighbors n are analyzed. If n is not in queue and has not
yet been processed, then n is pushed in the queue for further process sing and n
is marked as processed (parent(n) is set to INQUEUE which is any value different

Algorithm 4 Union find with level compression

function MAXTREE(ima)
‘ for all p do parent(p) < —1

S < sorts pixels increasing

j=N-1

for all p € S backward do
parent(p) < p; zpar(p) «+ p > make-set
Zp =P

for all n € N, such that parent(n) # —1 do
Zn 4 FIND-ROOT(zpar, n)
if z, # z, then
| if ima(zp) = ima(z.) then SWAP(()zp, 2n)

zpar(zn) 2zp; parent(z,) < zp > merge-set
S[j] 4= zn; j 4 -1

S[0] < parent[S]0]]

CANONIZE(parent, S)

return (parent, S)

from -1). If the level [of n is higher than A then n is in the childhood of the
current node, thus flood is called recursively to flood the peak component P!
rooted in n. During the recursive flood, some points can be pushed in queue
between level A and [. Hence, when flood ends, it returns the level I’ of n’s
parent. If I’ > X, we need to flood level I’ until I/ < X i.e until there are no
more points in the queue above A. Once all pixels at level A\ have processed, we
need to retrieve the level Ipar of parent component and attach r to its canonical
element. A levroot array stores canonical element of each level component and
-1 if the component is empty. Thus we just have to traverse levroot looking for
Ipar = max{h < A,levroot[h] # —1} and set the parent of r to levroot[lpar].
Since the construction of parent is bottom-up, we can safely insert p in front
of the S array each time parent(p) is set. For a level component, the canonical
element is the last element inserted ensuring a correct ordering of S. Note that
the first that gets a the minimum level of the image is not necessary. Instead, we
could have called flood in Max-tree procedure until the parent level returned
by the function was -1, i.e the last flood call was processing the root.

B.2 Non-recursive versions of Salembier’s algorithm

Salembier et al. [B]’s algorithm was rewritten in a non-recursive implementa-
tion in Hesselink [3] and later by Nistér and Stewénius [4] and Wilkinson [0].
These algorithms differ in only two points. First, [6] uses a pass to retrieve the
root before flooding to mimics the original recursive version while Nistér and
Stewénius [4] does not. Second, priority queues in [4] use an unacknowledged
implementation of heap based on hierarchical queues while in [6] they are im-
plemented using a standard heap (based on comparisons). The algorithm |§| is
a code transcription of the method described in Nistér and Stewénius [4]. The

Algorithm 5 Salembier et al. [5] max-tree algorithm

function FLOOD(A, r)

while hqueue[\] not empty do

p < POP(hqueue[)])

parent(p) < r

if p # r then INSERT_FRONT(S, p)

for all n € N(p) such that parent(p) = —1 do
l + ima(n)
if levroot[l] = —1 then levroot[l] + n
pUSH(hqueue[l], n)
parent(n) < INQUEUE
while [> X\ do

| 1< flood(l,levroot[l])

> Attach to parent
levroot[\] + —1
lpar < X —1
while [par > 0 and levroot[lpar] = —1 do
‘ Ipar < lpar — 1
if lpar # —1 then
| parent(r) < levroot[lpar]
INSERT_FRONT(S,)
return [par

function MAX-TREE(ima)

| for all h do levroot[h] < —1
‘ ‘ ‘ ‘ for all p do parent(p) < —1
lmin < min, ima(p)
Dmin < argmin, ima(p)
pPUSH(hqueue[lmin], Pmin)
levroot[lmin] < pmin

FLOOD (Limin, Pmin)

array levroot in the recursive version is replaced by a stack with the same pur-
pose: storing the canonical element of level components. The hierarchical queue
hqueue is replaced by a priority queue pqueue that stores the propagation front.
The algorithm starts with some initialization and choose a random point pgiart
as the flooding point. psqr is enqueued and pushed on levroot as canonical ele-
ment. During the flooding, the algorithm picks the point p at highest level (with
the highest priority) in the queue, and the canonical element r of its component
which is the top of levroot (p is not removed from the queue). Like in the recur-
sive version, we look for neighbors n of p and enqueue those that have not yet
been seen. If ima(n) > ima(p), n is pushed on the stack and we immediately
flood n (a goto that mimics the recursive call). On the other hand, if all neigh-
bors are in the queue or already processed then p is done, it is removed from the
queue, parent(p) is set its the canonical element r and if » # p, p is added to

Algorithm 6 Non-recursive max-tree algorithm [4], [6]

: function MAX-TREE(ima)
‘ for all p do parent(p) + —1

1
2
3 Pstart < any point in §2
4: PUSH(pqueue, pstart); PUSH(levroot, pstart)
5: parent(pstart) < INQUEUE
6: loop

7 p + TOP(pqueue); r + TOP(levroot)

8 for all n € N (p) such that parent(p) = —1 do

9: ‘ PUSH(pqueue, n)

10: parent(n) < INQUEUE

11: if ima(p) < ima(n) then

12: pUSH(levroot,n)

