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Abstract. This paper deals with the total variation minimization prob-
lem when the fidelity is either the L2-norm or the L1-norm. We propose
an algorithm which computes the exact solution of these two problems
after discretization. Our method relies on the decomposition of an image
into its level sets. It maps the original problems into independent binary
Markov Random Field optimization problems associated to each level set.
Exact solutions of these binary problems are found thanks to minimum-
cut techniques. We prove that these binary solutions are increasing and
thus allow to reconstruct the solution of the original problems.

1 Introduction

Image reconstruction and deconvolution methods are often based on the mini-
mization of the constrained total variation [2, 22, 26, 27, 29] of an image u defined
on Ω. These problems have minimizers in the space of functions of bounded
variation [12] which allows for discontinuities and thus preserve edges and sharp
boundaries. Suppose u is defined on a rectangle Ω of IR2. Then the total variation
of u, TV (u), is defined as follows:

TV (u) =
∫

Ω

|∇u| ,

where the gradient of u is taken in the distributional sense. A classical way to
minimize the total variation is achieved by a gradient descent which yields the
following evolution equation:

∂u

∂t
= div

(
∇u

|∇u|

)
.

The last term corresponds to the curvature of u. In order to avoid division by
zero, a classical approximation is to replace |∇u| by

√
|∇u|2 + ε, as discussed

in [1, 30]. However, this scheme tends to smooth discontinuities and although it
converges towards the solution when ε tends to 0, it does not provide an exact



solution. Other formulations of TV minimization using duality are presented in
[8, 9]. A fast algorithm which converges towards the solution can be dervied from
this formulation. In [7], a fast approximation minimization algorithm for Markov
Random Field (MRF) is presented. It relies on minimum cost cut and the result
is a local minimum.

In [23], a fast algorithm to compute the exact solution in 1D for the TV
minimization problem subject to the L2 constraint is presented. However, the
algorithm does not scale to higher dimensions. In 1D, one can find an exact so-
lution using dynamic programming [4], provided that the label state is discrete.
The complexity of such a method is Θ(N2|Ω|), where N and |Ω| are the car-
dinality of the label state and the number of pixels in the discrete domain Ω,
respectively. In [16], Ishikawa presents an algorithm to find the exact solution
for Markov Random Field with convex priors in a polynomial time.

In this paper, we focus on TV minimization with L1 or L2 fidelity. Thus, we
are interested in minimizing the following functionals:

Eα(u, β) =
∫

Ω

|u(x)− v(x)|α dx + β

∫
Ω

|∇u| ,

where α ∈ {1, 2} and β ≥ 0. The use of the L1 fidelity has already been stud-
ied in [3, 10, 21, 20]. Very good results for image denoising are reported in [21].
Our main contribution is an exact optimization of a discretization of the two
functionals Eα(., β) . It relies on reformulating the original problem into several
independent binary problems which are expressed through the Markov random
field framework. The reformulation is based on the decomposition of a function
into its level sets.

The rest of this paper is as follows. The decomposition of the considered
problems into independent binary problems is described in section 2. In section 3,
reconstruction of the solution from solutions of the binary problems is shown.
Minimization algorithm and results are presented in section 4. Finally we draw
some conclusions in section 5.

2 Formulation through Level Sets

In this section, we show that minimization of the TV minimization problem with
L1 or L2 fidelity can be decomposed into the minimization of independent binary
problems. For each level λ ∈ [0, N −1], we consider the thresholded images uλ of
an image: uλ = 1lu≤λ. Note that this decomposition is sufficient to reconstruct
the gray-level image: u(x) = min{λ, uλ(x) = 1}.

