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Abstract

This paper deals with the minimization of the total variation un-
der a convex data fidelity term. We propose an algorithm which
computes an exact minimizer of this problem. The method relies on
the decomposition of an image into its level sets. Using these level
sets, we map the problem into optimizations of independent binary
Markov Random Fields. Binary solutions are found thanks to graph-
cut techniques and we show how to derive a fast algorithm. We also
study the special case when the fidelity term is the L'-norm. Finally
we provide some experiments.
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Résumé

Ce papier traite de la minimisation de la variation totale avec une
attache aux données convexe. Nous proposons un algorithme qui cal-
cule un minimiseur exact de ce probleme. Notre méthode repose sur
la décomposition d’une image en ses ensembles de niveaux. En uti-
lisant ces ensembles de niveaux, nous reformulons le probléme en
termes de champs de Markov binaire indépendants. Les solutions
binaires de ces problémes sont calcules grace un algorithme de cou-
pure minimale et nous en dduisons un algorithme rapide pour résoudre
le probléeme original. Nous étudions également le cas particulier d'une
attache aux données modélisée par la norme L'. Enfin, nous présentons
quelques résultats.
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1 Introduction

Minimization of the total variation (tv) for image reconstruction is of great
importance for image processing applications [1,17, 19, 21, 22]. It has been
shown that these minimizers live in the space of bounded variation [9]
which preserves edges and allows for sharp boundaries. In this paper we
propose a new and fast algorithm which computes an exact solution of tv
minimization-based problems.

Assume u is an image defined on (2 then its total variation is tv(u) =
Jo IVu|, where the gradient is taken in the distributional sense. A classi-
cal approach to minimize tv is achieved by a gradient descent [24] which

yields the following evolution equation 2 = div <|VZ|“+€> . To avoid di-

vision by zero, ¢ is set to a small positive value. In [5], Chambolle refor-
mulates tv minimization problem using duality. Using this formulation
he proposes a fast algorithm. In [19], Pollak et al. present a fast algorithm
which provide the exact solution in one dimension. However only an ap-
proximation is available in higher dimensions. After a discretization, tv
minimization can be reformulated as a minimization problem involving
a Markov Random Field (MRF). In [4], Boykov et al. present a fast ap-
proximation minimization algorithm based on graph cuts for MRF. An
algorithm which computes an exact solution for MRF where the prior is
convex is presented in [12]. It is also based on graph-cuts.

In this paper, we assume u and v are two images defined on 2. Thus
we are interested in minimizing the following functional:

E(u) = / f (ulz), v(z))de + 8 / IVl . 1)

We assume that the attachment to data term is a convex function of u(.),
such as: f (u(x), v(x))) = |u(x) — v(z)|P for the LP case (p = 1,2), and
that the regularization parameter (3 is some positive constant. In this pa-
per, we propose a fast algorithm which computes an exact minimizer of
problem 1. It relies on reformulating this problem into independent bi-
nary MRFs attached to each level set of an image. Exact minimization is
performed thanks to a minimum cost cut algorithm.

The rest of this paper is organized as follows. In section 2 we map the
original problem 1 into independent binary Markov Random Field opti-
mizations. In section 3, a fast algorithm based on graph cuts is presented.
In section 4 we shed new lights on tv minimization under the L'-norm as
fidelity term. Finally we draw some conclusions in section 5.
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2 Formulation using Level Sets and MRF

For the rest of this paper we assume that u takes values in the discrete set
[0, L—1] and is defined on a discrete lattice S. We denote by u, the value of
the image u at the site s € S. Let us decompose an image into its level sets
using the decomposition principle [11]. It corresponds to considering the
thresholding image u* where u} = 1,,<). One can reconstruct the original
image from its level sets using u; = min{\, u} = 1}.

2.1 Reformulation into binary MRFs

The coarea formula states that for any function © which belongs to the

space of bounded variation [9] one has tv(u) = / P(u*) d)\ almost surely.
R

L—2
In the discrete case, we write tv(u) = Z P(u"), where P(u) is the perime-
A=0

ter of u* (notice that ul~! = 1 for every s € S, which explains the previous
summation up to L — 2.) Let us define the neighboring relationship be-
tween two sites s and ¢t as s ~ t. The associated cliques of order two are

noted as (s, t). This enables to estimate the perimeter using the approach
L2

proposed in [14]. Thus we have tv(u) = Z wy |u) — u}|, where wg
A=0 (s,t)

is set to 0.26 and 0.19 for the four- and eight- connected neighborhood,

respectively.

Proposition 1 The discrete version of the energy E(u) rewrites as

~

E(u) = - EMu*) + O, where (2)

=0

>

EMuY) = |:Zwst (1 =2ud) uf + )| + Y (g:(A+1) = gs(N)(1 — uX3)

(S>t) sEN

gs(@) = [(z, v) Vs €S and C=7) g.(0)

SEN

Proof: Using the following property for binary variables a,b: |a — b| =
a-+b—2ab, and starting from the previous equality obtained from the coarea
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formula we have tv(u Z Z Wt 1 —2uM) ud + ut) . Moreover the
A=0 (s,t)
following decomposition property holds for any function g :

e
—_
~

Vke[0,L=1] g(k) = > ((g(A+1) = g(N)+g(0) = ) (g(A+1) = g(N)) Ircr+9(0)

>
Il
>
Il

(note that this formula is coherent for both £ = 0 and & = L — 1). Thus, by
defining g,(us) = f(us, vs) and since 1y.,, = 1 — u, we have

™~
(V]

f g, vs) = gs(us) = > (gs(A+1) = gs(V)) (1 — ) + g4(0) .

