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Abstract. Pattern mining addresses the challenge of automatically iden-
tifying interpretable and discriminative patterns within data. Recent
approaches, leveraging differentiable approach through neural autoen-
coder with class recovery, have achieved encouraging results but tend
to fall short as the magnitude of the noise and the number of underly-
ing features increase in the data. Empirically, one can observe that the
number of discovered patterns tend to be limited in these challenging
contexts. In this article, we present a differentiable binary model that
integrates a new regularization technique to enhance pattern coverage.
Besides, we introduce an innovative pattern decoding strategy taking ad-
vantage of non-negative matrix factorization (NMF), extending beyond
conventional thresholding methods prevalent in existing approaches. Ex-
periments on four real-world datasets exhibit superior performances of
DirrVERSIFY in terms of the ROC-AUC metric. On synthetic data, we
observe an increase in the similarity between the discovered patterns
and the ground truth. Finally, using several metrics to finely evaluate
the quality of the patterns in regard to the data, we show the global
effectiveness of the approach.

1 Introduction

Pattern mining is a crucial field for extracting meaningful and easily interpretable
insights from data. Traditional frequent pattern mining techniques [24], while
widely used, often fail to capture all the underlying regularities in the data and
tend to produce results that are overly general and redundant. To address this
limitation, various techniques [6/10] have emerged, aimed at identifying a smaller
yet more informative set of patterns. However, these approaches are computa-
tionally intensive due to the use of enumeration-based strategies on large search
space. Thus, they often struggle to scale effectively, particularly in scenarios
with large and complex datasets. To mitigate these challenges, many methods
use heuristic approaches [3I8] and consider data of limited size, particularly on
the number of features. This restricted scope excludes many potential application
areas, such as biological and large-scale complex problems.

The differentiable pattern mining framework, as introduced in recent works
[921], represents a significant advancement in leveraging neural network ar-
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chitectures to extract interpretable relations from data. Grounded in neuro-
symbolic learning principles, it harnesses the computational power of neural
networks to learn fully interpretable patterns within a constrained neural ar-
chitecture. In the seminal paper by Fischer et al. [9], a novel binarized au-
toencoder is proposed to uncover human-interpretable sets of conjunctive pat-
terns using gradient-based optimization. This model projects input data into
an interpretable latent space, striving to faithfully reconstruct the data from
patterns encoded in this space. Interpretability is achieved through the use of
binary weights and activations during the forward pass, while scalability is en-
sured through efficient continuous optimization during backpropagation. Build-
ing upon this foundation, Walter et al. [2I] extend the framework to learn pat-
terns that can effectively differentiate between classes. Their approach combines
a binary autoencoder with a classifier attached to the hidden layer, allowing
for joint optimization of reconstruction and classification tasks. This integrated
model enhances the interpretability of learned patterns while enabling effective
classification of data instances based on these patterns.

While the neural autoencoder with class recovery shows promise, particularly
on high-dimensional data, its performance tends to degrade as noise magnitude
and the number of underlying classes and features in the data increase. In such
scenarios, patterns may become redundant, leaving a substantial portion of the
data uncovered. To address this limitation, we propose integrating a novel regu-
larization technique into the differentiable binary model, aimed at promoting the
extraction of patterns that provide better coverage of the data while enforcing
pattern diversity. Our experiments demonstrate that the orthogonality regu-
larization term in the loss function yields significant improvements in pattern
extraction. Additionally, we introduce an innovative pattern decoding strategy
that utilizes non-negative matrix factorization (NMF), extending beyond con-
ventional thresholding methods prevalent in existing approaches. This robust
and original decoding strategy adapts well to diverse datasets and enhances the
overall performance of the model.

The experiments show the scalability of the proposed DIFFVERSIFY method
concerning the number of features, classes and noise levels, which are pivotal
factors in real-world pattern mining scenarios. The evaluation of the effectiveness
of the approach on synthetic datasets shows its ability to improve the detection
of ground truth patterns with the increase, compared to the baselines, of their
similarity with the extracted patterns. Additionally, DIFFVERSIFY demonstrates
superior performance in terms of the ROC-AUC metric across four real-world
datasets. Recognizing that the assessment of pattern collections associated with
classes requires more than just supervised classification measures, we introduce
novel evaluation metrics to better characterize the appropriateness of discovered
patterns relative to the data, with a particular focus on pattern coverage. Our
results reveal the effectiveness of DIFFVERSIFY on this aspect.

