
1

An alpha-tree algorithm for massively parallel

architectures
Edwin Carlinet, Quentin Kaci ∗ and Nicolas Blin †

EPITA Research Laboratory (LRE), Le Kremlin-Bicêtre, France

edwin1.carlinet@epita.fr

Abstract—The alpha-tree, also known as the quasi-flat zone hi-
erarchy is a widely used representation of images in Mathematical
Morphology. This structure organizes the regions according to a
similarity criterion into a tree, that eases the multiscale analysis
of images. Many alpha-tree algorithms exist and computing this
structure efficiently is still an active field of research. Indeed, the
alpha-tree is commonly used in remote sensing where there is an
urge for fast processing of large terabytes images. In this paper,
we propose the first massively parallel alpha-tree algorithm
that leverages concurrent union-find data structures to exploit
the SIMT (Single Instruction Multiple Threads) programming
model of GPUs. Our algorithm outperforms the State-of-the-Art
parallel CPU algorithms by a factor of 10 on average on desktop
computers and servers. It also opens new perspectives for using
Mathematical Morphology methods on GPU pipelines.

I. INTRODUCTION

Mathematical morphology provides several hierarchical

structures to represent images. They can be divided into two

groups: the component trees and the hierarchies of partitions.

In the first class, min and max-trees [1, 2] relies on the

connected components of the threshold sets. Such components

are either nested or disjoint and so, can be organized into an

inclusion tree. The second class of representations is based

on a sequence of nested partitions (any two partitions are

related by the refinement relation). This set of partitions con-

sequently forms a hierarchical structure. This closely relates

to the problem of hierarchical clustering in machine learning

which requires the combination of spatial relation and pixel

similarity during region merging. Binary Partition Trees [3],

hierarchies of watersheds [4, 5], and the quasi-flat zones

hierarchies provide mathematical morphology-based solutions

to this problem.

The quasi-flat zone hierarchy [6, 7], also known as the

alpha-tree, has become increasingly popular for image pro-

cessing over the last few decades for two main reasons.

Firstly, the impressive results showcased in the Berkeley

segmentation challenge[8] have contributed to the growing

trendiness of the hierarchy of partitions. Cousty et al. [9]

has since proven the existence of a bijection between any

hierarchy of segmentation and the alpha-tree of a (ultrametric)

contour map. Thanks to this link, the alpha-tree is not only

a representation of the image but also becomes a tool to

construct and manipulate other hierarchies of segmentations

at the pixel level. In simpler terms, it enables the transition

between the tree representation and the image representation

∗†
Q. Kaci is now with Seoul Robotics, and N. Blin is now with NVIDIA

Fig. 1: Fine to coarse image simplification with the α-tree constrained
with a maximal intra-cluster distance ω (a.k.a α-ω filtering [6]). Left:
original image (859411 regions). Middle: α = 100, ω = 60 (100386
regions). Right: α = 100, ω = 100 (72902 regions).

(saliency map) of the hierarchy, allowing transformations to

be performed in the most adapted workspace [10, 9]. Figure 2

illustrates these two equivalent representations.

Secondly, the alpha-tree’s capability to handle multi-channel

images provides a distinct advantage over other representa-

tions. For instance, contrary to component trees, the alpha-

tree does not depend on an arbitrary total ordering relation

among image pixels for which there is no consensus. The

alpha-tree utilizes a pixel similarity metric to define the tree’s

α-levels. Distance between vectors (e.g. the L2 distance in

CIELab for colors) are generally more accepted than color

orderings. Consequently, the alpha-tree is better suited for

encoding RGB, multi-spectral, and hyper-spectral images [11],

making it ideal for natural image processing and multi-spectral

imaging. An example of image simplification with the alpha-

tree hierarchy is shown in figure 1 where the number of

regions is divided by a factor of 10 while preserving the

important structures. Since it is a hierarchy of segmentation,

the alpha-tree was obviously used in the context of color image

segmentation as in [12] for natural scene segmentation, in [13]

for medical photographic images, or in [14] to extend the

grayscale Maximally Stable Extremal Region (MSER) [15]

to color images. While its usage for natural scene processing

has been declining for the last years in favor of deep-learning

approaches, it is still used for remote sensing [16, 17, 18] to

process very large images with thousands of channels.

The high computational cost of processing large images

keeps the development of these algorithms an active research

area. Most of the proposed algorithms so far have utilized

Kruskal’s Minimum Spanning Tree (MST) algorithm [19, 20],

adopting a bottom-up approach (from leaves to root). Recent

works involved in optimizing its computation have adopted

two strategies: (a) using parallel architectures to distribute

the work among processors [21, 22], or (b) using a different

2

(a) (b)

Fig. 2: A hierarchy of partition (left) and its alternative representation
as a saliency map (right). Both representations are equivalent. The
stronger the contour is, the longer the edge will remain in the hierarchy.
Thresholding the saliency map gives one a partition of the hierarchy.

algorithmic strategy [23]. In [23], inspired by the max-tree

algorithms, the authors propose a flooding strategy (top-down

construction) with a better memory footprint. This idea was

then extended in [24] for high-dynamic range images. How-

ever, recent works [25] have shown that a similar morphologi-

cal representation, the max-tree, could be computed on GPUs.

The contributions of this paper are:

• the introduction of the first alpha-tree algorithm for

massively parallel architectures that fits the SIMT

paradigm of GPUs, inspired by the previous works on

the parallel computation of alpha-trees [25, 21, 22]

• a comparison of this algorithm with the State-of-the-Art

approaches on many architectures.

The structure of this paper is as follows. In section II, we

revisit the definition of the alpha-tree. Next, we review existing

alpha-tree building algorithms in section III. In section IV, we

detail our proposed alpha-tree algorithm for GPUs which is

based on existing methods. In section VI, we benchmark our

algorithms against state-of-the-art solutions, discussing their

performance on an 8-connected grid and with high dynamic

range (HDR) images. Finally, we conclude and provide per-

spectives in section VII.

II. ALPHA-TREE DEFINITION

A. Mathematical background

While the term “alpha-tree” is mostly used in the image

processing terminology, this structure is easier to define and

generalizable within the graph framework. An image can be

represented as an undirected weighted graph G = (V,E)
where V is the set of vertices (pixels) and E is the set

of edges defined by neighborhood, e.g., 4-neighbors or 8-

neighbors in 2D. The weight of an edge e = (vi, vj) ∈ E is

defined with a symmetric dissimilarity we = d(vi, vj) between

corresponding pixels (generally a gradient, see figure 3a). Let

u, v ∈ V , we can define a path Π(u → v) as a sequence

of adjacent vertices that links u and v. We define the α-

connected component containing a vertex v ∈ V , or α -CC(v)
as a set of vertices (including v), for which there exists a path

π from v with weights not greater than α. More formally,

∀p, q ∈ α -CC(v), ∃P = Π(p → q), ∀e ∈ P,we ≤ α. The

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

0 0 1 1

2 3 3 3

3 3 1 0

1 4 2

1 3 2

0 3 4

0 5 3

a b c d

e f g h

i j k l

m n o p

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

h0 h1 h2

h4 h5 h6

h8 h9 h10

h12 h13 h14

(a) An image as a graph.

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

0 0

0

0

0

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

1

1

1 1

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

2

2

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

3

3

3

3

(b) α-connected components of (a): 0-, 1-, 2- and 3-
CCs.

A B

C

D

E

F

G

H

I

J

K

(c) The finest image partition.

Ω

A B I J C D E F K G H

α

0-CC

1-CC

2-CC

3-CC

(d) Hierarchy of α-CC.

