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46 rue Barrault, F-75634 Paris cedex 13, France

ABSTRACT

The watermark signals are weakly inserted in images due to imperceptibility constraints which makes them prone
to errors in the extraction stage. Although the error correcting codes can potentially improve their performance
one must pay attention to the fact that the watermarking channel is in general very noisy. We have considered the
trade-off of the BCH codes and repetition codes in various concatenation modes. At the higher rates that can be
encountered in watermarking channels such as due to low-quality JPEG compression, codes like the BCH codes cease
being useful. Repetition coding seems to be the last resort at these error rates of 25% and beyond. It has been
observed that there is a zone of bit error rate where their concatenation turns out to be more useful. In fact the
concatenation of repetition and BCH codes judiciously dimensioned, given the available number of insertion sites
and the payload size, achieves a higher reliability level.
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1. INTRODUCTION

Watermark insertion algorithms have to operate under a triple of contradictory constraints: capacity, imperceptibility
and robustness. The constraint of imperceptibility implies that the embedding of information neither causes any
visible impairment in the image nor enables visual detection of the presence of the watermark. As a consequence,
inserted watermark signals are by nature very weak in comparison to the cover data. The methods of spread-spectrum
modulation and alternately the method of ”spreading the spectrum” by multi-site substitution type insertion are
used to protect the watermark message from interference and attacks.

Additional protection of the watermark can be obtained by the use of error correcting codes. The watermark
channel is, however, a particularly difficult channel and it is not obvious under which conditions error correcting
codes will be beneficial. Furthermore various authors have pointed out to the difficulty of selection of error correcting
codes because the channel distortion is very variable. Indeed, it depends on the image size, the image content, as
well as the potential attacks on the watermarked image. In this paper we want to elaborate on the protection of
watermarking channels by means of error correcting codes. In particular we investigate on the trade-off of BCH
(Bose-Chaudury-Hocquenheim) codes versus simple repetition codes and their various concatenations.

This paper is organized as follows. Section 2 discusses a model for and properties of watermark channels. Section
3 briefly describes the watermarking method tested. Some analytical results on the coding performance is presented
in Section 4 while experimental results are shown in Section 5. Finally conclusions are drawn in Chapter 6.
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Previous Work
There have been studies in the literature on the role of error correcting codes for watermark message protection.

For example, Marvel1 has considered protection of the steganographic payload in images by the use of Reed-Solomon
codes, turbo codes and special codes developed by Retter2 in both hard-decision and soft-decision decoding contexts.
The scheme consisting in an interleaver that disperses long error bursts followed by the coder unit, achieves a Bit
Error Rate (BER) of about 10−2 at a high embedding density of 0.16 bit/pixel.

Hernandez et al.3,4 have considered the 2D-multipulse insertion scheme where a pulse is modulated in amplitude
by the bit polarity and it consists of a pseudorandom sequence randomly spread over a sparse set of pixel locations
(the footprint of the pulse). The performance under additive Gaussian noise attack, in addition to a Wiener filtering
attack, indicates that to achieve a BER performance of, say 10−4 in the Lena image, a BCH coded sequence needs
about half the number of “image pixels per watermark bit”, as compared to the uncoded case. To give an idea, an
uncoded sequence for the above cited performance necessitates a spreading rate of 420 pixels/bit (the pulse size)
while for the BCH (63,36) coded sequence, about 240 pixels/bit is enough.

Ramkumar5 has considered the use of codes for the creation of a watermarking signal alphabet. The authors
discuss a compromise between the two alternatives:

1. To spread a k-bit signature sequence via spread-spectrum techniques to mark n � k sites (i.e., by multiplying
each bit with a pseudo-random vector of length n/k) or,

2. To map the same k-bit signature sequence to the 2k maximally separable sequences in an n-dimensional space.
Although the second approach is obviously superior, for large k and/or n, the computational cost of searching
for the 2k vectors in the n-dimensional space becomes prohibitively expensive. Therefore, various compromises
for smaller alphabet sizes are investigated.

In a similar way, Mukherjee et al.6 have considered a source-channel coding framework. The signature, which in
their work is made up of the Vector Quantization (vq) indices of the source image, is embedded in the host using
orthogonal transform domain vector perturbations. These perturbations, which in fact correspond to appropriate
signal constellations, are affected by channel codes derived from multidimensional lattices. In the video-in-video
application (a lower rate video embedded in another higher rate video), the embedded signal is able to maintain its
quality when the host video is compressed from its original form to 50% of its rate and beyond. However, the coding
advantage disappears and turns in fact into a loss when the host is rendered at a higher quality. In other words, at
lower compression rates when the hidden video is “safe enough”, coding causes loss of payload capacity without a
commensurate increase in its security.