Section [2 reviews related literature. Section [3 introduces notations and con-
cepts while Section [f] outlines the approach; Section [f] presents the experiments,
and Section [0 resumes the contributions and discusses their limitations.
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2 Related Work

The problem of pattern set and association rule mining was introduced as a
method for identifying local structures within data [I]. Rule-based classification,
as studied in [BITTIISITY], aims to derive interpretable classification conjunctive
rules. Despite featuring interpretability, these methods predominantly prioritize
prediction over description, leading to a loss of important contextual details.
Furthermore, their reliance on combinatorial optimization techniques hampers
their scalability, particularly when applied to high-dimensional datasets. Neuro-
symbolic classification [TJT422] offers a solution to these computational limita-
tions. These methods devise neural architectures that, following training, allow
for the extraction of symbolic classification rules. Despite their focus on opti-
mization, these approaches share similarities with traditional rule-based clas-
sifiers in their emphasis on classification accuracy rather than descriptive rule
discovery. Association discovery research domain experienced a period of robust
activity characterized by a plethora of studies, yielding significant insights. Fol-
lowing this first collection of work, the field experienced a resurgence with the
introduction of a pioneering neural approach [9], revitalizing research efforts and
bringing renewed attention to the domain. In [9], Fischer and Vreeken propose a
novel approach, BINAPS, for discovering high-quality and noise-robust pattern
sets. Unlike existing methods limited by combinatorial search, BINAPS employs
a gradient-based optimization strategy, bridging the discrete search space and
continuous optimization. This approach involves a neural autoencoder with bi-
nary activations and binarized weights, termed BINAPS, which directly represent
conjunctive patterns. By optimizing a data-sparsity aware reconstruction loss,
the authors achieve effective pattern discovery, demonstrating scalability to real-
world datasets such as supermarket transactions and biological datasets. The
patterns are effectively decoded using a thresholded binarisation of the weight
matrix of the model after convergence.

In [21], the authors build on BINAPS to propose DIFFNAPS, a novel binary
neural network architecture that builds class-specific patterns. Similarly to Bi-
NAprs, DIFFNAPS also uses a binary autoencoder but combined to a separate
classification head. The model is learnt by jointly optimizing reconstruction and
classification. Succinct class-specific patterns are promoted thanks to elastic-net
regularizers.

Table [1| details the composition of the respective losses and pattern decoding
strategies of the main state-of-the-art approaches of the recent literature. While
numerous attempts have proposed to take into account various elements of con-
straints for pattern discovery, our approach DIFFVERSIFY proposes two novel
contributions. First, we explicitly promote diversity over the resulting pattern set
with a dedicated differentiable loss. Second, to enable the discovery of more spe-
cific patterns, we propose a novel pattern decoding strategy using latent variable
model inference using Non-Negative Matrix factorization for pattern extraction.
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Table 1. Comparison of the losses and pattern decoding of baselines and DIFFVERSIFY.

|[RL-NET [7J|RRL [22]  |R2N [14]|BiNaps [9]|D1rrNaPs [21]| DIFFVERSIFY |

Reconstruction v X X v v v
% Classification X v v X v v
g L4 regularization X X v X v v
= L, regularization v v X X v v/
Coverage regularization X X X X X
2
g Threshold X X X v v v
g NMF X X X

3 Preliminaries

We assume a supervised input dataset D : (X,Y) with X € {0,1}"*™ composed
with n samples and m features, and Y € [0,1]"*¥ the probability for each
sample to be assigned to one of the class labels K = {1,...,k}. Our purpose
consists in finding a set of patterns P, where each pattern p € P is a set of feature
indices p C {1,2,...,m} representing feature co-occurrences. To find such sets of
patterns, it has been recently proposed to learn a binarized autoencoder type of
neural network, where W € R™" is its weight matrix with h hidden dimensions.
We denote by W, the i-th row of W. W¢ indicate the binarized version of W.
We also consider b for a bias, and b? for its discretized value. For a given binary
database, our aim is to find a diverse set of patterns P that describes the data.
One interpretation of this claim consists in defining a set of patterns as correct
if it can marginally reconstruct the database.

4 Differentiable pattern mining with coverage
regularization

Pattern mining has been recently tackled using autoencoders, minimizing re-
construction loss with additional class prediction, facilitating robust pattern
discovery. As a first contribution, we introduce a diversity objective to mini-
mize collapsing among neurons of the encoder layer during training. Secondly,
we propose a novel decoding process after training, promoting the creation of
longer patterns with respect to solely thresholding using Non-Negative Matrix
Factorization (NMF).

4.1 Neural model for pattern mining

For various data, autoencoders have proven to be a successful approach for cap-
turing the main regularities in the data by minimizing reconstruction loss. An
autoencoder is a neural network consisting of task-specific encoding layers that
end in an embedding layer, and a symmetric decoder to reconstruct the input
from the embedding layer. The embedding layer is usually small compared to
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the input layer, imposing an information bottleneck and forcing the network to
learn relevant and shared structure between inputs.