Fig. 3: The alpha-tree hierarchy illustrated on a sample graph [26]. The
α-connected components of (a) form a sequence of partitions (b) which
are nested and can be represented as an inclusion hierarchy (d).

v7

3
h5

3
v8

3
v4

2
h0

1
v0

0
a e

v1

0
b f

h8

0
i j

h12

0
m n

h2

2
v2

1
c g

v3

1
d h

h14

3
v10

1
k o

v11

0
l p

a b c d e f g h i j k l m n o p v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 h0 h1 h2 h4 h5 h6 h8 h9 h10 h12 h13 h14

v0 v0v1 v1 h8 h8 h12 h12v11 v11 h0 h0v2 v2v3 v3 v10 v10 v4 v4h2 h2 v8 v8h5 h5h14 h14 v7v7

Pixel nodes Edgel nodes

Fig. 4: The Binary Partition Tree representing the hierarchy depicted
in figure 3. The pixels are leaves and the edges of the minimum
spanning tree are internal nodes. The tree is encoded with an array of
size |V |+ |E| where each element stores the index of its parent.

α-connected components form an ordered sequence when α

is growing, such that ∀αi < αj , αi -CC(v) ⊆ αj -CC(v).
The alpha-tree is the tree of α-connected components.

Therefore, it is the hierarchy where the parenthood relationship

represents the inclusion of the α-connected components as

illustrated on figure 3.

B. Tree data structure

A common way to represent hierarchies in Mathematical

Morphology is to encode the parent relationship between

elements in a parent image [27] as for component trees.

However, the alpha-tree contains more nodes than component

trees: the pixels form the leaves and the edge elements (edgels)

form the internal nodes of the hierarchy. As we will see in

section III, the alpha-tree is closely related to the minimum

3

a e b f i j c g d h m n k o l p

v0 v1 v11h8 h12

v10v2 v3h0

v4 h2

v7 3-CC

2-CC

1-CC

0-CC

α

Fig. 5: The canonicalized version of the tree depicted in figure 4. Non-
canonical nodes are removed yielding the final α-tree.

spanning tree (MST), so that the maximum number of nodes

in the hierarchy is 2.|V | − 1 (there are |V | − 1 edges in

the MST). However, the edges that will be part of the MST

are not known beforehand. To avoid memory allocation at

runtime, our alpha-tree data structure allocates a node for every

element (pixels and edgels). It is composed of three arrays in

4-connectivity: one for the pixels and the others for the edgels.

Figure 4 shows the alpha-tree representation of the image

figure 3a with the parent relation encoded in a linear array. The

internal nodes are made of edges from a MST (dark edges in

figure 3b). The first part of the array represents the pixel nodes

(leaves) while the other part contains the nodes used when

merging (internal edgel nodes). From a micro-architecture

perspective, this organization eases memory management and

maximizes the number of coalesced operations when threads

have to access contiguous pixels and their edges. The downside

remains that some cells will be allocated but unused.

The tree shown in figure 4 features nodes with parents at

the same merging level, representing the non-canonicalized

form of the desired tree (also called Binary Partition Tree by

Altitude Ordering in [19]). A canonicalization step is required

to obtain the final alpha-tree. The alpha-tree is a Binary

Partition Tree with has all non-canonical nodes removed. This

ensures that 1. parent(x) is canonical for every node x,

2. level(x) ̸= level(parent(x)) for any non-leaf node x as

shown in figure 5.

III. STATE-OF-THE-ART

A. Sequential alpha-tree algorithms

1) Immersion-based algorithms: Most alpha-tree algo-

rithms, such as those cited in [19, 20], utilize Tarjan’s Union-

Find process [28], which adopts a bottom-up approach. This

method, which builds the tree from the leaves to the root, was

the only one available for building an alpha-tree until recently,

leading to the development of several variants.

The algorithm outlined in[19] is illustrated in algo-

rithm 1. This process consists of two phases. First, Kruskal’s

algorithm[29] computes the minimum spanning tree using a

union-find structure, then the tree is canonicalized to remove

extra nodes and produce the alpha-tree. The algorithm begins

by creating a ’singleton’ tree for each pixel, forming a forest.

Next, the algorithm processes edges in order of increasing

weight. When an edge connects two disjoint trees, the al-

gorithm creates a new node that becomes the new root of

the merged trees. When all edges have been processed, there

is only a single tree remaining in the forest. The following

three functions are used to manage the forest with a union-

find structure:

• MAKE-SET(parent, x) creates the singleton set {x}. It

basically creates an empty tree where x is the root:

parent(x)← x

• FIND-ROOT(parent, x) climbs the tree that contains x and

returns its root.

• UNION(parent, x, y) merges two partial trees rooted in x

and y. It basically creates a new node and set the parents

of x and y to the new node. The level of the new node

will be the dissimilarity between nodes associated with

x and y.

An efficient implementation of the MST in quasi-linear

time requires two techniques. Path-compression should be

performed in FIND-ROOT to shorten the chains to the root, and

union-by-rank should be used in UNION to balance the tree and

keep its height as small as possible when merging. The path-

compression requires handling two structures for the trees.

The first structure contains the full hierarchy while the other

contains a flattened version of it. Therefore, the two techniques

require extra-memory as we need to preserve parent (that holds

the tree), compressed parent (that holds the flattened version

of the tree), and an extra array to store the ranks. The memory-

to-compute trade-off may not be worth it, and only the path-

compression is usually implemented [20]. In [20], extra mem-

ory optimizations are proposed. They start with computing the

flat zones (0-CC) to reduce the number of nodes pre-allocated

for the leaves. They also propose to use directional hierarchical

queues (one queue per edge direction) for sorting the edges

and reducing memory usage. For example, a horizontal edge

(p, q) would be noted (p,HORIZ) and would be stored in

the HORIZ queue with only the value p.

Once the minimum spanning tree is computed, the parent

relation gives a binary partition tree. To obtain an alpha-tree,

the algorithm requires a simplification step. As section II-B

illustrates, the final alpha-tree is a hierarchy with all non-

canonical nodes removed. The canonicalization algorithm (al-

gorithm 1) processes the nodes from root to leaves by pro-

cessing the sorted edges array backward and propagating the

canonical property downward. When node x is processed, we

know for sure that its parent q points to a canonical element,

and can safely be updated.

Later, [22] proposed a different data structure to canonical-

ize the tree during the construction and minimize the number

of node creation. A node is created only if it is needed, that

is, only if the edge has a different level from the two roots to

merge. Otherwise, it will simply attach one tree to the other

without creating a new node. Moreover, edge insertions are

interleaved with vertex insertions to reuse as many nodes as

possible during the growth of the tree. This variant [22] has

better performance than [19] and will be used as a baseline in

section VI. However, it does not totally avoid spurious node

creation and still needs a canonicalization step.
2) Flooding-based algorithms: Besides bottom-up ap-

proaches, top-down algorithms exist to construct other mor-

phological trees like the max-tree [1, 30]. Recently, the

same method was applied to the alpha-tree [23]. The alpha-

tree flooding algorithm is similar to the min-tree one, with

some optimization to handle more nodes, especially for low-

dynamic-range images. The main difference lies in that the

4

Algorithm 1 Union-find-based alpha-tree algorithm.

1: procedure FIND-ROOT(parent, p)

2: while p ̸= parent(p) do

3: p← parent(p)

4: return p

1: procedure CANONICALIZE(parent, level)

2: for edge x in E backward do

3: y ← parent(x)
4: if level(parent(y)) = level(y) then

5: parent(x)← parent(y)

6: for pixel x do

7: y ← parent(x)
8: if level(parent(y)) = level(y) then

9: parent(x)← parent(y)

1: function ALPHATREE(f)

2: for pixel p do MAKE-SET(parent, p)

3: for edgel e do MAKE-SET(parent, e)

4: E ← { all edges }
5: Sort(E) increasing

6: for (p, q) = e in E do

7: rp ← FIND-ROOT(parent, p)
8: rq ← FIND-ROOT(parent, q)
9: if rp ̸= rq then UNION(parent, rp, rq)

10: CANONICALIZE(parent, level)
11: return parent, level

algorithm floods on edges and elements are thus enqueued at

the edge weight. It means that a pixel can be enqueued several

times at different levels since it can be reached by several

edges, but a pixel is processed only once. Therefore, the

algorithm has a linear-time complexity. Also, this algorithm

is more memory efficient. Indeed, the hierarchy is built by

creating level-root nodes only when there are required. No

canonicalization step is needed as the flooding algorithm

never creates non-canonical nodes, unlike the immersion-based

approaches. Moreover, [23] presented a memory optimization

called Tree Size Estimation that reduces up to 50% of the

used memory. It has then been improved in [24] to handle

high-dynamic-range images. The authors noticed that for those

images most of edges are non-significant as they connect nodes

that were already connected by edges at lower levels. They

thus proposed to use a 3-levels hierarchical priority queue that

uses the cache and defers the sorting of the strong edges until

necessary. This algorithm will be also used in section VI as a

comparison baseline.

