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(a) Grain filtering (b) Image simplification (c) Object picking (d) Shape-based filtering

Fig. 1. Some applications featuring the Tree of Shapes (ToS). (a) Grain filters are used for layout extraction by removing

dark or bright text [1]. (b) Energy-based node selection for image simplification or segmentation [2, 3, 4]. (c) Interactive

segmentation using few scribbles on the ToS [5]. (d) Shape-based attribute filtering for cytology, depending on a circularity

criterion [6].

ABSTRACT

The Tree of Shapes (ToS) is a morphological, tree-based

representation of an image, translating the inclusion of its level

lines. It features many invariants to image changes, which

make it well-suited for many applications in image process-

ing and pattern recognition. In this paper, we propose a way of

turning a ToS computation into a Max-Tree computation. The

latter has been widely studied, and many efficient algorithms

(including parallel ones) have been developed. Furthermore,

we develop a specific optimization to speed-up the common

2D case. It follows a simple and efficient algorithm, running

in linear time with a low memory footprint, that outperforms

other currently used algorithms. For Reproducible Research

purpose, we distribute our code as free software.

Index Terms— Tree of Shapes, Algorithm, Mathematical

morphology

1. INTRODUCTION

The Tree of Shapes (ToS) is a hierarchical structure encod-

ing the inclusion of the level lines of an image. Those level

lines are the contours of shapes (see Fig. 2). The ToS is an

interesting structure because level lines are invariant to con-

trast changes and to the inversion of contrast. These properties

are particularly valuable in image processing, pattern recogni-

tion and computer vision [7], where the ToS has shown its ro-
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Fig. 2. An image (left), its ToS (middle), and an inclusion

order map Ord (right).

bustness to deal with poorly contrasted images, with changes

of illuminations and of scene view points [8, 9] (see Fig. 3).

The strength of this representation lies in its versatility. Like

min- and max-trees, it enables performing non-trivial advanced

connected filtering [10, 11, 12, 6] (Figs. 1a and 1d) that are

easy to tune for application specific tasks. Morphological at-

tribute profiles over the ToS have been used in remote sensing

for classification of hyperspectral images [13, 14, 15, 16]. In

[17], the ToS is pruned to detect and track speckles in ultra-

sound images. Concerning natural images, the ToS is used

as a feature detector to select stable regions in [18] and to

perform some texture analysis in [19] avoiding managing two

component trees as in the original MSER algorithm. In [20],

it is used for object picking (Fig. 1c) and alpha-matting to

compute shortest path distances free of any topological issues.

By supporting advanced node selection strategies, some au-



(a) An image (left) and some meaningful level lines (right).

(b) A different view of the film cover contained in (a). The level

lines of this new image globally match the ones of (a), thus the ToS

properly encodes the contents of both images.

Fig. 3. Robustness of the level lines w.r.t. transforms in the

value and domain spaces. The lines are colorized w.r.t. their

depth of inclusion in the ToS.

thors [21, 3, 4] have developed energy-based node filtering for

scene simplification and segmentation (see Fig. 1b). The ToS

is not limited to gray-level images as it has been been extended

to color and multivariate images with the MToS [22]. Lastly,

some discrete topology considerations about the ToS are dis-

cussed in [23, 24], and its relationship with a very popular vi-

sual saliency measure are described in [25].

Nevertheless, the ToS is still under-exploited outside the

Mathematical Morphology community. As its potential is not

yet to demonstrate, this may to be due to the lack of a fast

and easy-to-write algorithm. Nowadays, fast algoritms are of

prime importance in embedded real-time systems. Currently,

there are four ToS algorithms. The first approach, the Fast

Level Line Transform [8] (FLLT), computes and merges the

min- and max-trees. The second, the Fast Level Set Trans-

form [26] (FLST), relying on a region-growing approach, ex-

tracts each branch of the tree starting from a leaf (regional ex-

tremum without holes) and expands it up to the root until at

least one bifurcation is encountered, that is, until the region is

no longer a regional extremum. The third algorithm, from Song

[27] takes a top-down approach by tracking the level lines start-

ing from the border. The algorithm is restricted to 2D images

with hexagonal pixels, or emulates 6-connectivity on images

with a square grid.

In this article, we propose a simpler and more efficient ver-

sion of Géraud et al. [28]’ algorithm. Our main contribution

is to adapt their algorithm in order to turn a ToS computation

problem into a Max-tree computation problem. The transfor-

mation is explained in Section 2. Consequently, it is simpler

and efficient because there exist many well-known max-tree

algorithms achieving good performances. The second contri-

bution, explained in Section 3, is a simple 2D optimization that

reduces the number of pixels to process and makes our algo-

rithm run faster. In Section 4 we compare the efficiency of our

approach with others.
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Fig. 4. Run of the quasi-linear algorithm [24].
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Fig. 5. Interpolation (1) and immersion (2) of an image. We

suppose a ≤ b ≤ c ≤ d for the example. Original pixels have

a thick border, 2-faces are in yellow and intermediate pixels

(0/1-faces) are in gray.

