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École Nationale Supérieure des Télécommunications (ENST) / LTCI CNRS UMR 5141,
46 rue Barrault, F-75013 Paris, France

marc.sigelle@enst.fr

Published online: 30 November 2006

Abstract. In Part II of this paper we extend the results obtained in Part I for total variation minimization in image

restoration towards the following directions: first we investigate the decomposability property of energies on levels,

which leads us to introduce the concept of levelable regularization functions (which TV is the paradigm of). We

show that convex levelable posterior energies can be minimized exactly using the level-independant cut optimization

scheme seen in Part I. Next we extend this graph cut scheme to the case of non-convex levelable energies. We present

convincing restoration results for images corrupted with impulsive noise. We also provide a minimum-cost based

algorithm which computes a global minimizer for Markov Random Field with convex priors. Last we show that

non-levelable models with convex local conditional posterior energies such as the class of generalized Gaussian

models can be exactly minimized with a generalized coupled Simulated Annealing.
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1. Introduction

Total variation (TV) is widely used as regularization

term for image restoration purposes because of its edge

preserving behavior [2, 19–22]. Data fidelity terms are

often convex functions because it leads to convex op-

timization problems. We have dealt with such models

in Part I of this paper.

In Part II of this paper, we extend the theoretical

framework detailed in Part I for computing an exact

and fast minimizer of the following problem

Ev(u) =
∫

�

f (u(x), v(x)) dx + β

∫
�

g(|∇u|) dx .

(1)

Data fidelity term f is often a convex func-

tion and typically takes the following L p form:

f (u(x), v(x))) = |u(x) − v(x)|p, p ≥ 1. Laplace and

Gaussian additive noise correspond to the particular

cases p = 1 and p = 2, respectively.

Concerning the regularization term, the Lq form:

g(x) = |x |q , q ≥ 1 is of great importance (with TV

corresponding to q = 1), since it is widely used for im-

age restoration [18]. This total variation case as well as

the L1+ TV and L2+ TV cases were thoroughly inves-

tigated in Part I. Our approach relies on reformulating

this problem within a discrete framework into indepen-

dent binary Markov Random Fields (MRFs) attached

to each level set of an image. Exact minimization is per-

formed thanks to a minimum cost cut algorithm [12].
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In this paper we extend these results towards the

following directions:

First we generalize the decomposability property of

energies on the level sets, which leads us to introduce

the concept of levelable functions. We prove that con-
vex levelable posterior energies can be minimized ex-

actly using the level-independent graph cut optimiza-

tion scheme seen in Part I. During the revision of this

paper, we became aware of the work of Zalesky on sub-

modular energy functions described in [23]. Zalesky

studies the same class of functions as us. He gives

conditions on these energies so that they can be ex-

actly optimized via a modified submodular function

minimization algorithm [15]. However, no numerical

results are presented.

Then we extend this optimization scheme to non-
convex levelable energies but with convex priors. In

this case we provide a graph construction such that its

minimum cost cut determines a global minimizer. No

conditions are set on data fidelity terms. Ishikawa [14]

solves exactly the same problem using a minimum cost

cut based approach. The main difference between the

two methods consists in the different graph structures

obtained. Experiments show both convincing restora-

tion results for images corrupted with impulse noise

and a quite faster minimum cost cut-based algorithm

applied on our graph than on Ishikawa’s graph. Ap-

proaches which compute only approximate solutions

are found in [3, 4, 8, 10].

Last we show that a large subset of non-levelable

convex posterior energies can be also minimized with

a stochastic coupled Simulated Annealing algorithm.

This applies for instance to the widely used generalized

Gaussian [5] L p + Lq models (with p, q ≥ 1).

The rest of this paper is organized as follows. In

Section 2, we recall the main results obtained in Part

I of this paper which will be useful afterwards. Then

in Section 3, we introduce and develop the main prop-

erties of levelable functions In Section 4 we show the

graph-cut property of non-convex levelable energies

thanks to a nice constrained scheme and we present

some results. Last in Section 5, we extend all previous

schemes to fairly general cases. For sake of clarity, the

main demonstrations of theorems have been placed in

related Appendices at the end of this Part II.

2. Recalls

In this section let us recall the main results obtained in

Part I that will be used in the sequel of this work. We

assume that u is defined on a finite discrete lattice S and

takes values in the discrete integer set L = [0, L − 1].

We denote by us the value of the image u at the site

s ∈ S. An image is decomposed into its level sets

using the decomposition principle [13]. It corresponds

to considering all thresholding images uλ where uλ
s =

1lus≤λ. Note the original image can be reconstructed

from its level sets using us = min{λ, uλ
s = 1} as shown

in [13]. Recall that we note by s ∼ t the neighboring

relationship between sites s and t , by (s, t) the related

clique of order two and by Ns the local neighborhood

of site s. For simplicity purpose we shall in the sequel

write sums on cliques of order one and two by
∑

s and∑
(s,t) respectively.