To support interpretability, a novel type of neural autoencoder as been re-
cently proposed, where weights and activations are discretized in {0,1} during
the forward pass. To learn in small noisy steps during backpropagation, for train-
ing continuous versions of the weights are used, optimizing reconstruction loss
with respect to these continuous weights. The autoencoder consists of one linear
hidden layer — a so-called pattern layer — and one linear output layer. For each
neuron in the hidden layer, incoming binary weights indicate whether an input
item is part of the encoded pattern. For example, a binarized weight W;{ ; means
that input item j is part of the pattern given by hidden neuron i. Thus, each
neuron in the hidden layer corresponds to a pattern p, while all neurons together
correspond to the pattern set P.

Concretely, one binarized version of the weights is construct for compute the
forward pass, and used for reconstruction. To ensure that the hidden neurons
correspond to interpretable patterns, the auto-encoder architecture is symmet-
rical as the weight of the decoding layer is the transpose of the weight of the
encoding layer.

4.2 Learning algorithm

The architecture of differentiable pattern recognition usually consists of a bi-
nary autoencoder. The encoding and decoding layers of the autoencoder share a
set of continuous weights W. The forward pass uses a binarized version of this
weight matrix W< following [9]. Each hidden neuron j represents a pattern, and
a feature i is part of the pattern corresponding to neuron j if Wﬁ ; = L. The de-
coding layer performs the transposed linear transformation of the encoding layer
which enforces the patterns formed during optimization to describe the data. In
recent work, a classifier has been added to the pattern layer with continuous
weights W€ to act as an additional regularizer. This classifier is linear and hence
interpretable.

The overall objective function consists of a series of terms for the autoen-
coder reconstruction, the classification error, and various regularization terms.

Reconstruction Loss. First, the autoencoder reconstruction loss from the in-
put points is defined with a weighted XOR function as proposed in [9]. As binary
data tends to be sparse and dominated toward zeros, a sparsity-aware reconstruc-
tion loss weighs the importance of reconstructing a 1 proportional to the sparsity
of the data.

Lo(Xi,Xi) =) (1 =X j)a+ X (1 — )X ; — X, 41, (1)
j=1
with a = % the sparsity of X and X the reconstruction of X by the

autoencoder.
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Classification Loss. Second, to optimize the classifier, the cross-entropy loss
is naturally optimized between the predicted logits Y and the true label Y:

k
LY, Y:)==> Yislog(Yi,) (2)
=1

Los-regularizer. Next, to promote parsimonious patterns, the Ls-regularizer is
leveraged to penalize long patterns, i.e., rows with many 1s. The function r;(W)
is defined as:

2
m h

re(W) =" Wi, (3)

i=1 \j=

This function computes the squared sum of each row of the weight matrix W.
This loss penalizes a pattern as a whole as it defines a quadratic cost on the length
of the pattern. Hence, the regularizer is promoting shorter patterns discovery.

W-shaped regularizer. To further force the weights towards a binary solution,
a W-shaped regularizer is defined. The function r,(W) is defined as:

(W) = min{r(W;),r(W; — 1)}, (4)

where 7(W;) is defined as r(W;) = x|W;|1 + A\|W.||3. Here, x and X are
hyperparameters specifying the trade-off between the L; and Lo regularization
penalties. This regularizer takes the classic form of an elastic-net, where the s
and A\ hyperparameters respectively specify the trade-off between the ridge and
lasso penalty.

Coverage regularization. Finally, to enforce diversity and data-coverage am-
ong the patterns in the model’s representations, we introduce a orthogonality
component into the loss function. By including the orthogonality constraint in
the loss function, the model is encouraged to learn diverse and independent fea-
tures, which can lead to improved generalization performance. The orthogonality
constraint is defined through a cosine similarity between each pair of the neu-
rons, which correspond to a line of W. By encouraging orthogonality, the loss
function helps prevent the model from collapsing to specific features and encour-
ages it to learn more informative representations. Formally, the loss is defined
as follows:

1 W - W,
Leov(W) = m(m—1) ; (HVVzHHVV]H) . o

This orthogonality component is combined with other regularization terms
to form the complete loss function. As a result, given the parameters of the
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network {W, W<}, the loss function is given by:

L(D,W,W°}) = zn: |20 (X0, Ri) + ALe(Yi, Yi) | + 74 (W)

+ (W) + 174 (W€) + Leov(W), (6)

where A, is a parameter that weighs the classification loss.