2. THE WATERMARKING CHANNEL

2.1. A Model for Watermarking Channel

A generic description of watermark embedding and extraction processes as a transmission through a digital commu-
nication channel is shown in Fig. 1. The binary sequence b is the watermark message, consists of k bits and becomes
the coded sequence c after error correcting code, e.g., repetition and/or BCH coding. The c vector is mapped via the
chosen watermarking method to the modulation signal s for transmission through the watermarking channel. Note
that the signal s can be generated independently of the cover data I, can depend upon the cover data via perceptual
weighting, or can depend on I in a rule-based manner as in substitution-based methods. The modulation signal s
is inserted in the cover data I using a secret key K which can control the generation of the spreading sequence and
the choice of sites. The energy of watermarking, that is, the gain or attenuation factor of s, can be spatially-variant
if perceptual weighting is taken into account. The model in Fig. 1 shows only the transmission and the reception of
the message carrier through the watermark channel.

The watermarked image (stego-image) may suffer from a number of unintentional or malicious attacks. The effects
consequently suffered by s in the course of its transmission through the watermarking channel are expressed in terms
of the transition probability Q(r|c). Therefore when the watermark signal is extracted from the attacked image using
the same secret key, a corrupted version, denoted as r, is delivered to the decoder. While the input sequence c is
binary, the resulting vector r (of length n) of decision variables can consist of binary values if a hard-decision is



used, or analog values if a soft-decision scheme is applied. Finally this observation vector is decoded to yield b̂. An
extracted watermark message is considered erroneous if b̂ differs from b in one or more bits. Note that the detection
schemes considered in this paper are oblivious watermarking, that is, when the original “unwatermarked” image is
not required for detection.

The channel function Qn(r|c) is a random mapping from coded bits to decision variables. Each symbol or bit in
the transmission can be affected differently since each site may have a different resistance to attacks. This is due
to the fact that the local characteristics of the image vary, the images being spatially non-stationary. For example,
errors can occur form time to time in “spatial” bursts. At this level of detail, the watermark channel should be
modeled as an arbitrarily varying channel like Lapidoth7 did, where the channel law varies at each usage. As an
example of a channel that varies at each transmission, Kundur and Hatzinakos8 have discussed a scheme where
blocks in each localized region are alternatively marked by the watermark bits and test pattern bits. The training
sequence, that is test pattern serves to characterize locally the watermark channel. This local information is in turn
been used to form a weighted sum of the individual extracted repetitions.

Figure 1. Generic model for watermark transmission and reception where b, c, r and b̂ are bit sequences while s and
t are watermark signals modulated by this sequence. The transmitter box may provide random site selection and
perceptual weighting functions. The receiver box provide interference removal, demodulation resulting in a decision
variable functions.

However, such a detailed channel model is often not warranted because of several concurrent factors: as signature
bits are repeatedly embedded in multiple locations, interleaving of the sequence is used; and the sites are often
randomly selected using a secret key and /or are selected judiciously to withstand attacks. So that both the spatially-
variant characteristics of the sites and the memory or “burst” effect can be neglected. Thus a more simple channel
model, i.e., a Discrete Memoryless Channel (dmc) model can be assumed for an image class, that is:

Qn(r|c) =
n∏

i=1

Q(ri|ci). (1)

A model slightly more general than the simple dmc model would be the compound dmc model. In this model, each
message transmission is interpreted either as the watermark being embedded in an image with different statistical
characteristics, or as a watermarked image being subjected to a different host of attacks. Recall that the “watermark
carrying” capability of images depend on their content, that is, their spectral characteristics, the presence of edges
and texture etc. On the other hand each class of attack causes a different level of distortion, hence corresponds to
a channel with different parameters. To this purpose, a Compound dmc (cdmc) seems to be a more appropriate
description of the watermark channel. According to cdmc, the channel law is parametrized by a random parameter
θ that depends on the attack and image statistics:

Qn(r|c; θ) =
n∏

i=1

Q(ri|ci; θ). (2)

The parameter θ describes the state of the channel that depends on the image contents or the attack performed
on the image. More specifically, it may correspond to the quality factor in jpeg compression, the size of the average
or median filter, or more generally the degree of attack.