2. A LINEAR TOS COMPUTATION ALGORITHM

2.1. The quasi-linear algorithm

Géraud et al. [28] describe a Union-Find based algorithm to

compute the Tree of Shapes in quasi-linear time in four steps:

Interpolation. The image is rescaled by a factor 2, using

min/max/median interpolation to get a well-composed im-

age. This step ensures the uniqueness of the ToS and allows

choosing from custom background/object connectivities. For

example, the max-interpolation stands for the upper semi-

continuity interpretation of the image; hence lower level sets

are 4-connected and upper level sets are 8-connected. The

median can be used to get a real self-duality [24].

Immersion. The image is transformed as an interval-

valued map F in the Khalimsky grid. Intermediate pixels

(namely 0- and 1-faces) are used to represent all level lines

passing between any two original pixels (2-faces). Interpola-

tion and immersion are illustrated in Fig. 5.

Pixel sorting. A continuous propagation is performed on

F starting from the border (any point can actually be used to

start the propagation and thus is used for rooting the tree); fol-

low the red arrows in Fig. 4. The processsing order of the pixels

is recorded in a vector R, as well as the level they have been



function COMPUTEORDERMAP(f , F , p∞)

Q← ∅; R← ∅
Ord(x)← −1 forall x

λold ← f(p∞)

INSERT(Q, (λold, p∞))
d← 0
while Q 6= ∅ do

(λ, p)← POP(Q, λold)

if λold 6= λ then d← d+ 1

Ord(p)← d

PUSH(R, p)

for all n ∈ N4(p) such that Ord(n) = −1 do

[a, b]← F (n)
if λ < a then INSERT(Q, (a, n))
else if λ > b then INSERT(Q, (b, n))
else INSERT(Q, (λ, n))

λold ← λ
return (R,Ord)

Fig. 6. Sort procedure.

visited with.

Tree construction. The pixels are processed in the reverse

order of R and Union-Find is used to track disjoint sets of con-

nected components to build the tree in a bottom-up fashion;

follow the blue arrows in Fig. 4. This is the classic algorithm

to build the component tree with the Union-Find approach.

2.2. Order map image transformation

In [29] and [22], the authors noticed an obvious but interest-

ing feature of component trees. It is possible to recover the

component tree from an image whose pixels are valued by the

depth of their node; one just has to compute the max-tree of this

depth image. Actually, not only the depth, but any topological

ordering of the tree would make suffice.

This property is the key foundation for our approach as

many efficient algorithms have been proposed for Max-tree

constructions and the optimization task is delegated to the pre-

vious steps. In particular, the pixel sorting is now responsible

for computing a map Ord (in place of K) corresponding to a

topological sort of the ToS. The algorithm is given in Fig. 6,

and a resulting order map is illustrated in Fig. 2 (right). The

algorithm processes the pixels level-wise with a propagation

front. The latter has to keep the pixels sorted by their level

through the ordered associative map Q so that we can access

pixels at any level from the front. Each time the current level

is changed, the number of processed level d is incremented

and when a pixel p is visited, we store its processing order in

Ord(p) and push it back into R.

In Fig. 6, we assume the Abstract Data Type for Q:

INSERT(Q, (λ, p)): add the value (pixel) p at key (level) λ.

POP(Q, k): retrieve and remove the lowest pair (λ, p) such

that k ≤ λ or greatest pair (λ, p) such that λ < k. This is typ-

ically implemented with hierarchical queues for low quantized

images (and red-black-trees for high-quantized images).
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Fig. 7. Immersion for the optimized version in case of a

saddle-point configuration.

2.3. The ToS turned into a Max-tree

Once the order map has been computed, one has to build its

Max-tree to get the ToS. In most cases, the maximum value

is such that we can apply a linear Max-tree algorithm such as

in [30]. Otherwise, we fall back to a quasi-linear Union-find

based Max-tree algorithm [31] (avoiding the sorting step since

R has already been computed). The reader is referred to [32]

for a comprehensive survey.

3. 2D OPTIMIZATION

The interpolation followed by the immersion implies a pro-

hibitive time and memory overhead, since the number of ele-

ments is multiplied by 16. Hopefully, this representation sim-

ulating 4/8-connectivity, can be optimized for 2D images by

avoiding the interpolation step. A connectivity map replaces

the inter-pixels. To get the same results as the algorithm run-

ning with the original representation, we must ensure that the

optimized representation has the same level sets as the original

one. Hence, we use a specific immersion which depends on the

local configuration of the faces.