4.3 Pattern decoding from latent representation

To extract differential patterns at convergence, W and W€ are classically thresh-
olded with 7. and 7, respectively. As described above, a pattern p; is given by the
index set of all i’s such that Wf ; = 1. However, one limitation can be mentioned:
the decoding process does not consider the creation of long patterns, resulting
from the coverage loss. These longer patterns capture intricate dependencies and
interactions between features, possibly offering a deeper understanding of the
underlying data structure. Unfortunately, the decoding mechanism may over-
look these longer patterns, potentially leading to a loss of information during
the reconstruction phase. As a result, the reconstructed data may lack the finer
details captured by these longer patterns, hindering the fidelity of the recon-
structed dataset. This limitation underscores the need for a decoding strategy
that can effectively incorporates the information encoded in longer patterns. So,
we propose to improve the pattern decoding process using Non-Negative Matrix
Factorization (NMF) over M define as

_ 2o Xie Wi
Y YW
This way, one can improve the quality and accuracy of the reconstructed pat-
terns.

Non-negative Matrix Factorization is a popular technique of dimensionality
reduction that has been explored in numerous applications, like topic modelling
and recommendation systems [2]. Given a non-negative matrix M with dimen-
sions m x h, NMF seeks to factorize this matrix into two non-negative matrices U
and V, such that M ~ UV. Here, U represents a basis matrix with dimensions
m X g, where g is typically chosen to be smaller than m and h, and V denotes
a coefficient matrix with dimensions g x h. The factorization is constrained to
be non-negative, meaning that all elements of U and V are non-negative. The
resulting factorization aims to represent M as a linear combination of a reduced
set of basis vectors from U, weighted by the coefficients in V. The objective loss
function of NMF is defined as the Frobenius norm of the difference between the
original matrix and the reconstructed matrix:

Lavr(M,M) = [M - M|% = [M - UV (8)

M (7)

As for topic modeling in natural language processing [23120], we build new
and longer patterns by aggregating the top-p patterns defined as

top-p = argmaszl___deJ
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that corresponds to the most co-occurred patterns for each latent dimension
d € [1,g] of the matrix V. This approach aims at regrouping the patterns that
frequently co-occurs in the data. This composition is complementary to the pro-
posed coverage loss which tend to create shorter and orthogonal patterns.

5 Experiments

In the following experiments, we address the following questions. First, we assess
how our proposed model performs with respect to the current state-of-the-art
methods in terms of scalability, robustness, and overall effectiveness, across both
real-world and synthetic datasets. Second, we assess how the diversity regularizer
allows to discover a larger variety of discriminative patterns. Third, we question
how the proposed NMF decoding build more specific patterns beyond generalist
ones in real and synthetic dataﬂ

5.1 Metrics

We use a set of metrics to assess the pertinence of the discovered patterns. Indeed,
the sheer volume and complexity of the patterns generated makes it challenging
to identify the most relevant and informative ones. So, several metrics can help
to assess the quality, novelty, and usefulness of patterns, and to identify those
that are most likely to be of interest to domain experts or end-users. Let P be
the set of patterns found and z,, is the binary vector denoting the assignment of
the dataset point to the support of pattern p. We use the following measures to
describe the collection of patterns:

— COVER: It computes the proportion of the dataset samples covered by at

least one pattern: M

— PURITY: It measures the purity of a pattern with respect to y:
LZ maxy ||ye A zpl|
|P| £=peP IEA

Then, we use a set of measures to evaluate the collection of patterns as a pre-
diction model:

— WEIGHTED-F1: For each sample, we take the set of patterns that support it.
Among those patterns, we select one with the highest purity and associate
this class as the predicted label for the sample. In the case where no pattern
is supporting a sample, the majority class is associated to it. WEIGHTED-F1
score calculates the F1 score for each class and then computes a weighted
average based on the number of samples in each class.

— ROC-AUC based on PURITY and COVER: Since ground truth labels are
not available for real-world data, we evaluate the collection of patterns as
presented in [21], by using the area under the curve of the percentage of data
covered by patterns (COVER measure) once patterns are sorted according to

4 Code and data are available: https://chataingt.github.io/DiffVersify /.
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their PURITY that is proportional to the probability of predicting the target
class). This evaluation can be interpreted as a trade-off between sensitivity,
i.e. the proportion of the dataset covered, and specificity, i.e. the pattern’s
relevance to a particular class. To eliminate spurious patterns, we only con-
sider those with a predictive probability of % + 0.1 or higher, indicating a
slightly greater likelihood than chance.

— SOFT-F1: When the ground truth patterns are accessible, as usually in syn-
thetic datasets, we utilizes the Jaccard distance instead of strict equality for
calculating recall and precision as it prevents an excessive penalty for meth-
ods that only partially recover individual patterns [12]. The SOFT-F1 score

is defined as the harmonic mean of soft precision and soft recall defined by:

[Panpg|
€P5 paUpy|

_ 1 |pdﬁpg|
soft recall(Py, Py) = il ZpgePg maxp,cp, IdeIg

where soft recall and soft precision are compute |using the Jaccard distance
between the recovered and ground truth patterns. The soft F1 score allows
to take into accounts partial matches between recovered and ground truth
patterns.