B. Parallel Alpha-tree algorithm

A parallel approach for building an alpha-tree has been

proposed in [21, 22]. The method tiles the image and computes

the alpha-tree per block in parallel. Then, in order to obtain a

global alpha-tree of the whole image, they need to process

the remaining edges belonging to the tile’s borders. [22]

have proposed an algorithm that merges two branches of two

1EXCHANGE(p,q) := old← p; p← q; return old;

Algorithm 2 Partial alpha-tree merging

1: function FIND-LEVEL-ROOT(x, α)

2: q ← parent(x)
3: while q ̸= parent(q) and level(q) ≤ α do

4: x← EXCHANGE1(q, parent(q))

5: return x, q

1: procedure CONNECT(a, b)

2: while a ̸= b do ▷ Zipping loop

3: if level(a) < level(b) then SWAP(a,b)

4: a, ← FIND-LEVEL-ROOT(a, level(a))
5: b, ← FIND-LEVEL-ROOT(b, level(a))
6: if a = b then return

7: b← EXCHANGE(parent(b), a)

1: procedure MERGE(a, b, α)

2: a,A← FIND-LEVEL-ROOT(a, α)
3: b, B ← FIND-LEVEL-ROOT(b, α)
4: if a = b then return

5: parent(a)← x ▷ Dettach a and b, and

6: parent(b)← x ▷ attach to new root node x

7: level(x)← α

8: parent(x)← A if level(A) < level(B) else B

9: CONNECT(A,B)

b
…

…

b2

…

b4

…

b5

…

b6

…

a
…

…

…

a3

…

a4

…

a6

…
6

5

4

3

2

1

0

(a)

b2

…

a3

…

x

…

b4

…

a4

…

b5

…

a6

…

b6

…6

5

4

3

2

(b)

Fig. 6: Connecting two alpha-trees. An edge (a, b) with level λ = 3 is
connecting two branches. (a) Branches are traversed up to the nodes
b2 and a3 with level not greater than λ. (b) b2 and a3 are rooted to a
new node x which points to the lowest old parent: b4. The branches
from b4 and a4 are merged up to their common ancestor, preserving the
ordering of levels.

disjoints hierarchies. This algorithm is thus able to process the

border edges that connect two vertices in two disjoint alpha-

trees. Processing an edge (a, b) of weight λ requires a merge

described in algorithm 2 that operates as follows:

• Climb the branches of a and b to find the roots of the

λ− CCs of a and b. Those are the highest nodes in the

tree that have their level not greater than the merge level

λ (lines 2,3). The procedure FIND-LEVEL-ROOT follows

the ordered linked list of parents up to a node whose level

is greater than λ (see. figure 6a)

• Detach the two nodes from the tree and connect them to

a new node that will represent the edge node (lines 5-7)

• Connect the new node to one of the lowest detached

5

parents (lines 8)

• Connect (zip) the two branches up to their common

ancestor with the procedure CONNECT. This is barely as

simple as merging two ordered linked lists into a single

ordered linked list (see figure 6b).

The parallelization strategy proposed in [22] employs a

classical concurrent divide-and-conquer pattern where “maps”

and “reductions” can be performed in parallel with a reduction

tree. With this pattern, two threads are always working on

disjoint trees and a tree is never updated concurrently. It is thus

not adapted to massively parallel architectures where threads

have to update the tree simultaneously.

In algorithm 2, the function MERGE can have various im-

plementations. A simple one would be to create a new node as

the parent of the two nodes. However, it would create overlong

branches in the tree and makes the merging inefficient. A

solution proposed by [22] is to create a more complex structure

in order to also update all children when merging two nodes.

Despite this proposed solution, the merging can be sometimes

less efficient than building an alpha-tree sequentially due to

these long branches.

C. Links with the MST and the single-linkage hierarchical

clustering (SHC)

The α-tree is closely to the single-linkage hierarchical clus-

tering on the graph representation of the image. Also, as noted

in [31], the problem of single-linkage hierarchical clustering is

functionally equivalent to constructing the minimum spanning

tree (MST) and then computing the dendrogram of the MST’s

edges. The parallel computation of the MST has been widely

studied [32] and some massively parallel implementation for

GPUs have been proposed. In [33], the MST construction is

based on iterating rounds of the Borůvka’s algorithm, in [34]

the authors propose to split the graph in sub-graphs based

on edges weights where the Borůvka’s algorithm is used

to compute the sub-graphs’ MST and are merged with the

Kruskal’s algorithm. The edges of the MST are not enough

to get the α-tree, we need to get a dendrogram from them.

Hendrix et al. [31] build the dendrogram on sub-graphs and

merge them in parallel using Kruskal’s algorithm with a

procedure similar to CONNECT (algorithm 2). In [32], they

turn the MST into a dendrogram by partitioning the MST

on strong edges and computing recursively the dendrograms

on sub-trees with Kruskal. To the best of our knowledge, the

parallel algorithms for the dendrogram construction all have

a divide-and-conquer strategy which ends with a sequential

Kruskal algorithm (to keep merge orders) [35, 36] and makes

a GPU implementation difficult [37]. There are actually very

few end-to-end (i.e., from the graph to the hierarchy) GPU

implementation for the SHC computation (except [38] that

uses a sequential agglomerative clustering in |V | − 1 rounds).

While it exists links between the α-tree and the SHC, it

should be noted that the algorithms are designed for different

data. The previous algorithms are generally designed for dense

graphs that represent distances between points while our pro-

posed algorithm is designed for regular sparse graph (images)

where there is at most three times more edges than nodes

(in 2D). For dense graphs, it is necessary to build the MST to

reduce the number of edges before computing the dendrogram

while this is not compulsory for regular sparse graphs. As

a consequence, the algorithm proposed in section IV is the

first massively parallel algorithm for computing the SHC of a

sparse graph and avoids an explicit MST construction step.

IV. UNION-FIND BASED ALPHA-TREE ALGORITHM ON

GPU

As stated before, the alpha-tree can be built using

immersion-based algorithms that make the tree grow from

leaves to root with a union-find. The bottleneck of this

approach lies in the need for sorting the edges by weights

to obtain a sequential order of processing. Such a sequential

order prevents parallelization.

To lift this restriction, Blin et al. [25] have proposed a max-

tree algorithm, based on the union-find, that does not require

any processing order and allows for massive parallelization.

These algorithms build partial trees in several parts of the

image and then use an algorithm similar to algorithm 2 to

merge the partial trees while conserving the tree properties.

The same idea holds for the alpha-tree.

A. Concurrent sort-less alpha-tree algorithm

The algorithm 3 builds an alpha-tree using the immersion-

based union-find without a sorting step. It iterates over all

edges e = (p, q) of the image and then connects p and q to

the edge node. The first call to CONNECT just inserts the edge

node e in the branch of p, while the second call does the “real”

job of merging two chains. At the end of the construction, the

canonicalization of the tree is still required in order to remove

useless nodes from the tree: the successive nodes that have the

same level.