2.2. Characteristics of the Watermarking Channel

The watermarking channel has some specific characteristics, compared with channels commonly encountered in radio
or wire communication applications. Some relevant characteristics of the watermarking channel are the following.

• The error rate is very high. For example error rates between 0.1 and 0.5 are not uncommon. This high
error rate operating region may be at the limits of the capability of error correcting codes. As a consequence
the capacity of the channel measured in “bit per pixel” is very low, for example 0.01 bit/pixel. In additive
steganographic schemes, typical signal-to-interference figures reported in the literature are in the order of -30
to -10 dB according to Marvel.1

• The length of the watermark message contained in an image is rather small, typically below a hundred bits.
Error correction schemes such as complex convolutional codes as in turbo codes necessitate a much longer word
length to operate effectively.

• The channel is non-stationary, i.e. the error rate strongly varies in an image due to its spatial non-stationarity.
In fact, the survival chance of a watermark bit in an image site depends on the local image characteristics and
the perceptual weighting applied.

• In the communication theory, the performance of error correcting codes are given in error probability versus
signal to noise ratio (SNR) curves. The SNR figure is often expressed in terms of energy per bit over noise
spectral power density Eb/N0. Whenever an (n, k) error correcting code is used, this figure Eb/N0 must be
scaled by k/n for a fair comparison with the uncoded case. In the watermarking context, it is difficult to adjust
the signal power continuously, given the limited range of embedding strengths and the nonlinear relationship
due to perceptual weighting. Instead it is more convenient to compare coder performances against bit/pixel
efficiency factor, in other words, based on the number of pixels dedicated to carry one bit of the digital signature.

To sum up, one is interesting to have the maximum error protection with the minimum cost in payload capacity
and/or minimum degradation in image quality as more sites are marked as compared to the uncoded version. This
desideratum is often expressed as judicious satisfaction of triple constraints, that is, invisibility, robustness, and
capacity.

3. WATERMARKING METHODS

We consider substitution watermarking schemes where a site (a pixel, a block, etc.) is marked by substituting one of
its features with a different value according to the watermark bit value. More generally, for M-ary communication,
some site characteristics are mapped to one of the 2M possible values. The mapped values are obtained by forcing
the coefficient values to certain quantization bins as in 9 or n-tuples of coefficients, to assume an ordinal relationship
etc. as in .10 The algorithm given by Burgett et al.10 is a notable example of substitution-type watermarking.

The substitution methods also spread the signal over many sites, though not by spread-spectrum as in the additive
methods. An essential difference at the detection stage is that while the additive methods use a correlator algorithm
for de-spreading over the ensemble of marked sites, the substitution algorithms demodulate each site separately and
combine the individual decisions in some way, for example via majority logic. Therefore, the extraction of watermark
bits is not done by correlation and thresholding, but by a combinatorial process. Another difference is that the
substitution methods are idempotent, that is, when the cover data is marked with the same signature and key, the
stego-data remains the same. In fact substitution methods are also referred to as rule-based or deterministic methods,
since once the site is chosen, the insertion is not random anymore but follows a rule. Finally the cover data does
not constitute an interference to the detection, as in the case of additive methods, and consequently in the absence
of an attack, one should be able to recover the watermark exactly.

We use two watermark insertion algorithms, the first one a variation of the Zhao-Koch method10,11 and the second
algorithm which executes substitutions on the global DCT coefficients.

Second algorithm:
In the second method, we consider the DCT transform of the entire image and select a number of bandpass coefficients.
These selected coefficients are then organized as K sets (S1, S2, ..., SK) where K is the length of the watermark. Then



each set is sorted from the highest to the lowest absolute value, and the three largest coefficients of each set, Sa
i ,

Sb
i and Sc

i , such that Sa
i > Sb

i > Sc
i , are found. If their difference is d = α(Sb

i − Sc
i ), then consider the intervals

A1 = [Sb
i + 2ld, Sb

i + (2l + 1)d], and A2 = [Sb
i + (2l + 1)d, Sb

i + (2l + 2)d] for l a positive integer. To embed the nth

bit of the watermark Sa
i must belong to A1 for a 1, and belong to A2 for a 0.

4. ANALYSIS OF PERFORMANCE

We denote by pb the average probability that a bit of the received sequence in this channel is in error; this quantity
is in fact the un-coded error probability. The raw bit error probability can be improved with repetition coding,
resulting in prep, or with a block code like BCH, resulting in post-coding bit error rate of pc. The processing of these
probabilities are shown in Fig. 2 where the bit error probability attained at the end of the operation is indicated
within each box of the diagram and the calculation formulae are given in Table 1. Notice that in the analysis in the
sequel we investigate the performance of codes under heavy error, irrespective of the watermarking method employed.

