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Abstract

This paper sheds new light on minimization of the total
variation under theL1-norm as data fidelity term (L1+TV )
and its link with mathematical morphology. It is well known
that morphological filters enjoy the property of being invari-
ant with respect to any change of contrast. First, we show
that minimization ofL1+TV yields a self-dual and contrast
invariant filter. Then, we further constrain the minimization
process by only optimizing the grey levels of level sets of the
image while keeping their boundaries fixed. This new con-
straint is maintained thanks to the Fast Level Set Transform
which yields a complete representation of the image as a
tree. We show that this filter can be expressed as a Markov
Random Field on this tree. Finally, we present some results
which demonstrate that these new filters can be particularly
useful as a preprocessing stage before segmentation.

1 Introduction

Minimization of total variation (TV) underL2 data fi-
delity is a popular image restauration technique [1]. It is
well-known that solutions live in the space of functions of
bounded variation which allows for sharp boundaries [2].
However, in [3], Chanet al note that the minimizer gener-
ally presents a loss of contrast (this is mainly due to the use
of L2 fidelity). As a consequence they propose to replace
it by L1. In this paper, we consider the minimization of
TV underL1 fidelity. We present new theoretical results (to
our knowledge) of minimizers of this functional along with
some new filters.

Suppose an image is defined on a rectangleΩ of IR2, we
are interested in minimizing the following energy:

Ev(u) =

∫

Ω

|u(x) − v(x)| dx + β

∫

Ω

|∇u|dx , (1)

where last term is the total variation ofu weighted by a
coefficientβ. Note that the gradient is taken in the distri-
butional sense. Since this energy is not strictly convex, the

uniqueness of global minimizer cannot be assured. The use
of L1 fidelity has already been studied by some authors.
In [4, 5, 6], Alliney restricts his studies to the one dimen-
sional case and to the discrete case. He provides an algo-
rithm which converges toward a local minimum thanks to
recursive median filters. in [7, 8, 9], Nikolova studies func-
tionals with non-smooth priors and fidelity terms (including
the one considered in this paper) and presents very good re-
sults for image denoising. In [8], she reports that the mini-
mization of TV under aL1-norm constraint yields an image
where some pixels do not change their gray-levels. In [3],
Chanet al. directly address the continuous problem. They
show that the data energy is not continuous with respect to
minimizers. In [10], the authors use (1) to get solutions for
some non-convex minimization problems. In [11], Bouman
et al. study generalized Gaussian: the considered functional
is a special case of this study.

In [12], it is stated that a square cannot arise as a min-
imizer of (1). As a consequence, in [13, 14], Diboset al.
propose an iterative algorithm to minimize TV where only
gray-levels of level sets are allowed to change while their
shapes remain unchanged. Their algorithm relies on the
topographic map [15] (also known as FLST-tree) which is
a contrast invariant representation of the image and a tree.
This tree can be efficiently built using the Fast Level Sets
Transform (FLST) described in [16].

In this paper, we show that minimization of (1) yields a
self-dual and contrast invariant filter. Then we follow the
ideas of Diboset al. by minimizing (1) under the supple-
mentary constraint that shapes can only change their gray-
levels. The rest of this paper is as follows. In section 2, we
show that TV minimization underL1 fidelity is a self-dual
and contrast invariant filter. We briefly present the FLST-
tree in section 3. In section 4 we reformulateL1 +TV min-
imization on the FLST-tree and show that it correspond to a
Markov Random Field (MRF). A fast and exact minimiza-
tion algorithm and some results are presented in section5.
Finally we draw some conclusions in section6.
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2 L
1
+ TV as a contrast invariant filter

In this section we show that the minimization of the total
variation under theL1-norm as a data fildelity term yields a
contrast invariant filter.

2.1 Definitions

We first introduce the notion of level sets and change of
contrast.

Definition 1 The lower and upper level sets of an image,
referred to asLλ and Uλ respectively, are defined as fol-
lows: Lλ(u) = {x, u(x) ≤ λ} andUλ(u) = {x, u(x) ≥
λ}. Lower level sets ofu will also be referred to asuλ for
convenience.