>
Il

This concludes the proof. O
Note that each E*(u*) is a binary MRF with an Ising prior model. To mini-
mize E(.) one can minimize all £*(.) independently. Thus we get a family
{a*} which are respectively minimizers of E*(.). Clearly the summation
will be minimized and thus we have a minimizer of E(.) provided this
family is monotone:

N < APYN< (4)

If this property holds then the optimal solution is given by [11] : 4, =
min{\, 4} = 1} Vs. If property 4 does not hold, then the family {u"} is not
a function.

2.2 A Lemma based on coupled Markov Chains

Since the MRF posterior energy is decomposable into levels, it is useful to
define the “local neighborhood configurations”: N, = {u;};s and N} =
{u}}ies VA € [0, L — 2] . In [8] the following lemma was established:

Lemma 1 If the local conditional posterior energy at each site s writes as

~

-2

E(us | N, vs) = > (Ads(\) ug + xs(A)) (5)

>
Il

where Ags(\) is a non-increasing function of A and xs(\) does not depend on
u?, then one can exhibit a “coupled” stochastic algorithm minimizing each total
posterior energy E*(u’) while preserving the monotone condition: Vs , u} /"
with X .
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In other words, given a binary solution u* to the problem £ k there exists
at least one solution # to the problem E'such that u* < 4 Vk < [. The proof
of the Lemma relies on coupled Markov chains [20].

Proof: We endow the space of binary configurations by the following or-
der: v < viff u, < v, Vs € Q. From the decomposition (5) the local con-
ditional posterior energy at level value A is E(u) | N2, vs) = Aps(N) u) +
Xs(A). Thus let us define the following Gibbs local conditional posterior
probability:

exp —Ads(\) 1
1 +exp—Ags(A) 14 expApy(N)

P9<>‘) = P(u? =1 | N?? Us) = (6)

With the conditions of the Lemma 1, this latter expression is clearly a
monotone non-decreasing function of .

Let us now design a “coupled” Gibbs sampler for the L — 1 binary images
in the following sense: first consider a visiting order of the sites (tour).
When a site s is visited, pick up a single random number p, uniformly dis-
tributed in [0, 1]. Then, for each value of ), assign: u} = 1if 0 < p, < Py(\)
or else u} = 0 (this is the usual way to draw a binary value according
to its probability, except that we use here the same random number p;
for all the L — 1 binary images. ) From the non-decreasing monotony
of (6) it is seen that the set of assigned binary values at site s satisfies
u} =1 = u* = 1Vu > X The monotone property v* < u*V X\ < p is
thus preserved. Clearly, this property also extends to a series of L — 1 cou-
pled Gibbs samplers having the same positive temperature 7' when visiting
a given site s: it suffices to replace A¢s(\) by Ags(A) / T in (6). Hence, this
property also holds for a series of L — 1 coupled Simulated Annealing al-
gorithms [10] where a single temperature 7" boils down to 0 (either after
each visited site s or at the beginning of each tour [25] .) O
It must be noticed that our Lemma gives a sufficient condition for the si-
multaneous, “level-by-level independent” minimization of posterior en-
ergies while preserving the monotone property. We shall now prove the
following property:

Lemma 2 The requirements stated by Lemma 1 are equivalent to these:
all conditional energies E(us | Ns, vs) are convex functions of grey level u, €
0, L — 1], for any neighborhood configuration and local observed data.

Proof: Since from (2) the total energy is “decomposable” on the levels, so

L2
are the local conditional energies: E(u, | N5, v,) = Z EMud | N2, wy).
A=0

6
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Besides, since the local conditional posterior energy at level A is a function
of binary variable v?, it satisfies:
EMug | N2, ) =B g = 0| N, v,) = (B (g = 1| N, ) = EMug = 0| N7, v)) ug

which yields by identification with (5):
Aps(N) = BAug = 1| N, va) = BXu = 0| N, vs)

Now, in the transition A — A + 1, only the following level variable does
change: u} = 1 — u} = 0. From the decomposition of conditional energies
on levels, this means that only the level component E*(u) | N2, v,) does
change and thus:

E+1| N, vs)=E(X| Ny, v,) = EMud = 0| N2, v)—EMu) = 1| N2, v,) = —A¢s(N)
The monotone non-increasing condition on A¢, () is thus equivalent to:

E(A+1]|Ns, vs)—E(N| Ns, vy)is a non-decreasing function on [0, L—2]. O
Clearly both L' + TV and L? + TV models enjoy this convexity property
and satisfy thus the conditions of application of Lemma 1.