Proposition 1. The discrete version of energy (1)

rewrites as follows

Ev(u) =
L−2∑
λ=0

Eλ(uλ) + C, where (2)

Eλ(uλ) = β

[ ∑
(s,t)

wst
((

1 − 2uλ
t

)
uλ

s + uλ
t

)]
+

∑
s

(gs(λ + 1) − gs(λ))
(
1 − uλ

s

)
(3)

gs(x) = f (x, vs) ∀s ∈ S and C =
∑

s

gs(0).

Note that each Eλ
v (·) is a binary MRF with an Ising prior

model. We endow the space of binary configurations

by the following order: a � b iff as ≤ bs ∀s ∈ S. In

order to minimize Ev(·) one would like to minimize all

Eλ
v (·) independently. Thus we get a family {ûλ} which

are respectively minimizers of Eλ
v (·). Suppose we do

so, then clearly the summation will be minimized and

thus we have a minimizer of Ev(·) provided this family

is monotone, i.e.,

ûλ � ûμ ⇔ ûλ
s ≤ ûμ

s ∀λ ≤ μ, ∀s ∈ S. (4)

If this property holds then the optimal solution is given

by the reconstruction formula from level sets [13]:

ûs = min{λ, ûλ
s = 1} ∀s. Else the family {uλ} does not

define a function, and thus our optimization scheme is

no more valid.

The following Lemma is absolutely crucial for our

point.

Lemma 1. If the local conditional posterior energy at
each site s can be written as

Ev(us | Ns) =
L−2∑
λ=0

(
�φs(λ) uλ

s + χs(λ)
)
, (5)
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where �φs(λ) is a non-increasing function of λ and
χs(λ) is a function which does not depend on uλ

s ,
then one can exhibit a “coupled” stochastic algo-
rithm minimizing each total posterior energy Eλ

v (uλ)

while preserving the monotone condition: ∀s, uλ
s is

non-decreasing with λ .

This Lemma states that given a binary solution a� to

the problem Eλ
v (·), there exists at least one solution b̂

to the problem Eμ
v (·) such that a� � b̂ ∀λ ≤ μ.

We also recall that a one-dimensional discrete func-

tion f defined on ]A, B[ is convex on ]A, B[ iff

2 f (x) ≤ f (x − 1) + f (x + 1) ∀x ∈]A, B[, or equiv-

alently, f (x + 1) − f (x) is a non-decreasing function

on [A, B[.

The following important equivalence was then

established:

Lemma 2. The requirements stated by this Lemma are
equivalent to these: all conditional energies Ev(us |Ns)

are convex functions of grey level us ∈ ]0, L − 1[, for
any neighborhood configuration and local observed
data.

It is indeed easy to prove that

�φs(λ) = Eλ
v

(
uλ

s = 1|N λ
s

) − Eλ
v

(
uλ

s = 0|N λ
s

)
= − (Ev(λ + 1|Ns) − Ev(λ|Ns)). (6)

As a consequence Lemma 1 applies for both the models

convex data fidelty with TV as prior.

3. Levelable Regularization Energies

In this section we propose an extension of the decom-

position property of posterior energies on levels pre-

viously seen for the TV case in view of minimization

purposes. To this aim we first introduce the concept of

levelable functions of several variables. Then we show

their decomposition properties on binary MRFs.

3.1. A Deductive Construction of Decomposable
Energies

We first introduce our concept of levelable functions.

Definition 1. A function φ of one or several variables

x, y . . . ∈ L is levelable if it can be decomposed as

a sum on levels, of functions of its variables level-set

indicatrices at current level:

φ(x, y . . .) =
L−1∑
λ=0

ψ(λ, 1lλ<x , 1lλ<y . . .).

We now give the main properties of levelable functions.

Proposition 2. Every function of a single variable is
levelable.

Proof: it relies on a straightforward “discrete inte-

gration theory” result:

∀k ∈ L φ(k) =
k−1∑
λ=0

(φ(λ + 1) − φ(λ)) + φ(0)

=
L−2∑
λ=0

(φ(λ + 1) − φ(λ)) 1lλ<k + φ(0).

(7)

The summation runs indeed up to λ = L − 2 and

yields coherent results for both k = 0 and k = L − 1,

since ∀k ∈ L, 1lλ<k = 0 when λ = L − 1.

The following proposition, whose proof is given in

Appendix A, connects a levelable total Gibbs energy

with each of its cliques components.