.. _ 1
soft precision(Py, P;) = TPa] > pacp, MAXp,

We also consider other description measures of pattern collection:
— # PATTERNS: The number of patterns in P.

— AvG. Supp.: The average support of the patterns in P: Zperllzll

# PATTERNS*

5.2 Baselines

We evaluate our model against the seminal proposal of BINAPS and DIFFNAPS,
its improvement in class-specific pattern set mining. By transitivity, we challenge
the current state-of-the-art methodologies including decision trees, significant
pattern mining [18], MDL-based label-descriptive approaches [12], classification
rule learning [19], neuro-symbolic classification rule learning [22], top-k subgroup
discovery [16], difference description [4], falling rule lists [I7], optimal sparse de-
cision trees [11]], and class-specific BMF [I3] reported by DIFFNAPs [21]. Indeed,
Di1rFNAPS has superior performance than these baselines. Throughout all exper-
iments, we utilize the replication package of DIFFNAPS to establish parameters
for consistency across the subsequent experiments.

5.3 Experiments on real-world benchmarks

First, we evaluate DIFFVERSIFY on four biology-related benchmarks with the

variant DIFFVERSIFY-ABL to do an ablation study over the use of the non-

negative factorization. The impact of the diversity regularizer is evaluated through
the comparison with DIFFNAPS.

Datasets. We consider a phenotypical CARDIO datasetﬂ a DISEASE diagno-
sis datasetﬂ and two high-dimensional binarized gene expression datasets for

® https://www.kaggle.com/datasets/sulianova/cardiovasculardisease-dataset.
S https://www.kaggle.com/datasets/itachi9604/diseasesymptom-description-dataset.
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breast cancer, BRCA-N and BRCA-S, both derived from The Cancer Genome At-
las (TCGA)B The number of descriptive features are respectively 45, 131, 1976
and 1976. The number of individuals are respectively, 68k, 5k, 222 and 187. The
number of classes are respectively 2, 41, 2 and 4. We use the hyper-parameters
reported in DIFFNAPS and BINAPS, which were optimized on these dataset, and
we use cross-validation to define the ones for DIFFVERSIFY. In particular, the
rank g of NMF decoding determined for each real-world dataset is as follows:
CARDIO: 10, DISEASE: 15, BRCA-N: 100 and BRCA-s: 500.

Table 2. Comparison of performance metrics across four real-world datasets. Average
values and standard-deviations are reported over 5 runs of the methods.

Measures Methods Datasets

BRCA-N BRCA-S CARDIO DISEASE

BiNaps 0+0 0+0 0.06+0.15 0.76+0.01

§ ROC AUC DiFrNAPS 0.90+0.05 0.79+0.04 0.34+0.05 0.84+0.0
§ DIFFVERSIFY-ABL 0.9240.00 0.8940.03 0.5440.02 0.86+0.01
T‘é DIFFVERSIFY 0.95+0.00 0.9340.03 0.5540.18 0.9040.01
o BINaPs 0+0 0+0 0.34+0.0 0.76+0.03
@ WEIGHTED-F1 DirrNAPS 0.55£0.21 0.18+0.19 0.71+£0.01 0.884+0.04
EO DIFFVERSIFY-ABL 0.63£0.28 0.20£0.07 0.6840.02 0.9840.00
DIFFVERSIFY 0.79+0.25 0.384+0.14 0.69+0.02 1.00+0.01

o BiNars 0+0 0+0 0.87+0.07 0.79+0.03
g Covr DirrNaPs 1.001+0.00 1.0010.00 0.66+0.17 0.99+0.01
B DIFFVERSIFY-ABL 1.0040.00 1.0040.00 0.98+0.02 1.0010.00
g DIFFVERSIFY 1.00£0.00 1.0040.00 0.9810.02 1.0040.00
< BINaprs 0+0 0+0 0.54+0.05 0.9810.01
E PURITY DirrNAPS 0.84+0.03 0.37+0.05 0.7740.04 0.1340.00
S DIFFVERSIFY-ABL 0.59+£0.01 0.35£0.02 0.73£0.03 0.10£0.00
= DIFFVERSIFY 0.61+0.02 0.3740.02 0.7740.02 0.22+0.00
BiNaps 0£0 0+0 5.80£1.92 124.60+2.07