Note that decompositions into level sets is sufficient to re-
construct the image:

u(x) = inf{λ, Lλ(u)(x)} = sup{λ, Uλ(u)(x)} (2)

We define a continous change of contrast as follows [17]:

Definition 1 Any continuous non-decreasing function is
called a continuous change of contrast.

We now introduce a lemma proved in [18].

Lemma 1 Assumeg to be a continuous change of contrast
and u a real function defined onΩ. The following holds:

∀λ∃µ Lλ(g(u)) = Lµ(u) .

The same property holds for upper level sets.

In other words, after a continuous change of contrast, the
level sets of an imageg(v) are some level sets of the im-
agev.

2.2 Reformulation through level sets

We now reformulate (1) using the level sets of an im-
age as described in [3, 19]. The coarea formula states that
for any function which belongs to the space of functions of
bounded variation, we have for almost allλ

∫

Ω

|∇u| =

∫

IR

∫

Ω

|∇χuλ | dλ =

∫

IR

P (uλ)dλ , (3)

whereP (E) andχE stand for the perimeter and the charac-
teristic of the setE, respectively.L1 fidelity can be rewrit-
ten as follows:

∫

Ω

|u(x) − v(x)| dx =

∫

IR

∫

Ω

∣

∣uλ(x) − vλ(x)
∣

∣ dx .

Using previous equalities, equation (1) rewrites as fol-
lows:

Ev(u) =

∫

IR

Eλ
v (uλ, vλ) , where (4)

Eλ
v (uλ, vλ) =

∫

Ω

(

β |∇χuλ | +
∣

∣uλ(x) − vλ(x)
∣

∣ dx
)

It is important to note that any termEλ
v (uλ, vλ) involves

thresholded imagesuλ andvλ only. In other words, this de-
composition rewrites (1) as a summation on all gray-levels
of quantities. Moreover, in [19, 20], it is shown that one can
independentlyoptimize everyEλ

v (., vλ) in order to mini-
mize (1), and then to reconstruct the minimizer using (2).
We are now ready to show that minimization ofL1 + TV

yields a contrast invariant filter.

Theorem 1 Letv be an observed image andg be a contin-
uous change of contrast. Assumeu to be a global minimizer
of Ev(.). Theng(u) is a global minimizer ofEg(v)(.).

Proof: It is sufficient to prove that for any levelλ, a
minimizer forg(v)λ is g(u)λ. Using lemma 1, there exists
µ such thatvµ = g(v)λ. A minimizer of Eµ

v (., vµ) is uµ.
Thus, uµ is a minimizer ofEµ

v (., g(v)λ). And we have
uµ = g(u)λ. This concludes the proof. �

Self-dual invariance is easily obtained.

Theorem 2 Let v be an observed image and assumeu is a
minimizer ofEv(.), then−u minimizeE

−v(.).

Proof: It is enough to note that
∫

Ω
|∇u| =

∫

Ω
|∇(−u)| and

that
∫

Ω
|u(x) − v(x)|dx =

∫

Ω
|(−u(x)) − (−v(x))|dx.

The conclusion is straightforward. �

These results of contrast invariance and self-duality are
new to our knowledge.

3 Fast Level Set Transform

In this section we briefly review the topographic map[15]
which is built using the Fast Level Sets Transform. We refer
the reader to [16, 21] for a complete presentation.

The topographic map relies on simple inclusions of level
sets. The family of lower and upper level sets are respec-
tively increasing and decreasing, i.e,

Lλ(u) ⊂ Lµ(u) ∀λ ≤ µ ,

Uλ(u) ⊂ Uµ(u) ∀λ ≤ µ ,

These inclusion properties allow for a non-redundant and
complete representation of an image into a tree, which will
be referred to as FLST-tree for the rest of this paper. Ba-
sically, we consider connected components of level sets
whose holes have been filled, referred to as shapes. A node
of the FLST-tree corresponds to a shape. The parent of a
node is the smallest shape that contains it while descen-
dants are all shapes included into it. Because the FLST-
tree consider both lower and upper level sets for inclusion,
each shape is tagged to know if it comes from a lower or
upper level set. Figure 1 depicts such a tree on a simple ex-
ample. Thus, this tree decomposes an imageu into shapes
S1, ..., SN , whereSN is the root of the tree.
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Figure 1. A simple image and its correspond-
ing FLST-tree. Inferior and superior shapes
are denoted by inf and suprespectively.