Algorithm 3 differs from algorithm 1 as it does not require

to process the nodes in a particular order where algorithm 1

processes the hierarchy downward. Also, note that this proce-

dure does not shrink the node array to decrease its memory

usage by extracting only useful nodes. It only shortens the

paths in the tree by modifying the parent relation. It is now

obvious that if CONNECT can be called concurrently, algo-

rithm 3 can be massively parallelized on the for all loops.

That is the purpose of the algorithm 4 explained hereafter.

First, it is worth noticing that the algorithm introduces a

new operator between elements (nodes and edges): ≺. ≺ is

a total order that ensures that no cycle can be created if we

concurrently update parent pointers. Indeed, during the tree

construction, there is some non-determinism about how the

parent relation is set between elements that have the same

level. With the parallel algorithm depicted in section III-B, this

is not an issue since when considering a local tree, there are no

concurrent updates. To prevent cycles, imposing a total order

ensures that the parent relation between any two elements a

and b can only be set in one direction (either a→ b or a← b

but not both). A possible total order ≺, based on levels and

the scan order, can be defined as:

p ≺ q ⇔ level(p) < level(q) or (level(p) = level(q) and p < q)

6

Algorithm 3 Sort-less alpha-tree algorithm.

1: function ALPHATREE(f)

2: for all pixel p do

3: MAKE-SET(parent, p)
4: level(p)← 0

5: for all edge e = (p, q) do

6: MAKE-SET(parent, e)
7: level(e)← we

8: CONNECT(p, e) ▷ Insert e in the branch

9: CONNECT(q, e) ▷ The real merge

10: return parent, level

1: procedure CANONICALIZE(parent, level)

2: for all element x do

3: y ← parent(x)
4: parent(x)← FIND-LEVEL-ROOT(y, level(y))

Algorithm 4 Concurrent lock-free CONNECT with a CAS

1: procedure CONNECT(a, b)

2: while true do

3: if level(b) < level(a) then SWAP(a, b)

4: a,A← FIND-LEVEL-ROOT(a, level(b))
5: b, B ← FIND-LEVEL-ROOT(b, level(b))
6: if a = b then ▷ Root reached

7: return

8: if b ≺ a then ▷ Prevent cycle

9: SWAP(a, b)
10: SWAP(A,B)

11: old← ATOMICCAS(parent(a), A, b) ▷ Try

12: if old = a then ▷ Early stop: Root reached

13: return

14: if old = A then ▷ If false → retry

15: a← old

The concurrent procedure CONNECT in algorithm 4 has been

proposed in [25]. It enables concurrent merge of nodes by

“zipping” their branches up to their common ancestor. The

ATOMICCAS avoids data races if the CONNECT procedure is

called on the same part of the tree. This read-modify-write

operation is used when updating the parent of a node. If two

threads want to update the same node simultaneously, one will

be granted the operation and continue its climbing while the

other will have to retry the operation with the updated node.

In the end, this procedure is nothing more than a concurrent

merge algorithm of two sorted linked lists that preserves the

ordering.

B. GPU Pipeline Implementation

The construction is a two-steps process depicted in figure 7.

First the image is divided into blocks (figure 7a) and a partial

alpha-tree is built per-block in shared memory with as many

threads as the number of pixels in the block. Then, the partial

alpha-trees are merged to get the final alpha-tree in global

memory. The algorithm is detailed hereafter.

1) Thread-level alpha-chain: A thread of the block works

is associated with a pixel in the image. Each of them then has

a b c d

e f g h

i j k l

m n o p

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

h0 h1 h2

h4 h5 h6

h8 h9 h10

h12 h13 h14

(a) Work split in blocks and
threads.

h01

v00

a

h14

v10

b

v42

h41

e

h53

v53

f

h22

v21

c

v31

d

v63

h62

g

v73

h

v83

h80

i

v93

h93

j

h120

m

h135

n

h104

v101

k

v110

l

h140

o

p

(b) Thread-level alpha-trees.

h14
h53

v53
v42

h41
h01

v00
a e

v10
b f

v73

v63

h62

h22

v31

d h

v21

c g

h135

h93

v93

v83

h80

i j

h120

m n

h104

v101

k h140

v110

l p

o

h14

h53

v53 v42

h41

v00

a e

h0
v10

b f

v73

v63 h62

v31

d h

h2
v21

c g

h135

h93

h80

i j

v9 v8 h12 0

m n

h104

v101

k h140

v11 o l p

(c) Block-level alpha-trees before (left) and after (right) block-level canonicalization.

h135

h104

h14

h93

v733

v633 h53

v53 h62

v42 h22

v101

h41

v311 v211

h01

h140

h120

v110 h80

v10 v00

a eb f

d h c g

i j

m n

k

o l p

h135

h104

h14 h93

h62 v73 v63 v42 h53 v53

h22

v101

h41v31 v21

h01

h140

h120

v110

h80

v10 v00g

k

c

n

b

o

f

j

e a

m

l pid h

(d) Global alpha-trees computed by horizontal and vertical block merges; before
(up) and after (bottom) global canonicalization.

Fig. 7: Construction steps of the alpha-tree on figure 3a. (a) Tiling of
the image into 4 blocks with 4 threads per block (b,c) local construction
of a partial alpha-tree per block using shared memory. (c) Result of
merging along vertical and horizontal tile borders in global memory and
canonicalization.

7

to initialize and load the data from the global memory to the

shared memory and computes the weights of the edges.

Then, each thread is responsible for building an alpha-

tree for its pixel and its two (in 4-connectivity) or four (in

8-connectivity) connected edges. Each tree (chain actually)

is built independently and concurrently by a thread. This

simply implies to sort 2 or 4 edges by weight and set the

parent relation between them. For instance, in figure 7b, the

thread Ti is responsible for building the chain of the i-th

pixel and edges hi and vi. Thread T0 handles {a, h0, v0} and

sets h0 ← v0 ← a, Thread T1 handles {b, h1, v1} and sets

h1 ← v1 ← b, and so on.

Then, the threads of the block synchronize to ensure that

all the chains are built before the next step.
2) Block-level alpha-tree (figure 7c): Each thread has to

merge the associated α-chain with its neighbors. This results

in two calls to CONNECT per thread in 4-connectivity and four

calls in 8-connectivity. All merges are achieved concurrently.

For instance, in the first block, the thread T0 merges its chain

with the chain of T1 and T4 by calling CONNECT(h0, b) and

CONNECT(v0, e). Let denote a ↭ b the call to CONNECT(a,

b). Thus the following merges are performed:

• in Block 1: h0 ↭ b, v0 ↭ e, v1 ↭ f , h4 ↭ f

• in Block 2: v2 ↭ g, h2 ↭ d, h6 ↭ h, v3 ↭ h

• in Block 3: h8 ↭ i, v8 ↭ m, v9 ↭ n, h12 ↭ n

• in Block 4: h10 ↭ l, h14 ↭ p, v10 ↭ o, v11 ↭ p

Once all merges are done, the block has a partial alpha-tree.

It is worth noting that at this stage, all edges are part of the

hierarchy. The next step is to canonicalize the tree in order to

shrink non-canonical paths.

In order to reduce the memory footprint in shared memory,

we use a 32-bits structure for nodes that contains the level

of the node on 8-bits, the level of the parent on 8 bits, and

the index of the parent on 16 bits. This structure is enough to

handle the local computation and reduces the shared memory

usage. Indeed, in CUDA, the maximum number of threads

per block is 1024. Each block has 3 nodes per pixel in

4-connectivity, the maximum number of nodes is therefore:

3072(≪ 216 − 1). Reducing the shared memory usage has

been of prime importance in order to reach the maximum GPU

occupancy and increase the concurrency level.
3) Global alpha-tree merging (figure 7d): Once all the local

alpha-trees have been constructed and committed into global

memory, the remaining edges on the borders (horizontal and

vertical) of the tiles are processed with CONNECT to merge the

partial alpha-trees. Considering the example in figure 7d, we

perform the following horizontal: h1 ↭ c, h5 ↭ g, h9 ↭

k, h13 ↭ o, and the following vertical merges: v4 ↭ i,

v5 ↭ j, v6 ↭ k, v7 ↭ l.
4) Global canonicalization (figure 7d): At the end of the

construction, global canonicalization must be applied in order

to remove useless nodes that have been created during merges

of horizontal and vertical edges. The canonicalization kernel is

called in one dimension with a thread associated with a node

in the tree and starts from the end of the node array. Indeed, if

we have b← a with a and b at the same level, then b is after

a in the array (because a ≺ b). Thus when ”canonicalizing” a,

we have higher chance to have b already canonicalized. This

Algorithm 5 Concurrent computation of the alpha-tree pre-

venting redundant and residual edge insertion.