§ 4t PATTERNS DIFFNAPS 182.60+40.83 939.20+£336.21 10.06+1.14 3693.69+206.63
27 ”  DIFFVERSIFY-ABL 2674.80+1088.92 9630.00+1398.29 8.20+1.64 2626.40+59.58
g DIFFVERSIFY 2874.80+£1088.93 11630.00£1398.29 22.241.64 3241.40+59.58
S BiNaps 0+0 0+0 49849.89+8703.88 95.22+3.61
& Avc. Supp.  DIFrNaPs 33.02+0.58 26.08+1.79 9731.81+4711.73 275.12+7.21
5 DIFFVERSIFY-ABL 31.05+0.58 26.26+1.79 18231.42+2514.64 273.41+5.07
DIFFVERSIFY 29.83+0.60 24.2941.61 14938.36+4172.42 263.72+4.86

Results. Table[2]reports the measure values obtained by the different methods
on the 4 datasets. First, notice that BINAPS returns 0 patterns on both BRCA
datasets and therefore the measures can not be evaluated. For all dataset, we
can observe that DIFFVERSIFY’s patterns exhibit perfect COVER, indicating
a complete representation of the data. Notice that there is a large number of
patterns on BRCA datasets due to their high number of features compared to
their number of data points.

” The BRCA datasets were derived from data made available by the TCGA Research
Network.
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Fig. 1. ROC curve on four biology-related benchmarks, BRCA-N, BRCA-S, CARDIO and
DISEASEoOver 5 runs.

The ROC-AUC shows that DIFFVERSIFY’s patterns consistently provide su-
perior COVER with better PURITY, suggesting that they are more effective in
describing the classes. Fig. [1| shows the ROC curves. For BRCA-S and BRCA-N
datasets, we can observe the critical role of regularization for this metric (see the
increase compared to DIFFNAPS). This is particularly pertinent with datasets
that exhibit a disparity between the number of rows and columns. When applied
to datasets such as CARDIO and DISEASE, both DIFFVERSIFY and DIFFNAPS
demonstrate comparable performance levels. However, as the complexity of the
dataset increases, DIFFVERSIFY seems to generate better patterns. Indeed, these
patterns offer better coverage while maintaining good PURITY, thereby under-
scoring the potential efficacy of DIFFVERSIFY.

The WEIGHTED-F1 score, in conjunction with the perfect coverage, under-
scores the ability of DIFFVERSIFY’s pattern set to discriminate between classes,
even when the pattern set covers all the samples of the dataset. This indicates
that DIFFVERSIFY not only provides thorough coverage but also maintains a
high discriminating capability. The ablation study, where the NMF step is ex-
cluded, demonstrates that although DIFFVERSIFY-ABL may outperform DIF-
FVERSIFY on ROC-AUC, as on BRCA-N, DIFFVERSIFY systematically benefits
from this post-processing in all other performance measures.

However, it is worth noting that DIFFVERSIFY identified a substantially
higher number of patterns (# PATTERNS) in three of the datasets. This can be
attributed to the diversity constraint, which facilitates the generation of more
general patterns, and the subsequent NMF decoding that refines these patterns
into more precise ones.

This limitation can be addressed through a straightforward yet efficient pro-
cedure: sorting the patterns based on their COVER value and selecting pat-
terns until achieving a coverage of 1. Fig. [ illustrates the performance metrics
achieved with an increasing set of selected patterns. The results indicate that
this post-processing leads to a more compact and effective pattern set. In BRCA-
N, merely one hundred patterns yield satisfactory performance, aligning the #
PATTERNS value with the minimum observed in other methods. On BRCA-S, a
trade-off between WEIGHTED-F1 and ROC-AUC can be achieved applying an
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Fig. 2. Evolution of the performance metrics of DIFFVERSIFY over subsets of patterns
defined by increasing COVER values across BRCA-N, BRCA-S, CARDIO and DISEASEover
5 runs.

elbow method on COVER measure. However, in CARDIO, where the pattern set
is already small, this post-processing step is deemed unnecessary.

Finally Table [3|reports qualitative results. Considering in detail top patterns
with respect to COVER found per class on CARDIO by all three methods (BINAPS,
Di1FFNAPS and DIFFVERSIFY), Table [3] reveals that DIFFVERSIFY consistently
identifies at least the same set of patterns as the baseline DIFFNAPS. Remark-
ably, DIFFVERSIFY outperforms DIFFNAPS by uncovering additional patterns,
characterized by high coverage and purity scores, that the latter fails to detect.

5.4 Experiments on synthetic data

To enhance the understanding and comparison of the different methods, we use
synthetic data to readily access ground truth patterns, providing a controlled
environment for evaluating the properties of the considered approaches.