Figure 2. Block diagram of a watermarking scheme with code protection.

The bit error probabilities for a repetition coding and an error correcting code with minimum distance dmin =
2t + 1, are given in the upper row of Table 1. The corresponding signature error expressions (k bit signature), Psig,
are given by the expressions in the second row, where the superscript u and c denote respectively the uncoded or
repetition case and the coded case. Notice again that the signature error probability with superscript u encompasses
both the uncoded and the repetition-coded cases.

Repetition Coded

Bit Error Prep =
R∑

i= R
2 +1

(
R

i

)
pi

b(1− pb)R−i Pc
∼= 1

N

n∑
i=t+1

i

(
n

i

)
pi

b(1− pi
b)

n−i

Signature error P req
sig = 1− (1− prep)k P c

sig =
n∑

i=t+1

(
n

i

)
pi

c(1− pi
c)

n−i

Table 1. Bit and message error probability expressions; k is the message length, n is the code word length, and R
is the number of repetitions.

• Performance with Repetition Codes : The error performance of an k-bit signature (k = 64) when an (R, 1)
repetition code is used to upgrade the channel bit error probability, pb to prep is shown in Fig. 3 (a). In
this figure R = 1 corresponds to the signature error probability in the original bsc channel, i.e., without any
repetition.

• Performance with bch Codes: The improvement brought in by an (n, k) error correcting code can be quantified
as a function of redundancy n/k and the minimum distance. It is assumed that an (n, k, dmin) code, like bch
codes, will correct all code words containing up to t = [(dmin − 1)/2] errors and will fail for all others (they
will not be able to decide or will decode erroneously). In a bsc channel, the number of errors will have
approximately a Gaussian distribution with mean npb and variance npb(1− pb). For elevated values of pb most
of the mass of this distribution falls outside the correcting capability of the code, that is beyond the threshold
t. One can observe indeed in Fig. 3 (b) that the bch codes, while providing significant error protection at lower
error probability, fail for channels worse than pb = 0.1. They start failing causing even more errors than the
uncoded case.



(a) (b)

Figure 3. (a) Signature error probability as a function of bsc bit error probability parametrically dependent upon
the number of repetitions, R = 1,3,9,15,33. Message length = 64 bits. (b) Performance of bch codes versus bsc bit
error probability when (127,64), (255,63), (511,67), (1023,66) codes are used. Message length = 64 bits.

To explore the trade-off between these two types of codes, that is, repetition versus BCH, we determined the
error rate pb beyond which a repetition code performs, if ever, better than an error-correcting code. This should
shed some light on how the redundancy should be traded-off. As shown in Fig. 4, the ratio of P rep

sig /P code
sig falls below

1 (hence repetition is to be preferred to BCH) after a certain threshold value of pb around 0.15-0.20. The advantage
of the repetition vis-a-vis BCH becomes even more prominent when increasing the amount of redundancy. It must
be pointed out, however, that the BCH codes perform, as expected, orders of magnitude better than the repetition
codes below this threshold value.

The fact that repetition codes remain the only viable use of redundancy with systems with large BER is also
discussed by Desset et al.,12 where it is pointed out that the repetition codes are capable of correcting errors up
to pb = 0.5 since for them dmin = n, while for all other codes for which dmin < n, the largest correctable error
probability pb is smaller (roughly 0.25).

• Performance with Concatenation: The observation that the error correcting codes cannot display their potential
unless the channel BER is reduced below a critical value brings about the possibility of first improving the
channel BER via repetition coding to an acceptable level, before BCH decoding. There are in fact two possible
concatenations, that is 1) repetition as an inner code and BCH as an outer code.

• BCH as an inner code followed by repetition as an outer code. Among these two alternatives, the later
alternative is obviously more viable as in the first strategy, most BCH coders might fail with uncoded (no
repetition) channel error rate. As an example, consider the exploitation of a redundancy factor of 31 for a
watermark message of 16 bits. One can consider the following configurations a) Repeat the watermark message
31 times, that is, use a (31,1) repetition code; b) Use a (511,19) BCH code with no repetition; c) Use a (31,6)
BCH code followed by a repetition code of (5,1). In these configurations, the total number of sites used amounts
to, respectively 506, 511, 555. Notice in Fig. 4 that for high enough pb the repetition code is still the best
remedy. However, in the interval 0.15 < pb < 0.25, the concatenation of repetition and BCH coding becomes
superior.