1: procedure CONNECT-WITH(a, b, e)

2: a,A← FIND-LEVEL-ROOT(a, level(e))
3: b, B ← FIND-LEVEL-ROOT(b, level(e))
4: if a = b then

5: return ▷ ”residual” edge

6: elif level(a) = level(e) or level(b) = level(e) then

7: CONNECT(a, b) ▷ ”redundant” edge

8: else

9: CONNECT(a, e); CONNECT(b, e)

10: function ALPHATREE(f)

11: ...

12: for all edge e = (p, q) do

13: CONNECT-WITH(p, q, e)

14: ...

heuristic has been shown to be efficient in practice and reduces

the number of links traversed by a thread.

C. Handling residual and redundant edges (GPU v2)

It is worth noting that the canonicalization does not remove

all the ”useless” nodes from the hierarchy. For instance, as

shown in figure 7d, the node h6 at level 2 is still present in

the hierarchy while it does not connect any new ”real” pixels

that were already connected by v3 and v2. It has been shown

in [24] that most edges are redundant (they connect previously

connected pixels) or residual (they are above the root). This

is especially true in 8-connectivity where the ratio number of

edges over the number of pixels is higher.

In algorithm 3, all edges are inserted in the hierarchy, even

”useless” ones since we cannot know in advance if an edge is

redundant or not. However, we can easily prevent the insertion

of an edge if it is residual or redundant with an edge already

in the hierarchy. In algorithm 5, when merging the paths of

two pixels a and b connected by the edge e, we first check if

a and b are already connected by a node x in the hierarchy

such that level(x) ≤ level(e); and second, if there is already

a node x in the paths of a or b at level level(e). If so, the

edge e is not inserted in the hierarchy; these paths are already

merged, or we can use x to merge the paths. (Note that we do

not build a thread-local alpha-chain anymore as it would result

in all edges being inserted in the hierarchy.) This extra-check

has no impact on the worst complexity of the algorithm since

the calls to FIND-LEVEL-ROOT would have been performed in

all cases.

To measure the impact of this optimization, we have run

the algorithm on some random generated images and have

measured the number of edges inserted in the hierarchy.

We remind some interesting results from [24]. With the 4-

connectivity, the number of useful edges is between 40 and

50% and with the 8-connectivity, it is between 20 and 25% (we

have generally more useful edges in 16-bits). This is consistent

with the fact that we need at most |V |−1 edges to connect all

pixels. Algorithm 5 has a sequential consistency, meaning that

there exists a sequential order of processing edges that gives

8

Device Model

CPU ”Desktop” 8 × i7-2600 CPU @ 3.4GHz
CPU ”Server” 40 × Xeon Silver 4210 cores @ 2.2GHz
GPU ”Desktop” GTX 1650 4GB - 896 Cores @ 1.5Ghz
GPU ”Desktop” GTX 1060 6GB - 1280 Cores @ 1.5Ghz
GPU ”Server” RTX 8000 - 4608 cores @ 1.4Ghz

TABLE I: Hardware devices in the benchmark setup.

the same result as the parallel algorithm. In the best case,

the edges are treated in increasing order of levels, that gives

exactly the same result as the immersion-based algorithms

with a minimal number of edges in the hierarchy. In the worst

case, the edges are treated in decreasing order of levels. On

1000 random edge sequences, the number of edges inserted

in the hierarchy is 20%-25% lower on average with the 4-

connectivity and 45-66% lower with the 8-connectivity than

the one built with algorithm 3.

V. COMPLEXITY ANALYSIS

For the complexity analysis of our algorithm, we consider

two union-find optimizations that were not adopted in our

implementation:

• Random indexes: instead of having a total order between

pixels based on the scan-order, the order is based on a

randomly generated index image

• Compaction: the union-find trees could be compressed

(level-wise) during the FIND-LEVEL-ROOT procedure us-

ing path-halving or path-splitting.

While these optimizations do not change the correctness of

our algorithm, it actually tends to slow down the implementa-

tion as more atomic-writes are performed, and the randomness

causes more cache-missed memory access. Nevertheless, these

procedures give better theoretical asymptotic bounds for the

expected total work of the algorithm, and should be considered

for those that needs strong worst-case guarantees.

We rely on the result from [39] giving that a problem

instance in which there are n elements and m union-find

operations can be solved in Θ(m.(α(n, m
np

) + log(np
m

+ 1)))
with the union-find algorithm (with the two optimizations

above enabled) and p concurrent threads.

We remind that |V | is the number pixels (vertices), the

number of edges is |E| = θ(|V |) (2.|V | with the 4-connected

grid and 4.|V | with the 8-connected grid). Let g be the number

of grayscale levels (the edge weights are limited to 256 values

for 8-bits depth images).

The find operation is known to be O(log n) with high

probability. It follows that the CONNECT(a,b) procedure, that

calls FIND-LEVEL-ROOT (i.e., the find operation) twice by

level, is O(g. log |E|) with high probability. Our algorithm

calls CONNECT for every edge in the image, it follows by

substituting n = |V |, m = g.|V | that our algorithm has a total

work of Θ(g.|V |.(α(|V |, g
p
) + log(p

g
+ 1))).

VI. PERFORMANCE EVALUATION

We compare the performance between our GPU implemen-

tations and three State-of-the-Art CPU algorithms. Two of

them are based on an immersion process that constructs the

(a) Satellite (24 MPix) (b) Ancient Map (41 MPix)

(c) Medical microscopy (95 MPix)

0 50 100 150 200 250

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Satellite (24 MPix)
Ancient Map (41 MPix)
Medical microscopy (95 MPix)

(d) Gray levels distribution

Fig. 8: Images used for benchmarking and their gray-level distribution.

alpha-tree with a bottom-up approach (Union-Find). One of

the best public implementations was from [22] that proposed

a sequential and a parallel version. They will be designated

respectively as Havel (ST) (single-thread) and Havel (MT)

(multi-threads) in the benchmarks. The sequential and parallel

flooding-based algorithm proposed by [23] have also a public

implementation provided by [24]. These implementations will

be denoted You (ST) and You (MT).

Those CPU algorithms are compared to our GPU algorithms

presented in section IV. The timings do not include the

memory transfers between the host and the device. In a GPU

pipeline, when processing images in batch, the latency due

to the memory transfers between host and device can be

hidden by the computational work (latency hiding). Therefore,

the processing time will be much closer to the time without

memory transfers. The same general configuration for all

algorithms was used: grayscale one channel images, L1 norm

dissimilarity function, and 4-connectivity. For the CPU parallel

variants (You (MT) and Havel (MT)), the number of threads

is actually a hyperparameter that is architecture and image

size dependent. Therefore, it was set to t times the number of

CPU cores available on the target architecture. Several t has

been benchmarked to get the best trade-off between workload

balancing and parallelization overhead, and we have retained

the best t for each case.

Benchmarks were conducted on setups detailed in table I

(”Desktop” and ”Server”) such that the compared devices

belong to the same range. The benchmark was run on dif-

ferent kinds of images (shown in figure 8) that represent

possible applications of the alpha-tree: remote sensing, docu-

ment analysis, and medical imaging. We have also tested the

performance of the algorithms on 1256 pictures including 639

grayscale aerial pictures (with sizes ranging from 2430×3500

to 3289×3500) from the database of the Netherlands Institute

of Military History and 617 color images including maps, arts,

and natural scenes. This is the dataset used in [23].