Dataset generation. For the data generation process, we use the publicly
available DIFFNAPS replication package. Within each class, ten patterns are
randomly sampled across features, with lengths drawn from a uniform distri-
bution (U(5,15)). Also, 20 common patterns are sampled, with lengths drawn
from U(0.01 x m,0.025 x m) to maintain data density. Each class comprises an
equal number of samples, each containing two common and three class-specific
patterns randomly embedded. We introduce additive and destructive noise by
flipping ten Os to 1s and flipping 1s affected by a pattern to Os with a 2.5% prob-

ability, respectively. Class labels are assigned to satisfy (z’t’:)k = 0.9. Means and
std of measures across four independently generated datasets are reported. We
set the rank g for NMF decoding equal to the number of ground truth patterns.
Scalability in m. One significant challenge in existing pattern-set mining ap-
proaches is handling high-dimensional data. We thus vary the number of features
m within {10%,5 x 102,102, 5 x 103,104, 1.5 x 10%,2 x 10%, 2.5 x 10%, 5 x 10%, 10°}.
We set the number of classes to k = 2 and the number of rows to n = 10%.
To mitigate pattern overlap in low-dimensional data (m < 10%), we sample 5
patterns per class without sharing.
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Table 3. Analysis of the top 6 patterns in terms of COVER by class on CARDIO
and thus for the three methods: BINAPs, DIFFNAPS and DIFFVERSIFY. A pattern is
mentioned as Unique if only one of the methods discovered it.

c‘ Method ‘Unique‘COVER‘COVER{C]‘Purity‘Features

DIFFVERSIFY| v 0.28 0.44 |0.77 |ap_lo_ High 2

DirrNAPS 0.26 0.45 |0.84 |ap_hi_ High 2
| DIFFVERSIFY 0.26 0.45 |0.84 |ap_hi High 2
2| DIFFNAPS 0.20 0.35 0.84 |ap_hi High 2, ap lo_High 2
E DIFFVERSIFY 0.20 0.35 |0.84 |ap_hi High 2,ap lo_ High 2
+|DIFFVERSIFY| 0.16 0.27 ]0.83 |ap_hi_High 2, cholesterol normal
8[DirrNaps 0.14 0.20 [0.70 |age_(60.0, 64.0)
= DI1FFVERSIFY 0.14 0.20 |0.70 |age (60.0, 64.0)

DirrNaPs 0.11 0.18 |0.76 |cholesterol way above

DIFFVERSIFY 0.11 0.18 |0.76 |cholesterol _way _above

DIFFVERSIFY| v 0.71 0.86 |0.62 |ap_lo_ Normal Elevated

DirrNaPS 0.59 0.80 |0.68 |ap_hi_ Normal

DIFFVERSIFY 0.59 0.80 |0.68 |ap_hi Normal
o |DIFFVERSIFY| 0.57 0.74 10.66 |ap_lo_Normal Elevated, cholesterol normal
g Di1rrNAPS 0.57 0.77 ]0.69 |ap_hi Normal. ap lo Normal Elevated
S |DIFFVERSIFY 0.57 0.77 10.69 |ap_hi Normal, ap_lo_Normal Elevated
= BINaps v 0.23 0.33 |0.73 |gender women, ap_hi Normal ...

DI1rrNAPS 0.18 0.24 |0.69 |age_(29.0, 45.0)

DIFFVERSIFY 0.18 0.24 |0.69 |age (29.0, 45.0)

Multi-classes. We assess the methods’ capability to classify data as the number
of distinct classes increases. The number of classes k ranges from 2 to 50, with
4 x 103 samples generated per class and m = 5 x 103 features.

Robustness to additive noise. We evaluate the robustness of our model to
additive noise, by simulating scenarios in which data may be corrupted or per-
turbed. Setting k = 2, m = 5 x 102, and n = 103, we introduce additive noise
by varying the number of randomly added 1s per row from 0 to 100.
Robustness to destructive noise. The robustness of the model against de-
structive noise, a significant challenge in extracting meaningful patterns, is eval-
uated by varying the probability of flipping 1s to 0s from 0% to 60%.

Results. The results are shown in Fig. 3] and Table [@ In the feature and noise
experiments in Table[d] we expect to identify 20 ground truth patterns. Remark-
ably, DIFFVERSIFY is the only method that consistently achieves near-perfect
coverage, irrespective of the magnitude of the noise or the value of dimensionality.
Both DIFrFVERSIFY and DIFFNAPS discover class-specific patterns with an aver-
age purity surpassing 0.8 across all experiments. Notably, DIFFVERSIFY shows
higher similarity to the ground truth patterns relative to its baselines, a phe-
nomenon attributable to the NMF decoding process. It is worth mentioning that
the addition of obtained patterns to the existing ones invariably introduces simi-
larity among patterns. Furthermore, both DIFFVERSIFY and DIFFNAPS manage
to identify the majority of the ground-truth, with an average soft-F1 score ex-
ceeding 0.70. The exception to this observation is in the experiment involving the
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Table 4. Performance comparison on synthetic datasets.