3 Minimization Algorithm

Although the previous section proves that the monotone property holds,
it does not provide an algorithm to compute a solution. Our algorithm
makes use of the formulation shown in equation 2 which allows indepen-
dent optimizations. A natural algorithm, presented in [8], is to optimize
independently each MRF. This leads to an algorithm which performs L —1
optimizations on binary images whose sizes are the same as the original
image.

However, one can both drastically save computations using a divide
and conquer approach. Such an approach requires to decompose a prob-
lem into smaller ones, then to solve these sub-problems and to recombine
the sub-solutions to get an optimal solution. Our algorithm takes benefit
of the following. Suppose we minimize at some level . Then, for all pix-
els of the minimizer we know whether they are below or above A. Thus
it is useless to take into account pixels above A for further optimizations
which only allow pixels to be lower than A. Obviously, the same holds for
pixels which are below \. Then, every connected component (it defines a
partition of the image) of the minimizer can be optimized independently
from each others. The latter corresponds to the decomposition of the prob-
lem into subproblems. Once minimizers of subproblems are computed,

7
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Figure 1: Illustration of our algorithm. The partition of the image after
a minimization with respect to some level A is shown on (a). The con-
nected components of the image (a) are shown on (b): it corresponds to
the decomposition of the problem into subproblems. Each subproblem is
solved independently and the result is depicted in (c). Finally solutions of
subproblems are recombined to yield the image (d).

Table 1: Time results (in seconds) with L' data fidelity term for different
weighted term 3. Two time results are presented: time for our algorithm
and time for the algorithm presented in [8] inside parentheses.

Image 6=1 6=2 6=3

Lena (256x256) 0.37(7.31) 0.54(14.52) 0.72(16.41)
Lena (512x512) 1.56(31.10) 2.24(53.36)  2.84(101.33)
Woman (522x232) 0.53(16.03) 0.77(20.34) 1.03(23.86)

they are recombined to yield an optimal solution. The recombination is
straightforward since the decomposition was a partition. This process is
depicted in Figure 1. A good choice to choose the threshold level A is to
use a dichotomic process. For instance, suppose the minimizer is a con-
stant image, then our algorithm requires exactly log,(L) (we suppose L is
a power of two) binary optimizations to compute it. This is in contrast
compared to the L — 1 required binary optimizations of the algorithm pro-
posed in [8].

Optimization of a binary MRF can be performed exactly and efficiently
using graph-cut techniques. It consists of building a graph such that its
minimum cut gives an optimal labelling. We build the graph as proposed
in [13]. Our implementation uses the minimum cut algorithm described
in [3]. Time results (on a 3GHz Pentium IV) for our algorithm and the one
presented in [8] are given in Table 1 for L' fidelity. Note how our algorithm
outperforms the other one.
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4 Total Variation with L' data fidelity

The use of total variation with L' data fidelity has already been studied
in [2, 6, 15, 16]. However, the following is new as far as we know. Note
that the Ising model fulfills the necessary condition provided that the in-
teraction is attractive (i.e. # is non-negative) which is the case in our prob-
lems.

As a matter of fact, due to the equivalence of the Potts framework, the ini-
tial L, + T'V restoration model (assign g, (u) = |us — vs| = S5_2 [ud — v}
in (3)) is equivalent to an Ising model with constant magnetic field ampli-
tude B = 1/2 and constant interaction coefficient J = 3/2 over the whole
range of levels.

It was shown, first semi-empirically [23] and then rigorously [18] that
the 4-connnected chessboard model exhibits a phase transition property.
Namely if the basic cell size A satisfies: A < 4.J/B = 40 then two ground
states occur, corresponding to uniform binary images. In the opposite
case, the unique ground state is the initial chessboard itself. In other
words, and put in a rather “inexact” way, objects whose characteristic size
is greater than 43 are conveniently restored, whereas smaller objects are
lost in the “background”. This property holds on the whole range of lev-
els for the L' + TV model (See Fig. 2).

Moreover, it was shown in [7] that the continuous approach to this prob-
lem generates extra grey levels outside the initial grey level range, which
is obviously not the case here. This happens because of the ¢ introduced
in the numerical scheme to avoid division by zero. Figure 3 depicts some
results on the image woman. Note how the contrast is well preserved and
how level lines are simplified.

5 Conclusion

In this paper we have presented an algorithm which computes an exact so-
lution for the minization of the total variation under a convex constraint.
The method relies on the decomposition of the problem into binary ones
using the level sets of an image. Moreover, this algorithm is quite fast.
Comparison to other algorithms with respect to time complexity must
be made. Extension of this method to other type of regularization is in
progress.
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Figure 2: Minimal energy configurations obtained by Simulated Anneal-
ing. Initial temperature 7, = 16 with decreasing step = 0.98, 8 = 1.5 (4-
connectivity).
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Figure 3: Minimizers of TV with L' fidelity. From left to right: Original
image, then minimizers for 5 = 1, 8 = 2.1, # = 3 on the the first row.
Finally, some level lines of the original image and of the minimizers (in
the same order) on the second row. Only level lines multiples of 10 are
displayed.
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