Figure 9 shows a comparison between all algorithms with

the different images. Globally, the proposed GPU algorithm

from 8 to 20 times faster than the best State-of-the-Art CPU

algorithms on both desktop and server configurations.

9

8 × Intel Core 32 × Intel Xeon
0

20

40

60

80

M
Pi

x/
s

33.4

53.6

15.7 13.9
5.6 5.0

11.4

29.8

Satellite

8 × Intel Core 32 × Intel Xeon

33.4

63.2

14.1 12.4
4.7 4.3

13.5

30.3

Ancient Map

8 × Intel Core 32 × Intel Xeon

CPU
32.3

69.2

14.2 13.0
5.1 4.6

11.4

32.6

Medical Image

GTX 1060 RTX 8000 GTX 1650
0

200

400

600

800

1000

1200

M
Pi

x/
s

319

1037

260321

926

229

GTX 1060 RTX 8000 GTX 1650

263

896

213257

778

179

GTX 1060 RTX 8000 GTX 1650

GPU

279

931

218268

803

179

You (MT)
You (ST
Havel (ST)
Havel (MT)
GPU v1
GPU v2

(a) Performance comparison on the satellite, ancient map, and medical microscopy images.

Desktop Server

GPU v1 284.8 MP/s (± 5%) 919.3 MP/s (± 3%)
GPU v2 281.4 MP/s (± 6%) 825.6 MP/s (± 4%)
Havel (MT) 12.9 MP/s (± 7%) 14.4 MP/s (± 5%)
Havel (ST) 5.5 MP/s (± 7%) 5.0 MP/s (± 6%)
You (MT) 33.7 MP/s (± 2%) 40.1 MP/s (± 3%)
You (ST) 15.4 MP/s (± 6%) 13.8 MP/s (± 6%)

(b) Performance comparison on the grayscale image dataset from the Netherlands Institute of Military History.

Fig. 9: Performance comparison of several alpha-tree State-of-the-Art algorithms on several hardware configurations and image types.

Image Local Trees Global Merges Canonicalization Total

Map 96 ms (61%) 39 ms (25%) 23 ms (14%) 158 ms
Medical 206 ms (61%) 88 ms (26%) 47 ms (14%) 340 ms
Satellite 51 ms (68%) 12 ms (16%) 12 ms (16%) 75 ms

TABLE II: Processing time the GPU-v1 (in milliseconds) of each algo-
rithmic steps on the GTX 1060.

Table II details the processing time taken by each CUDA

kernels of the GPU v1. Note that similar distributions are

observed on the other GPUs and with the GPU v2 algorithm

(distributions vary by ±5% at most by step). We can see that

most of the time is spent on the computation of local trees. On

the one hand, the computation of local alpha-trees being done

in shared memory, it is better to spend the overall time there.

On the other hand, it could also mean that too many operations

are done. We can observe similar kernel profiles for the max-

tree computation on GPUs [25]. However, they achieved to go

under 50% of the time spent on the computation of the local

trees by considering a 1D optimization to compute a max-tree.

A. Performance on the 8-connected grid

The extension of the algorithms to 8-connectivity is straight-

forward. When merging locally and then globally, diagonal

connections are added. During the local tree construction, the

computational work and the memory usage double. Indeed,

we have twice as many edges thus we double the number

of nodes. The number of merges to perform is also doubled.

It explains why the performance is halved on all GPUs as

GPU v1 GPU v2
4-C 8-C ↘ 4-C 8-C ↘

GTX
1060

Map 263 MP/s 103 MP/s -61% 257 MP/s 131 MP/s -49%

Medical 279 MP/s 111 MP/s -60% 268 MP/s 134 MP/s -50%

Satellite 319 MP/s 147 MP/s -54% 321 MP/s 179 MP/s -44%

GTX
1650

Map 213 MP/s 75 MP/s -65% 179 MP/s 73 MP/s -59%

Medical 218 MP/s 78 MP/s -64% 180 MP/s 79 MP/s -56%

Satellite 260 MP/s 128 MP/s -51% 228 MP/s 108 MP/s -53%

RTX
8000

Map 896 MP/s 316 MP/s -65% 778 MP/s 319 MP/s -59%

Medical 930 MP/s 339 MP/s -64% 803 MP/s 346 MP/s -57%

Satellite 1033 MP/s 494 MP/s -52% 925 MP/s 435 MP/s -53%

TABLE III: Performance of the proposed algorithms with 8-connectivity
(8-C) versus the 4-connectivity (4-C).

Image Local Trees Global Merges Canonicalization Total

Map 220 ms (55%) 138 ms (34%) 44 ms (11%) 401 ms
Medical 478 ms (56%) 294 ms (34%) 88 ms (10%) 859 ms
Satellite 101 ms (62%) 41 ms (25%) 22 ms (13%) 164 ms

TABLE IV: Processing time the GPU-v1 (in milliseconds) of each algo-
rithmic steps on the GTX 1060 in 8-connectivity.

shown in table III. However, the performance drop is not the

same between the algorithm versions. The GPU v1 algorithm

is more impacted by the 8-connectivity (6̃0% slower) than the

GPU v2 algorithm (5̃0% slower). This is due to the fact that the

GPU v2 algorithm tries to prevent the insertion of redundant

and residual edges. This yields a smaller hierarchy and thus,

less work to do when merging trees. It is confirmed by the

time distribution shown in table IV. We can observe that the

global merges part is more impacted and takes now up to 35%

10

GPU v1 GPU v2
8-bits 16-bits ↘ 8-bits 16-bits ↘

GTX
1060

Map 263 MP/s 31 MP/s -88.3% 257 MP/s 42 MP/s -83.9%
Medical 279 MP/s 23 MP/s -91.8% 268 MP/s 27 MP/s -89.8%
Satellite 319 MP/s 55 MP/s -82.7% 321 MP/s 56 MP/s -82.6%

GTX
1650

Map 213 MP/s 15 MP/s -92.7% 179 MP/s 18 MP/s -89.7%
Medical 218 MP/s 12 MP/s -94.7% 179 MP/s 12 MP/s -93.1%
Satellite 260 MP/s 30 MP/s -88.3% 229 MP/s 27 MP/s -88.0%

RTX
8000

Map 896 MP/s 160 MP/s -82.1% 778 MP/s 145 MP/s -81.4%
Medical 931 MP/s 118 MP/s -87.3% 803 MP/s 95 MP/s -88.1%
Satellite 1037 MP/s 224 MP/s -78.4% 926 MP/s 171 MP/s -81.5%

TABLE V: Performance of the proposed algorithms with 16-bits images
versus 8-bits images.

of the total time (instead of 25% in 4-connectivity). It can take

up to 60% of the total time on the RTX 8000 and becomes

the bottleneck of the algorithm while it remains below 50%

with the GPU v2 algorithm.

B. Performance on HDR images

The current algorithm can be used as it is on high-quantized

data. However, as described in [40], merging nodes is not

efficient when quantization is high: performance depends on

the length of the branch (that can drastically increase with

the number of bits). To benchmark the performance penalty,

RGB-24 images are transformed into 16-bit images following

the protocol from [41]. As seen in table V, our algorithm

on 16-bit images suffered a drastic slow-down (around 5

to 10 times slower). This slow-down is mostly caused by

global merges that take 80% to 95% of the total compute

time (for both GPU v1 and GPU v2 algorithms). Such results

were expected: with 16-bit images the number of (canonical)

nodes increases drastically and thus, the chains are longer.

Accesses in global memory are even more sparse, data locality

is reduced, and cache miss rate is increased. Longer chains

also induce bad workload balancing among threads. While one

thread may climb a very long chain, other threads inside the

block are stalling. In [42], the authors suggest duplicating the

tile boundaries (called halo), so that merges in global memory

are done on two nodes with the same levels. This technique

was later used in [25] to optimize the max-tree construction

on HDR images. The past results have shown that on GPUs,

the halo improved very slightly the performance. Therefore,

we did not pursue this lead any further.