2.1 Coarea Formula

For any function u ∈ BV (Ω), the Coarea formula [12] gives

TV (u) =
∫

IR

P (uλ)dλ ,



for almost all λ and where P (uλ) is the perimeter of uλ. We estimate the perime-
ter using pairs of neighboring pixels:

TV (u) =
N−1∑
λ=0

∑
s∼t

Rs,t(us, vs, λ) , (1)

where s ∼ t denotes neighboring pixels and

Rs,t(us, vs, λ) = ws,t|uλ
s − uλ

t | .

For our experiments we use two different contour length estimators. The first one
consists in considering only the four-connected neighborhood and setting ws∼t

to 1. The second one, as proposed in [19], sets ws,t to 0.26 and 0.19 for the four
and eight connected neighborhood respectively. Note that the latter estimation
is not accurate for small regions.

2.2 Expressing L1 through Level Sets

We reformulate L1 fidelity into level sets. First we decompose the domain into
the following two disjoint sets {s : us < vs} and {s : us > vs}. This yields∑

s∈Ω

|us − vs| =
∑

us<vs

|vs − us|+
∑

us>vs

|us − vs| .

Then we rewrite the absolute norm as a sum:

∑
s∈Ω

|us − vs| =
∑

us<vs

vs−1∑
λ=us

1 +
∑

us>vs

us−1∑
λ=vs

1 .

Using the indicator functions of the disjoint sets, we have

∑
s∈Ω

|us − vs| =
∑
s∈Ω

N−1∑
λ=0

1lus<vs
(s)1l[us,vs−1](λ) + 1lus<vs

(s)1l[vs,us−1](λ) .

One can easily check that the term inside summations is either 1 or 0 and is
equal to |uλ

s − vλ
s |. Consequently by interchanging the order of summation, it

follows that ∑
s∈Ω

|us − vs| =
N−1∑
λ=0

∑
s∈Ω

D1(us, vs, λ) , (2)

where
D1(x, y, λ) = |xλ − yλ| .

Note that this formulation shows that the L1-norm treats level sets of the image
u independently of their associated gray-levels. This can be seen as adopting a
geometrical point of view.



2.3 Expressing L2 through Level Sets

The same approach is used for the decomposition of L2 into level sets. However,
contrary to the L1 norm, the decomposition cannot be independent of its gray-
levels. We begin with separating the sum according to the two previous disjoint
sets: ∑

s∈Ω

(us − vs)2 =
∑

us<vs

(us − vs)2 +
∑

us>vs

(us − vs)2.

Using the formula
∑M

k=1(2k − 1) = M2, we have:

∑
s∈Ω

(us − vs)2 =
∑

us<vs

vs−us∑
k=1

(2k − 1) +
∑

us>vs

us−vs∑
l=1

(2l − 1).

For the first sum we make the following change of variable k ← vs− λ, while we
do l← λ− vs + 1 for the second one. It leads to:

∑
s∈Ω

(us − vs)2 =
∑

us<vs

vs−1∑
λ=us

(2(vs − λ)− 1) +
∑

us>vs

us−1∑
λ=vs

(2(λ− vs) + 1).

Then, we introduce the characteristic function of the disjoint sets and interchange
the order of summation. Moreover, since 2vλ

s −1 = 1 iff vs ≤ λ and −1 otherwise,
it follows that:

∑
s∈Ω

(us − vs)2 =
N−1∑
λ=0

∑
s∈Ω

(1lu<v(s) + 1lu>v(s))
(
2(|vs − λ|+ 2vλ

s − 1)
)

.

Finally notice that 1lu<v(s) + 1lu>v(s) = |uλ
s − vλ

s |. Consequently, we have:

∑
s∈Ω

(us − vs)2 =
N−1∑
λ=0

∑
s∈Ω

D2(us, vs, λ) (3)

where
D2(x, y, λ) = |xλ − yλ|

(
2(|y − λ|+ 2yλ − 1)

)
This formulation shows that L2 can be decomposed into level sets where their
associated gray-levels are taken into account.