5. SIMULATION RESULTS

In this section we consider the error performance of watermark messages protected by error correcting codes. We
have considered a set of 20 images from the site of Petitcolas13 and applied various attacks such as median and
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Figure 4. (a) Ratio of the signature error probability with repetition coding to that with bch coding. Signature
length: 64 bits. Repetition code (32,1) compared with 8 words of (255,9) bch code, and two words of (1023,36) bch
code. (b) Concatenated coding performance: Signature length = 16, redundancy factor = 31. Comparison of (solid)
(31,1) repetition code, of (dashed) bch (511,19) code, of (dotted) (31,6) bch code followed by (5,1) repetition. The
respective code word lengths are 506, 511, 555 bits. Concatenation is better between 0.16 and 0.22.

mean filtering and JPEG compression. Fig. 5 shows the improvement of the average bit error probability after a 13
repetitions under a JPEG attack of quality 70 for the first algorithm. We can see that simulation results follows the
expected theoretical values. The improvement of the signature error probability (when the watermark consists of
64 bits) versus the Q factor of the JPEG compression is shown Fig. 5. One can notice that in the repetition case,
signatures can be detected correctly down to Q = 40 factor while without repetition the detection breaks down at
Q = 70. Below Q = 40, with the ZK (first algorithm) method, the watermark becomes non-detectable.

(a) (b)

Figure 5. (a) Improvement of bit error probability after R = 13 repetitions under jpeg attack with Q = 70.
(b) Error probability for the 64-bit signatures versus the Q factor of the jpeg compression.

The signature error probability with (511, 58) BCH coding is shown Fig. 6. The solid line represents the theoretical
signature error probability and the dashed line is the result of the simulation with the ’first algorithm’ (ZK). Due to
the peculiarity of the ZK insertion method and the JPEG attack, the outcome is dichotomic: either we can extract
the signature exactly from the image,with no errors; or we fail completely in decoding it.

Fig. 7 presents simulation results from different coding strategies when the ’second algorithm’, the second wa-
termarking method is used with 16 bit long payload. First we use a (7,1) repetition code). Secondly we use a



Figure 6. Signature error probability with (511,58) bch coding (approximately 13 fold redundancy).

Figure 7. Signature (16 bits) error for the ‘second watermarking‘ algorithm under JPEG attack. Comparison of
line-1: bit error probability : line-2: (7,1) repetition code; line-3: (31,16) BCH followed by 3 repetitions: line-4:
(127,16) BCH : line 5: 4 segments of (7,4) BCH code followed by 4 repetitions: line 6: two (15,7)BCH words and a
(7,4) BCH word each 3 times repeated



concatenation of 4 BCH(7, 4) words each followed by 4 − fold repetition. The third one is a concatenation of 2
BCH(15, 7) words and 1 BCH(7, 4) word, again each three times repeated. The fourth one is a concatenation of 3
times repeated BCH(31, 16) words. The last one is a BCH(127, 15).

The following observations can be made : a) The concatenation of the (3,1) repetition as outer code and (31,16)
BCH as inner code performs very well for Q factors down to 60. b) For worse channels as represented by lower
Q values the repetition code provides protection. c) The pure BCH code is indeed successful at low error rates,
that is for Q still higher but as expected fails for Q < 40 where the average bit error rate becomes 0.20. d) The
concatenation must be done judiciously, as not all combinations yield favorable results. For example the combination
BCH (15,7), (15,7), (7,4) with three repetitions performs worse than any other solution.

6. CONCLUSION

We have investigated the role of error correcting codes in the watermark ”transmission” problem. Using both analyt-
ical and simulation techniques it has been shown that BCH codes, while pulling down the error rate very significantly
for ’good’ channels where probability of error is less than 10%, they breakdown for higher error rates(Fig. 3 (a)), for
example for JPEG compression beyond Q = 50.

On the other hand repetition codes, while not impressive vis-a-vis BCH codes, they continue to protect the
message monotonically for all error probabilities up to pb = 0.5, so that they prove to be the ultimate resort.
(Fig. 3 (b)). Finally concatenation of repetition and BCH codes, provided the rate partition is done judiciously, seem
to bring in an advantage in the pb interval 0.15 - 0.30 (Fig. 4 (a)). This behaviour is also experimentally observed in
the JPEG experiments.

The work continues in the direction of Very Low Density Codes (Gallagher or MN codes) explained in14 as applied
to watermark protection.
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