Totally removing ”useless” edges from the local alpha-trees

before the global merges to reduce the hierarchy size might

improve the performance to some extent, but it requires extra-

computation and extra-memory to detect them. This is a trade-

off that has to be considered in future works.

C. Comparison with related GPU algorithms

As stated in section III, the α-tree is closely related to the

single-linkage clustering whose typical implementation uses a

two-steps process: (a) building the MST, (b) organizing the

edges in a tree. The current State-of-the-Art GPU implemen-

tation from [33] has been adapted for the 4-connected grid and

optimized with the algorithm from [43, 44] to track disjoint

connected components with a concurrent union-find approach.

Image GPU v1 MST (GPU) Sequential dendrogram

Map 213 MPix/s 226 MPix/s 5.7 Mpix/s
Medical 218 MPix/s 231 MPix/s 6.9 MPix/s
Satellite 260 MPix/s 212 MPix/s 8.9 MPix/s

TABLE VI: Performance of the MST and Sequential dendrogram con-
structions on 8-bits images.

Our version implements the concurrent Borůvka’s algorithm

to compute the MST as follows. First, each pixel x is set to

its own component (L[x] = x). Then, the following procedure

is repeated until there remains a single connected component:

• each pixel x concurrently selects the weakest edge (x, y) in

its neighborhood that links two disjoint components (L[x] ̸=
L[y]). It then updates WE[L[x]] that stores the weakest out-

going edge of the component rooted in L[x].
• each pixel x concurrently looks at the edge (u, v) in WE[x]

(if it exits) and calls the union-find operation union(L, u, v)
that merges the components of u and v. The edge (u, v) is

added to the MST edge list.

• each pixel path-compresses the label L image so that L[x]
points to the root label, and in the same time, it increments

the connected components counter if x is a root label.

This MST algorithm has been benchmarked with the GTX

1650 (see table VI) and already shows to be comparable or

slower than our α-tree algorithm while it only computes the

first step of the whole process. In the public implementation of

[32] and [45], only the MST computation and edge sorting are

parallelized. The dendrogram construction is done sequentially

on the CPU. In our tests, the sequential dendrogram construc-

tion reaches from 6 to 9 Mpix/s which drastically slows down

the whole process. As a consequence, the two-steps track to

build the α-tree has not been investigated any further.

VII. CONCLUSION & PERSPECTIVES

In this paper, the first GPU algorithms for alpha-tree com-

putation have been proposed. These algorithms were bench-

marked against the State-of-the-Art solutions and achieves a

significant speed-up: they are about one order of magnitude

faster than the best CPU algorithms. The performance of

our algorithm makes possible real-time applications based on

hierarchical segmentations. It could also speed up very large

images processing by distributing the work on many GPUs

and merging the trees with parallel strategies. As a matter

of reproducible research, our code is publically available on

GitLab at https://gitlab.lrde.epita.fr/qkaci/gpu alpha tree.

This paper has also highlighted some shortcomings of this

algorithm. In particular, its performance drops with HDR

images which are common in remote sensing. Also, we

have not yet tested the performance on 3D images, but the

experiments with the 8-connectivity suggest that managing

the 26-connectivity with so many edges will be challenging,

and we expect a drop of performance proportional to the

number of edges. High-dimensionality and high-dynamics are

thus the current limitations, and we hope to address them in

future works. Hybrid strategies [41] and recent advances in

the management of high-dynamic-range edges [24] could be

used to improve the performance on these kinds of images.

11

ACKNOWLEDGMENTS

The authors would like to thank Theo Lepage and Ilan Guenet from EPITA for
interesting discussions and ideas about the parallel computation of the alpha-tree. Credits:

Aerial view of Olbia https://upload.wikimedia.org/wikipedia/commons/8/82/Aerial view of Olbia.jpg

Ancient Map Atlases of Paris - Atlas municipal des vingt arrondissements de Paris. 1925. Bibliothèque de l’Hôtel

de Ville. City of Paris. France. https://bibliotheques-specialisees.paris.fr/ark:/73873/pf0000935524.locale=fr

Brightfield Microscopy (APERIO CMU-1.SVS) https://openslide.cs.cmu.edu/

Havel, Array / Parallel (CPU) implementation https://github.com/jirihavel/libcct

You, Flooding (CPU) implementation https://github.com/jwRyu/AlphaTree

REFERENCES

[1] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive connected operators for
image and sequence processing,” IEEE Transactions on Image Processing, vol. 7,
no. 4, pp. 555–570, 1998.

[2] R. Jones, “Connected filtering and segmentation using component trees,” Computer

Vision and Image Understanding, vol. 75, no. 3, pp. 215–228, 1999.
[3] P. Salembier and L. Garrido, “Binary partition tree as an efficient representation

for filtering, segmentation and information retrieval,” in Proceedings 1998 Inter-

national Conference on Image Processing. ICIP98 (Cat. No.98CB36269), vol. 2,
1998, pp. 252–256 vol.2.

[4] S. Beucher, “Watershed, hierarchical segmentation and waterfall algorithm,” in
Mathematical Morphology and its Applications to Image Processing. Springer,
1994, pp. 69–76.

[5] F. Meyer, “The dynamics of minima and contours,” in Mathematical Morphology

and its Applications to Image and Signal Processing. Springer, 1996, pp. 329–336.
[6] P. Soille, “Constrained connectivity for hierarchical image partitioning and simpli-

fication,” IEEE transactions on pattern analysis and machine intelligence, vol. 30,
no. 7, pp. 1132–1145, 2008.

[7] P. Soille and L. Najman, “On morphological hierarchical representations for
image processing and spatial data clustering,” in Proceedings of the International

Symposium on Mathematical Morphology (ISMM). Springer, 2010, pp. 43–67.
[8] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierar-

chical image segmentation,” IEEE transactions on pattern analysis and machine

intelligence, vol. 33, no. 5, pp. 898–916, 2010.
[9] J. Cousty, L. Najman, Y. Kenmochi, and S. Guimarães, “Hierarchical segmentations

with graphs: quasi-flat zones, minimum spanning trees, and saliency maps,” Journal

of Mathematical Imaging and Vision, vol. 60, no. 4, pp. 479–502, 2018.
[10] J. Cousty, L. Najman, and B. Perret, “Constructive links between some morpho-

logical hierarchies on edge-weighted graphs,” in Proceedings of the International

Symposium on Mathematical Morphology (ISMM). Springer, 2013, pp. 86–97.
[11] G. K. Ouzounis, “Segmentation strategies for the alpha-tree data structure,” Pattern

Recognition Letters, vol. 129, pp. 232–239, 2020.
[12] F. Merciol and S. Lefèvre, “Fast image and video segmentation based on alpha-

tree multiscale representation,” in 2012 Eighth International Conference on Signal

Image Technology and Internet Based Systems, 2012, pp. 336–342.
[13] W. Tabone, M. H. F. Wilkinson, A. E. J. V. Gaalen, J. Georgiadis, and G. Az-

zopardi, “Alpha-tree segmentation of human anatomical photographic imagery,”
in Proceedings of the 2nd International Conference on Applications of Intelligent

Systems. New York, NY, USA: Association for Computing Machinery, 2019.
[14] P.-E. Forssén, “Maximally stable colour regions for recognition and matching,” in

2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007,
pp. 1–8.

[15] M. Donoser and H. Bischof, “Efficient maximally stable extremal region (mser)
tracking,” in Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 1, 2006, pp. 553–560.
[16] D. Ehrlich, T. Kemper, X. Blaes, and P. Soille, “Extracting building stock infor-

mation from optical satellite imagery for mapping earthquake exposure and its
vulnerability,” Natural Hazards, vol. 68, p. 79?95, 2013.