13: goto 7

14: { p is done }

15: POP(pqueue)

16: parent(p) < r

17: if p # r then INSERT_FRONT(S, p)

18: while pgueue not empty do;

19: { all points at current level done ? }
20: q < TOP(pqueue)

21: if ima(q) # ima(r) then > Attach r to its parent
22: | PROCESSSTACK(r, q)

23: repeat

24: root < POP(levroot)

25: INSERT_FRONT(S, root)

S (we have to ensure that the canonical element will be inserted last). Once p
removed from the queue, we have to check if the level component has been fully
processed in order to attach the canonical element r to its parent. If the next
pixel ¢ has a different level than p, we call the procedure ProcessStack that
pops the stack, sets parent relationship between canonical elements and insert
them in S until the top component has a level no greater than ima(q). If the
stack top’s level matches ¢’s level, ¢ extends the component so no more process
is needed. On the other hand, if the stack gets empty or the top level is lesser
than ima(q), then ¢ is pushed on the stack as the canonical element of a new
component. The algorithm ends when all points in queue have been processed,
then S only misses the root of the tree which is the single element that remains
on the stack.

C Merge-based algorithms and parallelism

The procedure in charge of merging sub-trees 7; and 7} of two adjacent domains
D; and Dj is given in algorithm m For two neighbors p and ¢ in the junction of

Algorithm 6 Non-recursive max-tree algorithm (continued)

procedure PROCESSSTACK(r, q)

A+ ima(q)

poP(levroot)

while levroot not empty and A < ima(ToP(levroot)) do
INSERT_FRONT(S, T)

r < parent(r) < PoP(levroot))

if levroot empty or ima(TOP(levroot)) # A then
| pusH(levroot, q)

parent(r) < TOP(levroot)
INSERT_FRONT(S,)

D;, Dj, it connects components of p’s branch in T; to components of ¢’s branch
in T; until a common ancestor is found. Let x and y, canonical elements of
components to merge with ima(x) > ima(y) (x is in the childhood to y) and z,
canonical element of the parent component of z. If x is the root of the sub-tree
then it gets attached to y and the procedure ends. Otherwise, we traverse up the
branch of = to find the component that will be attached to y that is the lowest
node having a level greater than ima(y). Once found, x gets attached to y, and
we now have to connect y to z’s old parent. Function findrepr(p) is used to
get the canonical element of p’s component whenever the algorithm needs it.

Algorithm 8 Canonization and S computation algorithm

procedure CANONIZEREC(p)
dejavu(p) = true
q < parent(p)

if not dejavu(q) then > Process parent before p
| CaNoN1zEREC(q)
if ima(q) = ima(parent(q) then > Canonize

‘ parent(p) + parent(q)
| INSERTBACK(S, p)

for all p do dejavu(p) « False

for all p € 2 such that not dejavu(p) do
| CaNoNIZEREC(p)

Once sub-trees have been computed and merged into a single tree, it does not
hold canonical property (because non-canonical elements are not updated during
merge). Also, reduction step does not merge S array corresponding to sub-trees
(it would imply reordering S which is more costly than just recomputing it at the
end). Algorithm 8| performs canonization and reconstructs S array from parent

Algorithm 7 Tree merge algorithm

function FINDREPR(par, p)
‘ if ima(p) # ima(par(p)) then return p

par(p) < FINDREPR(par, par(p))
return par(p)

procedure CONNECT(p,q)

Z < FINDREPR(parent, p)

y < FINDREPR(parent, q)

if ima(z) < ima(y) then swap(z,y)

while z # y do > common ancestor found ?
parent(x) < FINDREPR(parent, parent(x));
z < parent(x)
if £ = z then > x is root
‘ parent(z) < y; y <«
else if ima(z) > ima(y) then
| 2+ 2
else
parent(z) <y
Ty
Yz

procedure MERGETREE(D;, D;)
for all (p,q) € D; x D; such that ¢ € N(p) do
| CONNECT(p,q)

image. It uses an auxiliary image dejavu to track nodes that have already been
inserted in S. As opposed to other max-tree algorithms, construction of S and
processing of nodes are top-down. For any points p, we traverse in a recursive
way its path to the root to process its ancestors. When the recursive call returns,
parent(p) is already inserted in S and holds the canonical property, thus we can
safely insert back p in S and canonize p as in algorithm

B
[

ibliography

Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time?
In: Proc. of the Annual ACM symposium on Theory of computing. pp. 427—
436 (1995)

Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.:
Effective component tree computation with application to pattern recogni-
tion in astronomical imaging. In: Proc. of ICIP. vol. 4, pp. IV-41 (2007)
Hesselink, W.H.: Salembier’s min-tree algorithm turned into breadth first
search. Information processing letters 88(5), 225-229 (2003)

Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In:
Proc. of ECCV. pp. 183-196 (2008)

[5] Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators
for image and sequence processing. IEEE Trans. on Ima. Proc. 7(4), 555-570
(1998)

[6] Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range
images and second generation connectivity. In: Proc. of ICIP. pp. 1021-1024
(2011)

	A (fair?) comparison of many max-tree computation algorithms. Appendix