2.4 Independent Optimizations

Finally, both energies can be re-written as follows:

Eα(u, β) =
N−1∑
λ=0

(∑
s∈Ω

Dα(us, vs, λ) + β
∑
s∼t

ws,t|uλ
s − uλ

t |

)
=

N−1∑
λ=0

Eλ
α(u, β) .



(a) (b) (c)

Fig. 1. Since E1(., β) is not strictly convex, minimizers can be non-unique. The original
image is depicted in (a) where 4-connectivity is considered. Black and white circles refer
to sites whose value is 0 and 1, respectively. If β = 0.25 then there are two minimizers
depicted in (b) and (c), whose associated energy is 1.

Note that the term Eλ
α(u, β) is a Markov Random Field which only involves

binary variables and pairwise interactions. The prior is an Ising model [31].
Thus for each λ, one deals with a binary MRF.

Now suppose that for each λ, we independently find the best binary con-
figuration ûλ which minimizes the energy of the MRF. Clearly, the summation
will be minimized. Thus we will find a minimizer for Eα(., β) provided that the
following property of monotony holds for binary minimizers:

ûλ ≤ ûµ ∀λ < µ . (4)

Indeed, if this property holds, then the minimizer û of Eα(., β) is given by [15]

ûs = min{λ, ûλ
s = 1} ∀s .

The proof of the monotone property is given in the next section.

3 Reconstruction of the solution

In this section, we prove the monotone property defined by (4). However, since
E1(., β) is not strictly convex, it leads to non-unique minimizers in general. Such
a situation is depicted in figure 1. The monotone property can be violated in
that case. However, we claim the following result:

Lemma
If each local conditional posterior energy can be written up to a constant, as

W(us | {ut}, vs) =
N−1∑
λ=0

φs(λ) uλ
s (5)

where φs(λ) is a non-increasing function of λ, then one can exhibit a “coupled”
stochastic algorithm minimizing each associated total posterior energy on the N
binary images uλ, while preserving the monotone condition: ∀s uλ

s ↗ with λ.



In other words, given a binary solution u? to the problem Ek
α, there exists at

least one solution û to the problem El
α such that u? ≤ û ∀k ≤ l.

First, let us show that TV-like regularization and attachment to data energies
both feature property (5), so will do their sum and thus the total posterior en-
ergy. Since for any binary variables a, b we have: |a − b| = a + b − 2ab, and
considering (1), this yields

|us − ut| =
N−1∑
λ=0

|uλ
s − uλ

t | =
N−1∑
λ=0

(1− 2uλ
t ) uλ

s + C

where “constant” C =
N−1∑
λ=0

uλ
t only depends on the {uλ

t }. Thus, we have φs(λ) =

1− 2uλ
t , which is by essence a non-increasing function of λ.

Similarly starting from (2) for L1 attachment to data term:

|us − vs| =
N−1∑
λ=0

|uλ
s − vλ

s | =
N−1∑
λ=0

(1− 2vλ
s ) uλ

s + C ′ , C ′ =
N−1∑
λ=0

vλ
s

The approach for the L2 relies on the same method. Recall from (3) that

(us − vs)2 =
N−1∑
λ=0

N−1∑
λ=0

φs(λ) + C ′′ ,

where
φs(λ) = (1− 2vλ

s )
(
2(|vs − λ|+ 2vλ

s − 1)
)
uλ

s .

One can easily check that φs(λ) fulfills our requirement. Here also the constant
C ′′ does not depend on {uλ

s}(only on vs).
Thus we have shown that TV regularization with either L1 and L2 attach-

ment to data terms both follow the conditions of our Lemma.
In both cases, the proof of the Lemma relies on coupled Markov chains [24, 11].

3.1 Coupled Markov Chains

We endow the space of binary configurations by the following order : u ≤ v iff
us ≤ vs for all s ∈ Ω.