Many attributes associated to each shape can be com-
puted. For the rest of this paper, we need for each shapeSi

the following attributes:

• Its gray valuevi,

• its perimeterPi,

• the set of pixels which are inSi.

• the set of pixels which are inSi but not in its descen-
dants. This set is denoted byDi and its cardinality by
|Di|.

The gray level value of the parent of the shapeSi will be
referred to asvp

i . Of course the parent of the root is not
defined.

Finally, note that the definition of the FLST-tree only in-
volves level sets. Thus two images which differ only by a
change of constrast gives the structure of the tree (only gray
level of shapes differs). The same property holds for self
duality.

4 L
1
+ TV on the FLST-tree

In this section we consider the FLST-tree of the observed
imagev. Since, this tree is a complete representation of the
image, we use it to reformulate the functional (1). Thus, we
will minimize L1+TV under the following new constraint:

only gray level valuesλi of shapes are allowed to change.
Boundaries of shapes do not move. In what follows, original
and minimizer gray level value of a shapeSi will be referred
to asv̄i andvi respectively.

We first reformulates fidelity terms and the total variation
term. Then we show that it is a Markov Random Field.

4.1 Reformulation on the FLTS-tree

The idea relies on defining a partition ofΩ obtained us-
ing the FLST-tree. Such a partition is obtained as follows:
for each shapeSi we have kept pixels which are inSi but
not in its descendants. Recall that such a set is denoted by
Di. As a consequence the family{Di} is a partition ofΩ.
Therefore data fidelity term can be rewritten as follows:

N
∑

i=1

|Di||vi − v̄i|.

Using the shapes provided by the FLST-tree and the
coarea formula (3), we rewrite the total variation as follows:

N−1
∑

i=1

Pi|λi − λ
p
i |.

It only depends on the difference between the gray values
of a shape and its parent weighted by the perimeter of the
considered shape.

4.2 Markov Random Field

As a consequence, we are interested in finding a family
v0...vi which minimizes the following energy:

N
∑

i=1

|Di||vi − v̄i| + β

N−1
∑

i=1

Pi|vi − v
p
i |. (5)

As one can see, this is the Bayesian labelling of a Markov
Random Field where pairwise interactions are considered.
More precisely, sites of the random field are the nodes of
the FLST-tree whose labels are the gray level values of the
shapes. Neighborhoods are defined by children and parents.
Cliques of order 2 are considered. One can easily adapt
theorem 1 and 2 to show that this minimization yields a self-
dual and contrast invariant filter. The only difference is that
Ω is now the nodes of the FLST-tree instead of a rectangle
of IR2. Thus the integral overΩ is replaced by a summation
on nodes of the FLST-tree.

5 Minimization algorithm and results

We briefly present an exact optimization algorithm for
minimizing (5) and then present some results.



Table 1. Time results (in seconds)for our filter-
ing. Time needed to build the FLST-tree and
to perform the minimization are presented in
the second and the third column respectively.

Image FLST Minimization
Lena (256x256) 0.18 0.11
Lena (512x512) 1.09 1.04
Woman (522x232) 0.39 0.06
Squirrel (209x288) 0.24 0.19

5.1 Minimization Algorithms

We are interested in minimizingexactly energy (5).
Many algorithms are available to minimize it since this en-
ergy is convex. However this energy is not differentiable be-
cause of the use of absolute norm. Thus is it quite difficult to
get aexactminimizer using gradient descent. Note that one
could take benefit of the tree structure for this minimization,
and use a Viterbi-like algorithm as described in [22]. How-
ever, this is intractable because some nodes of the FLST-tree
have too many children (typically more than 200).

We used the algorithm described in [20] which provides
anexactglobal minimizer of energy (5) using a divide and
conquer approach. Basically it uses the formulation in terms
of level sets given in (4). Each termEλ

v (uλ, vλ) is dis-
cretized and it yields a MRF where only binary variables
are involved. Exact solution of these binary MRF are found
thanks to minimum-cut [23]. It is also shown that if two
neighboring pixels at a levelλ are different (i.e one is above
λ and the other below), then they do not interact each other
anymore. Thus optimizations involving these pixels can be
performed independently. This algorithm requireslog2L

minimum cuts whereL is the number of gray levels (typ-
ically L = 28). In practice, time required to perform a
minimum cut is quasi-linear with respect to the number of
pixels [24].