Measures Method ‘ # Features # Classes  Add. noise  Dest. noise
5 BINaPs 0.244+0.3 0.524+0.21 0.09+0.08 0.0740.03
% SorT-F1 Di1FFNAPS 0.891+0.12 0.5940.09 0.6540.05 0.5+0.17
% DIFFVERSIFY 0.81+0.23 0.661+0.09 0.73+0.07 0.681+0.13
>
o BINAPs 0.63+0.15 0.114+0.16 0.61+0.04 0.57+0.03
% WEIGHTED-F1 DIFFNAPS 0.881+0.03 0.65+0.12 0.76+0.01 0.56+0.18
= DIFFVERSIFY 0.89+0.02 0.75+0.11 0.84+0.06 0.6210.2
.g BiNaprs 1.04+0.01 1.01+0.0 1.0+0.0 0.9940.01
&, COVER DirrNAPs 0.9540.06 0.79£0.2 0.73£0.03 0.38+0.28
§ DIFFVERSIFY 0.9940.02 0.851+0.17 0.84+0.9 0.48+0.35
< BINAPs 0.71£0.08 0.5340.05 0.73£0.05 0.7£0.02
g PurIiTY D1FFNAPS 0.940.01 0.83+0.08 0.9+0.02 0.88+0.06
20 DIFFVERSIFY 0.874+0.04 0.84+0.08 0.940.02 0.940.06
§ BiNaps 369.514259.53 - 323.35493.86 203.02422.48
Z # PATTERNS DIFFNAPS 17.8+4.87 - 14.13+2.05 9.73£4.95
g DIFFVERSIFY 41.36429.23 - 16.85+2 13.47+6.7
S BINAPS 1896.77+1136.14 1206.58+679.08 119.84+32.5 118.38+8.06
£ Ava. Supp. DirrNAPS 2667.88+1106.17  210.69+88.06 170428.1 106.174+64.27
3 DIFFVERSIFY| 2664.29+1294.1 188.88+38.18 188.51424.31 102.27+75.84

number of classes, where the complexity of the classes diminished performance
to a level akin to the baseline, BINAPS. In terms of weighted-F1 results, DIFr-
FVERSIFY and DIFFNAPS show comparable performance, although DIFFVER-
SIFY exhibits superior average results. As the number of class is varying, the
number of groundtruth patterns is varying accordingly. As a consequence, we
do not compute the number of patterns for these specific experimental settings
in the table. In Fig. [3] DIFFVERSIFY exhibits better robustness to both addi-
tive and destructive noises. Furthermore, DIFFVERSIFY demonstrates scalability
with respect to the number of features, particularly in high-dimensional settings
where it outperforms DIFFNAPS in terms of robustness.

The results suggest that our proposed method is able to discover more diverse
and discriminative patterns compared to the baseline methods, while maintain-
ing high coverage and purity. The use of diversity regularization and NMF decod-
ing in DIFFVERSIFY allows for the discovery of longer and more specific patterns,
which lead to improved generalization performance. Further work could be done
to improve the proposed approach in several ways. One potential direction is to
explore other decoding strategies beyond NMF, such as using more advanced
matrix factorization techniques or incorporating domain-specific knowledge into
the decoding process. Another direction is to investigate the use of other regu-
larization techniques, such as group-sparsity regularizers, to further encourage
diversity and interpretability in the learned patterns. One limitation of our pro-
posed approach is that it relies on the assumption that the data can be well-
represented by a set of binary patterns. However, in some cases, the data may
contain more complex relationships that cannot be captured by binary patterns
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Fig. 3. F1 scores obtained on the synthetic datasets by varying (from left to right) the
additive noise level, the destructive noise level, k and m.

alone. In such cases, it may be necessary to extend the approach to allow for more
complex pattern representations, such as real-valued or continuous patterns.

6 Conclusion

We introduced a novel differentiable binary model for pattern mining that in-
corporates a regularization loss emphasizing pattern coverage and a pattern de-
coding strategy using non-negative matrix factorization (NMF). Our approach
demonstrates superior performance in terms of ROC-AUC on four real-world
biology-related datasets and improves pattern detection by increasing similarity
measure to ground truth patterns on synthetic data. Through extensive evalu-
ations, we show the appropriateness of discovered patterns relative to the data,
focusing on pattern coverage, indicating the efficacy of our approach in handling
challenging scenarios with high noise levels and multiple classes. One possible
future direction is to search for alternative techniques for pattern decoding from
differentiable model. This could help to better capture complex patterns and im-
prove the overall accuracy of our approach. Another direction is to incorporate
additional regularizers such as those proposed in neuro-symbolic approaches.
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