From the decomposition (5) the local conditional posterior energy at level
value λ is φs(λ) uλ

s . Thus the related Gibbs local conditional posterior probability
is

P (uλ
s = 1 | {uλ

t }, vλ
s ) =

exp−φs(λ)
1 + exp−φs(λ)

=
1

1 + expφs(λ)
. (6)

With the conditions of the Lemma, this latter expression is clearly a monotone
non-decreasing function of λ.
Let us now design a “coupled” Gibbs sampler for the N binary images in the
following sense: first consider a visiting order of the sites (tour). When a site s



is visited, pick up a single random number ρ uniformly distributed in [0, 1].
Then, for each value of λ, assign uλ

s = 1 if ρ ≤ P (uλ
s = 1 | {uλ

t }, vλ
s ) or else

uλ
s = 0. (This is the usual way to draw a binary value according to its probability,

except that we use here the same random number for all the N binary images.)
From the non-decreasing monotony of (6) it is seen that the set of assigned

binary values at site s satisfies uλ
s = 1⇒ uµ

s = 1 ∀µ > λ. The monotone property
uλ ≤ uµ ∀ λ < µ is thus preserved.
Clearly, this property also extends to a series of N coupled Gibbs samplers
having the same positive temperature T when visiting a given site s: it suffices
to replace φs(λ) by φs(λ) / T in (6). Hence, this property also holds for a series
of N coupled Simulated Annealing algorithms [13] where a single temperature
T boils down to 0 (either after each visited site s or at the beginning of each
tour [31] .) This concludes the proof.

Several points should be emphasized here:
- first, the coupled monotony-preserving Gibbs/Metropolis samplers described

in [24] relate to the same Markov Random Field but for various initial condi-
tions, while here, our N coupled Gibbs samplers relate to N different posterior
MRF’s (one for each level λ).

- second, it must also be noticed that our Lemma gives a sufficient condi-
tion for the simultaneous, “level-by-level independent” minimization of posterior
energies while preserving the monotone property.

Although we have proved the monotone property, it does not provide an
algorithm to compute the solution. Indeed, using a Simulated Annealing process,
one knows that it converges to the solution but has no stopping criteria.

4 Computations and Experiments

In this section, we describe our algorithm to exactly minimize each binary
Markov Random Field. It relies on graph-cuts.We also present some experiments.

4.1 Minimum-cut based minimization

Greig et al. [14] were the first ones to propose an exact maximum a posteriori
estimator for binary MRF. It is based on constructing a graph such that its
minimum cut gives an optimal labelling. Since this seminal work, other graph
constructions were proposed to solve some non-binary problems exactly ([25],
[16]) or approximately ([7]). in [17], Kolmogorov and Zabih propose a necessary
condition for any binary function to be minimized via minimum cuts along with
a graph construction for this class of functions. Note that the Ising model fulfills
the necessary condition provided that the interaction is attractive (i.e β is non-
negative) which is the case in our problems.

For each level we construct the graph as proposed in [17] and compute a min-
imum cost cut. However, since uniqueness cannot be assured with L1 fidelity, the
algorithm returns one of the optimal configurations. Since these minimizations



are independently performed, the monotone property can be violated. In order
to reconstruct the solution, one flips every pixel where this property is violated.
This flipping process also gives an optimal labelling since it does not change the
energy.

To compute the minimum cut, we used the algorithm described in [6]. Al-
though its theoretical complexity is worse than others, it outperforms them in
practice for graphs used in computer vision problems. For our binary problems,
this algorithm gives near-linear performance with respect to the number of pixels
|Ω|. Since we have to compute N cuts, the complexity of our algorithm is near-
linear both with respect to the number of pixels and with the number of labels.
In [6], the authors study the method of Ishikawa [16] which also computes an
exact solution. Experiments show that this method is near-linear with respect
to the size of the image and near-quadratic with respect to the number of labels.
Thus, compared to this method, our algorithm is faster by a factor of N . Time
results (in seconds, 1.6GHz Pentium IV) for our method are presented in table 1
for L1 fidelity applied to the image ”hand” depicted in Fig 4.