We used the implementation of the FLST algorithm
available in the Megawave image processing library [25].
Time results (in seconds on a 3GHz Pentium 4 ) for the
well-known lena image and for the two images depicted in
figures 2 and 3 are presented table 1. As one can see, this
algorithm is fast.

5.2 Experiments

We demonstrate on some examples that total variation
minimization withL1 data fidelity and constrained by the
FLST-tree can be a good image simplification filter. In par-
ticular, experimental results show that it can be very useful
as a pre-processing step for segmentation.

Figure 2 depicts minimizers for the image woman with
different regularization coefficientsβ. As one can see, the
higherβ is the more the image is simplified. The back-
ground tends to become homogeneous and face details are

removed, while the contrast is not lost. This is mainly due
to the morphological behavior of the filter. Results suggest
than these images can be used as good initial starts for a
segmentation algorithm. Finally, only few regions remain
when a very highβ is used. Level lines of such a minimizer
are depicted in Figure 2 superposed on the original image.
Note that the boundaries do not move. This result show that
this filter behaves even in the limit of strong weighted coef-
ficient.

Figure 3 depicts minimizers for a textured image. On
this image, the moreβ is high the more the texture is re-
moved. However, the background and the squirrel almost
do not merge. They merge where the tail has a hole and
where the tail is dark due to shading. Except these two ar-
eas, results are very good. Note how well the separation
between the two textured (background/squirrel) is using a
high β. This latter result could be a segmentation result it-
self except the two problems cited above and that the eye is
missed because it is too small.

6 Conclusion

In this paper we have shown that minimizing the total
variation under theL1 norm as data fidelity yields a self
dual and contrast invariant filter. Then we have had a con-
straint such that boundaries of level sets cannot move. Ex-
periments have shown that this filter behaves particularly
well in order to simplify an image. This is mainly due to its
morphological behavior. Moreover an efficient algorithm is
available to perform the minimization.

Further extensions are considered. We could use other
morphological trees like Min/Max trees as proposed by
Salembieret al. in [26]. We are currently working on
formalizing connected attribute opening/closing as a mini-
mization process on these trees using our approach. Finally,
extension of this method to vectorial self-dual mathematical
morphology is under investigation.

Acknowledgements

The author would like to thank Marc Sigelle (ENST /
LTCI CNRS UMR 5141) and Didier Verna (LRDE) for their
proofreadings.

References

[1] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithms,”Physica
D., vol. 60, pp. 259–268, 1992.

[2] L. Evans and R. Gariepy,Measure Theory and Fine
Properties of Functions, CRC Press, 1992.

[3] T.F. Chan and S. Esedog̃lu, “Aspect of total variation
regularizedl1 function approximation,” Tech. Rep. 7,
UCLA, 2004.



[4] S. Alliney, “Digital filters as absolute norms minimiz-
ers,” IEEE Transactions on Signal Processing, vol. 40,
no. 6, pp. 1548–1562, 1992.

[5] S. Alliney, “An algorithm for the minimization of
mixed l1 and l2 norms with application to bayesian
estimation,”IEEE Transactions on Signal Processing,
vol. 42, no. 3, pp. 618–627, 1994.

[6] S. Alliney, “A property of the minimum vectors of a
regularizing functional defined by means of the abso-
lute norm,” IEEE Transactions on Signal Processing,
vol. 45, no. 4, pp. 913–917, 1997.

[7] M. Nikolova, “Local strong homogeneity of a regular-
ized extimator,”SIAM Journal on Applied Mathemat-
ics, vol. 61, pp. 633–658, 2000.

[8] M. Nikolova, “Minimizers of cost-functions involving
nonsmooth data-fidelity terms.,”SIAM J. Num. Anal.,
vol. 40, no. 3, pp. 965–994, 2002.

[9] M. Nikolova, “A variational approach to remove out-
liers and impulse noise,”Journal of Mathematical
Imaging and Vision, vol. 20, pp. 99–120, 2004.