[17] G. Ouzounis, “Automatic extraction of built-up footprints from high resolution
overhead imagery through manipulation of alpha-tree data structures,” Mar. 2014,
uS Patent 8,682,079.

[18] M.-T. Pham, E. Aptoula, and S. Lefèvre, “Classification of remote sensing images
using attribute profiles and feature profiles from different trees: a comparative
study,” in Proc. of the IEEE Intl. Geoscience and Remote Sensing Symposium

(IGARSS), 2018, pp. 4511–4514.
[19] L. Najman, J. Cousty, and B. Perret, “Playing with kruskal: algorithms for

morphological trees in edge-weighted graphs,” in Proc. of the Intl. Symp. on

Mathematical Morphology (ISMM), 2013, pp. 135–146.
[20] G. K. Ouzounis and P. Soille, “The alpha-tree algorithm,” JRC Scientific and Policy

Report, 2012.
[21] J. Havel, F. Merciol, and S. Lefèvre, “Efficient schemes for computing α-tree

representations,” in Mathematical Morphology and Its Applications to Signal and

Image Processing. Springer, 2013, pp. 111–122.
[22] J. Havel, F. Merciol, and S. Lefèvre, “Efficient tree construction for multiscale

image representation and processing,” Journal of Real-Time Image Processing,
vol. 16, p. 1129–1146, 08 2019.

[23] J. You, S. C. Trager, and M. H. F. Wilkinson, “A fast, memory-efficient alpha-tree
algorithm using flooding and tree size estimation,” in Mathematical Morphology

and Its Applications to Signal and Image Processing. Springer, 2019, pp. 256–267.
[24] J. Ryu, S. C. Trager, and M. H. F. Wilkinson, “A fast alpha-tree algorithm for

extreme dynamic range pixel dissimilarities,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 46, no. 5, pp. 3199–3212, 2024.
[25] N. Blin, E. Carlinet, F. Lemaitre, L. Lacassagne, and T. Géraud, “Max-tree

computation on GPUs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 12, pp. 3520–3531, 2022.

[26] E. Carlinet, “A tree of shapes for multivariate images,” Ph.D. dissertation, Université
Paris Est, Paris, France, Nov. 2015.

[27] C. Berger, T. Géraud, R. Levillain, N. Widynski, A. Baillard, and E. Bertin,
“Effective component tree computation with application to pattern recognition in
astronomical imaging,” in IEEE International Conference on Image Processing

(ICIP), vol. 4. IEEE, 2007, pp. IV–41.
[28] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,” Journal of

the ACM, vol. 22, no. 2, p. 215–225, apr 1975.
[29] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling

salesman problem,” Proceedings of the American Mathematical Society, vol. 7,
no. 1, pp. 48–50, 1956.

[30] M. H. Wilkinson, “A fast component-tree algorithm for high dynamic-range images
and second generation connectivity,” in Proc. of the Intl. Conference of Image

Processing (ICIP), 2011, pp. 1021–1024.
[31] W. Hendrix, M. M. Ali Patwary, A. Agrawal, W.-k. Liao, and A. Choudhary,

“Parallel hierarchical clustering on shared memory platforms,” in Proc. of the Intl.

Conference on High Performance Computing (HiPC). IEEE, Dec. 2012, pp. 1–9.
[32] Y. Wang, S. Yu, Y. Gu, and J. Shun, “Fast parallel algorithms for euclidean

minimum spanning tree and hierarchical spatial clustering,” in Proceedings of the

2021 International Conference on Management of Data, 2021, pp. 1982–1995.
[33] V. Vineet, P. Harish, S. Patidar, and P. J. Narayan, “Fast minimum spanning tree for

large graphs on the GPU,” in Proc. of the ACM Conference on High Performance

Graphics (HPG), 2009, p. 167.
[34] S. Rostrup, S. Srivastava, and K. Singhal, “Fast and memory efficient minimum

spanning tree on the gpu,” in Proceedings of the 2nd Intl. Workshop on GPUs and

Scientific Applications (GPUScA, 2011), 2011, pp. 3–13.
[35] C. Jin, M. M. A. Patwary, A. Agrawal, W. Hendrix, W.-k. Liao, and A. Choud-

hary, “Disc: A distributed single-linkage hierarchical clustering algorithm using
mapreduce,” in Proc. of the Intl. SC Workshop on Data Intensive Computing in the

Clouds (DataCloud), vol. 23. Citeseer, 2013, p. 27.
[36] C. Jin, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary, “Incremental,

distributed single-linkage hierarchical clustering algorithm using mapreduce,” in
Proc. of the Symposium on High Performance Computing (HPC). Society for
Computer Simulation International, 2015, p. 83–92.

[37] J. DiMarco and M. Taufer, “Performance impact of dynamic parallelism on different
clustering algorithms,” in Modeling and Simulation for Defense Systems and

Applications VIII, vol. 8752. SPIE, 2013, pp. 97–104.
[38] D.-J. Chang, M. M. Kantardzic, and M. Ouyang, “Hierarchical clustering with

cuda/gpu.” in Parallel and Distributed Computing and Communication Systems.
Citeseer, 2009, pp. 7–12.

[39] S. V. Jayanti and R. E. Tarjan, “A randomized concurrent algorithm for disjoint set
union,” in Proceedings of the 2016 ACM Symposium on Principles of Distributed

Computing, 2016, pp. 75–82.
[40] E. Carlinet and T. Géraud, “A comparative review of component tree computation

algorithms,” IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3885–
3895, Sep. 2014.

[41] U. Moschini, A. Meijster, and M. H. Wilkinson, “A hybrid shared-memory parallel
max-tree algorithm for extreme dynamic-range images,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 513–526, 2017.
[42] M. Gotz, G. Cavallaro, T. Geraud, M. Book, and M. Riedel, “Parallel computation

of component trees on distributed memory machines,” IEEE Transactions on

Parallel and Distributed Systems, vol. 29, no. 11, pp. 2582–2598, Nov. 2018.
[43] Y. Komura, “GPU-based cluster-labeling algorithm without the use of conventional

iteration: Application to the swendsen–wang multi-cluster spin flip algorithm,”
Computer Physics Communications, vol. 194, pp. 54–58, 2015.

[44] S. Allegretti, F. Bolelli, M. Cancilla, and C. Grana, “Optimizing gpu-based con-
nected components labeling algorithms,” in 2018 IEEE International Conference

on Image Processing, Applications and Systems (IPAS). IEEE, 2018, pp. 175–180.
[45] P. Sao, A. Prokopenko, and D. Lebrun-Grandie, “Pandora: A parallel dendrogram

construction algorithm for single linkage clustering on gpu,” in Proceedings of the

53rd International Conference on Parallel Processing, ser. ICPP ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 908–918. [Online].
Available: https://doi.org/10.1145/3673038.3673148

Edwin Carlinet received the Ing. degree from EPITA (Paris, France) in 2011,
the M.Sc degree in Mathematics, Vision, and Machine Learning from ENS
Cachan in 2012 and the Ph.D. degree in computer science from University
Paris-Est in 2015. He is now an associate professor at EPITA. His research
interests include HPC, in particular, the optimization of algorithms dedicated
to Mathematical Morphology and Image processing. He is the maintainer of
PYLENE https://gitlab.lre.epita.fr/olena/pylene.

Nicolas Blin received the Ing. degree in image-processing at EPITA, Paris,
France in 2022 and was also working as a research assistant at EPITA
Research Laboratory (LRE). His research interests involve algorithms paral-
lelization on GPU, mathematical morphology, and metaheuristic algorithms.
He is now Senior DevTech Engineer at NVidia.

Quentin Kaci received the Ing. degree in image-processing at EPITA, Paris,
France in 2022 and was also working as a research assistant at EPITA
Research Laboratory (LRE). His research interests involve the optimization
of Computer Vision & Image Processing algorithms. He is now Software
Engineer at Seoul Robotics.