Table 1. Time results (in seconds) with L1 fidelity for the image “hand”

Size Connectivity Time

151x121 8 7.58
343x243 8 30.56
151x121 4 4.97
343x243 4 21.02

Note that the proposed algorithm does not benefit from the monotone prop-
erty. If a binary solution is computed for a level, then every pixel which equals
1 will be at 1 for upper levels. Thus, one can prevent them from being in the
graph built for upper levels. This would automatically guaranty the monotone
property and save computations. Such a method will be studied in the future.

4.2 Experiments

For these experiments, we always use the 8-connectivity. In [28] the authors
give exact and analytic solutions for TV minimization with L2 attachment for
radial symmetric functions. For instance, if the observed image is a circle then
the solution is a circle with the same radius : only its gray-levels change. We
verified that our algorithm produced the exact solution and compared it with
the classical gradient descent algorithm. Recall that this latter algorithm needs
|∇u| to be regularized because of non-differentiability : |∇u| =

√
|∇u|2 + ε. The

evolution equation is

∂u

∂t
= βdiv

(
∇u√
|∇u|2 + ε

)
+ 2(v − u) .



We set ε = 1 for this experiment. Figure 2 depicts the level-lines of the solutions
for the two different algorithms. Note how many level lines are created by the
gradient descent algorithms.

(a) (b) (c)

Fig. 2. Minimizers of TV under L2 constraints (β = 1). The original is depicted in (a).
The level lines resulting from the gradient descent algorithm is presented in (b). The
level lines of the exact solution, computed using our algorithm, is depicted in (c).

Total variation is very well known for its high performance in image restora-
tion. Figure 3 depicts a cartoon image and its noisy version corrupted by an
additive Gaussian noise (σ = 30). It also presents the results of the restoration
using the gradient descent method and our algorithm. Although the results vi-
sually look the same, the exact solution provides a much better result in terms
of level lines. Note how corners of the squares are smoothed. This is predicted
by the theory [5, 18] which states that a square cannot arise as a solution.

Results of the regularization using the L1-norm as fidelity are depicted in
figure 4. As one can see, the more β is high the more small structures are removed
while the contrast is preserved.

5 Conclusion

In this paper we have presented an algorithm to compute the exact solution of
the discrete TV-based restoration problem when fidelity is the L1 or L2 norm.
It relies on the decomposition of the problem into binary ones thanks to a level
set formulation. It allows for an algorithm whose complexity is near-linear both
with respect to the image size and the number of labels.



Extension of this method to other types of fidelity is in progress. In particular,
one can decompose any fidelity function f as follows:

f(us) =
N−1∑
λ=0

(f(λ + 1)− f(λ)) 1lλ<us
+ f(0)

=
N−1∑
λ=0

(f(λ + 1)− f(λ)) (1− uλ
s ) + f(0) .

It follows that the condition stated by our Lemma is equivalent to the fact that
each local conditional posterior energy is a convex function on the integer set
[0, N − 1], since its finite difference is increasing. We are currently working on a
less restrictive condition. Moreover, applying this method to regularization terms
different from TV has to be considered. Finally a faster minimization algorithm
which takes into account the monotone property is under study. Comparisons
with other exact minimization algorithms must also be made.
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(a) Original image (b) Noisy image (σ = 30)

(c) Gradient descent restoration (d) Some level lines of (c)

(d) Restoration using our method (e) All level lines of (d)

Fig. 3. Restoration of a blocky image corrupted by a Gaussian noise. Results of TV
minimization with L2 fidelity for the gradient descent algorithm and our method. Only
level lines multiples of 5 are displayed on (d).



(a) Original image (b) β = 1.5

(c) β = 1.7 (d) β = 2.0

(d) β = 2.5 (e) β = 3.0

Fig. 4. Minimizers of TV with L1 fidelity.