For 1- or 2-faces, the rules remain the same. However,

they differ for a 0-face p if the four neighboring pixels a, b, c,

d form a saddle point. Without loss of generality, we suppose

a ≤ b < c ≤ d, then F (p) = [c, d]. It simulates upper-semi-

continuity by preventing level lines lower than c from passing

through the saddle point using the 4-connectivity.

Using a 4-connectivity together with this new interpolation

is too restrictive. Indeed, the 2-faces valued by c and d on

a saddle point might not be able to connect properly if they

are reached during the propagation of increasing levels of grey.

Therefore in addition to the 4-connectivity, a connectivity map

is used to add diagonal connections depending on the local con-

figuration of 2-faces as shown in Fig. 7. The role of this map

is to act as if we were using the interpolated inter-pixels. Thus

it has be designed so that the lower and upper level-sets are the

same in both cases. The equivalence of both representations is

shown in Fig. 8. This map is used afterward as the connectivity

graph of pixels during the ordered map and max-tree computa-

tion.

4. PERFORMANCE ANALYSIS

4.1. Complexity and memory analysis

Let n be the number of pixels after immersion. This means if

k is the number of pixels of f , n = 4.k.
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Fig. 8. Equivalence between the optimized and naive immersion with a saddle point configuration for every possible level λ.

For each level, the selected set and its complement contain the same connected components (in term of original faces).
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Fig. 9. Comparaison of the speed (in pixels processed by sec.,

the higher the better) of ToS algorithms w.r.t. the image size.

For low-quantized images, the order map computation is

linear using hierarchical queues, and the max-tree computation

has a worst-case quasi-linear complexity. In practice, for nat-

ural images the maximum is such that we can apply a linear

max-tree algorithm. Hence, the whole process is linear on av-

erage (and quasi-linear at worse).

For high-quantized images, the order map computation is

n log n because storing the pixels sorted in the front typically

uses red-black-trees. The Max-tree computation remains un-

changed. The whole process is thus n log n.

Memory-wise, let I be the size of int in bytes. The com-

putation of the order map requires 4 ·n ·I or 5 ·n ·I bytes for

Q,R,Ord (depending on the implementation) and the connec-

tivity map. The memory used for the Max-tree construction de-

pends on the chosen algorithm (see [32]) but requires between

2·n·I and 3·n·I bytes.

4.2. Comparaison with existing algorithms

We compare our algorithm with Megawave’s FLST, Song

[27]’s (implementation provided by the author) and Géraud

et al. [28]’s algorithms. The outputs slightly differ between the

methods (either because of the connectivity or the tree rooting

strategy) but they remain similar. We tested every algorithm on

a natural image dataset (20-MPix images) cropped to a given

size varying from 1 to 16 MPix, the minimum of 5 runs has

been kept. These benchmarks were run on an Intel core i7

7500U, 2.7GHz and 8GB of RAM. Figure 9 shows the average

speed and the standard deviation on the dataset.

A first observation is that we were not able to run Song

[27]’s method on images larger than 4 MPix because of a too

large memory consumption. Next, all algorithms have, in prac-

tice, a linear behavior w.r.t the size, even if some of them have

a quadratic worst-case complexity. However, the speed of the

FLST, Géraud et al. [28] and our algorithm depends on the im-

age size and decreases by 5-10% when the size doubles.

Overall, our algorithm is 4x faster than Géraud et al. [28],

and 2.5x faster than the FLST. It is also more stable than Song

[27] w.r.t the image content that shows highly varying process-

ing times. On the average, our algorithm is also faster but the

difference in speed tends to lower as the image size increases.

5. CONCLUSION & PERSPECTIVE

We have introduced a new algorithm1 to compute the ToS

with a practical linear complexity. The main idea was to turn

the ToS computation into a max-tree computation to benefit

from efficient component-tree implementations. A specific

2D optimization has been developed to reduce the memory

footprint and improve processing speed by avoiding the need

for inter-pixels interpolation. Our proposal outperforms the

current state-of-the-art implementations. The parallelization

of our algorithm has not been done as a matter of fairness with

the other sequential implementations. Yet, the parallelization

strategy for the immersion described in [29] can be applied

and many efficient parallel max-tree algorithms have been pro-

posed for both low and high-quantized images [32, 33]. Our

algorithm can be generalized in nD (see [28] and [34]) but the

2D memory optimization no longer holds and requires mul-

tiplying the image size by 4n which may become intractable

for large images. For such a case, the only viable alternative

remains the FLLT [35]. As a consequence, as future work, we

will try to extend our memory optimization to nD grids.

1Source code at http://publications.lrde.epita.fr/carlinet.18.icip

http://publications.lrde.epita.fr/carlinet.18.icip
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[22] E. Carlinet and T. Géraud, “MToS: A tree of shapes for mul-

tivariate images,” IEEE Trans. on Image Processing, vol. 24,

no. 12, pp. 5330–5342, Dec. 2015.
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