[10] T.F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms
for Finding Global Minimizers of Image Segmenta-
tion and Denoising Models,” Tech. Rep., UCLA, Sept.
2004.

[11] C. Bouman and K. Sauer, “A generalized gaussian im-
age model for edge-preserving map estimation,”IEEE
Transactions on Signal Processing, vol. 2, no. 3, pp.
296–310, july 1993.

[12] Y. Meyer, “Oscillating patterns in image processing
and nonlinear evolution equations,”University Lec-
ture Series, vol. 22, 2001.

[13] F. Dibos and G. Koepfler, “Total variation minimiza-
tion by the fast level sets transform,” inIEEE Work-
shop on Variational and Level Sets Methods, 2001, pp.
179–185.

[14] F. Dibos, G. Koepfler, and P. Monasse,Geo-
metric Level Sets Methods in Imaging, Vision, and
Graphics, chapter 7- Total Variation Minimization for
Scalar/Vector Regularization, pp. 121–140, Springer-
Verlag, 2003.

[15] V. Caselles, B. Coll, and J. Morel, “Topographic maps
and local contrast changes in natural images,”Inter-
national Journal of Computer Vision, vol. 33, no. 1,
pp. 5–27, 1999.

[16] P. Monasse and F. Guichard, “Fast computation of
a contrast-invariant representation,”IEEE Trans. on
Image Processing, vol. 9, no. 5, pp. 860–872, 2000.

[17] F. Guichard and J.M. Morel, “Mathematical morphol-
ogy ”almost everywhere”,” inProceedings of ISMM.
April 2002, pp. 293–303, Csiro Publishing.

[18] F. Guichard and J.-M. Morel,Image Iterative Smooth-
ing and PDE s., downloadable manuscript : please
write email to fguichard@poseidon-tech.com, 2000.

[19] J. Darbon and M. Sigelle, “Exact Optimization of Dis-
crete Constrained Total Variation Minimization Prob-
lems,” in Tenth International Workshop on Combi-
natorial Image Analysis, LNCS series vol. 3322, Ed.,
2004, pp. 540–549.

[20] J. Darbon and M. Sigelle, “A Fast and Exact Algo-
rithm for Total Variation Minimization,” into appear
in the proceedings of the second Iberian Conference
on Pattern Recognition and Image Analysis (IbPria
2005), 2005,http://www.enst.fr/˜darbon/
total-variation .

[21] P. Monasse, Constrast Invariant Representation of
Digital Images and Application to Registration, Ph.D.
thesis, Ceremade, University Paris 9-Dauphine, 2000.

[22] P. Salambier and L. Garrido, “Binary partition tree as
an efficient representation for image processing, seg-
mentation, and information retrieval,”IEEE Trans. on
Image Processing, vol. 9, no. 4, pp. 561–576, 2000.

[23] V. Kolmogorov and R. Zabih, “What energy can be
minimized via graph cuts?,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26,
no. 2, pp. 147–159, 2004.

[24] Y. Boykov and V. Kolmogorov, “An experimental
comparison of min-cut/max-flow algorithms for en-
ergy minimization in vision,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124–1137, 2004.

[25] Megawave2, “image processing software avail-
able at http://www.cmla.ens-cachan.fr/
Cmla/Megawave/ ,” .

[26] P. Salambier, A. Oliveras, and L. Garrido, “Antiex-
tensive connected operators for image and sequence
processing,”IEEE Transactions on Image Processing,
vol. 7, no. 4, pp. 555–570, April 1998.



(a) (b)

(c) (b)

Figure 2. L1 + TV minimization on the FLST
results for image woman. Original image is
depicted in (a). Minimizers for β = 3 and
β = 15 are respectively shown on (b) and (c).
Image (d) depicts the level lines (in white) of
the minimizer for β = 30 superposed on an
attenuated version of the original image.

(a)

(b)

(c)

(d)

Figure 3. Illustration of L1 + TV minimization
on the FLST-tree for a textured image. Orig-
inal image is depicted in (a). Minimizers for
β = 1 and β = 2 are respectively shown on (b)
and (c). Image (d) depicts the level lines (in
white) of the minimizer for β = 10 superposed
on the original image.