Proposition 3. The following two assumptions are
equivalent:

A 1. The total Gibbs energy function is levelable.

A 2. Each clique energy is a levelable function.

Since we shall be concerned by cliques of order two at

most in the sequel, we give the closed form of clique

of order two symmetric levelable energies.

Proposition 4. A symmetric function of two variables
U (x, y) is levelable iff it writes in both equivalent
ways:

U (x, y)

= S(max(x, y)) − S(min(x, y)) + D(x) + D(y)

(8)

= F(max(x, y)) − G(min(x, y)), (9)

where S, D, F = S+ D and G = S− D are functions
mapping L 
→ IR.
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See proof in Appendix B.

We now characterize the behavior of cliques of order

two potentials under mild conditions (from an image

processing point of view).

Proposition 5. If a symmetric function of two vari-
ables U (x, y) satisfies both assumptions:

A 3. U (x, y) is a levelable function of x, y.

A 4. ∀y ∈ L, U (x, y) attains a minimum at x = y.

then the functions F, G and S = (F + G)/2 defined in
Proposition 4 should be increasing on L∗ = [0, L −2].
The related energy writes in this case:

U (x, y) = |S(x) − S(y)| + D(x) + D(y)

=
L−2∑
λ=0

R(λ) | 1lλ<x − 1lλ<y | + D(x) + D(y),

(10)

where R(λ) = S(λ + 1) − S(λ) is a positive function
on L∗.

See proof in Appendix C. In other words, ∀y ∈ L, one

has from (9):

U (x, y) ={
F(y)−G(x) is a decreasing function of x for x ≤ y

F(x)−G(y) is an increasing function of x for x ≥ y
(11)

U (·, y) is thus a quasi-convex function [6, 11] attaining

its minimum in y. A function f is said quasi-convex

iff its lower level-sets are convex sets. In 1D this is

equivalent to the monotony property by intervals (11).

Examples of such quasi-convex functions are shown

in Fig. 1.

As a further consequence the set of convex levelable

energy functions satisfying D(x) = 0 i.e., such that

minx U (x, y) = 0 ∀y ∈ L, reduces to: S(x) = βx ,

since in this case by (11) S(x) = F(x) = G(x) should

be both convex and concave on ]0, L − 1[. We find

again the importance of the TV family.

Let us also stress again that in general no condition is

imposed on function D(x) excepted that S ± D should

be increasing functions on L.

3.2. On the Structure of Levelable MRF Posterior
Energies

Let us assume for sake of generality levelable pairwise

regularization energies satisfying Propositions 4 and 5

in some 
-connectivity.

We shall note γi the number of neighbors of type

i ∈ [1, I ], τ (s, t) = i the type of clique (s, t) and

Ui (us, ut ) the associated regularization energy. This is

an extension of the case Ui (us, ut ) = wst |us − ut |
previously seen in Part I (where wst should indeed be

noted wi ). Each single term Di (us) appearing in all

energy terms Ui (us, ut ) such that t ∼ s, τ (s, t) = i will

thus be accounted γi times in the total regularization

energy. We therefore define D(us) = ∑I
i=1 γi Di (us),

so that the following proposition holds:

Proposition 6. The general form of a total posterior
levelable energy satisfying the prerequisites of Propo-
sition 5 is:

Ev(u) =
I∑

i=1

[ ∑
(s,t)

τ (s,t)=i

|Si (us) − Si (ut )| + Di (us).

+ Di (ut )

]
+

∑
s

gs(us) (12)

=
L−2∑
λ=0

{
I∑

i=1

∑
(s,t)

τ (s,t)=i

Ri (λ)
∣∣ uλ

s − uλ
t

∣∣
+

∑
s

δ(λ, vs)
(
1 − uλ

s

)} + C̃, (13)

where

• constant C̃ = ∑
s(gs(0) + D(0)),

• regularization coefficient term at level λ: Ri (λ) =
Si (λ + 1) − Si (λ) is a positive function on L ∀i ∈
[1, I ],

• and effective attachment to data coefficient term
δ(λ, vs) is: δ(λ, vs) = D(λ + 1) − D(λ) + gs(λ +
1) − gs(λ).

Since |1lλ<us − 1lλ<ut | = |uλ
s − uλ

t | ∀us, ut ∈ L, the

proof results straightforwardly from Propositions 1 and

5.

Note again that we set no conditions on functions

D(us) and gs(us) for now. Now from (13), all local

conditional posterior energies are levelable:

Ev(us |Ns) =
L−2∑
λ=0

Eλ
v

(
uλ

s

∣∣N λ
s

)
, with (14)
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Figure 1. U (x, y) = F(max(x, y)) − G(min(x, y)) as a function of x (y = 100).

Eλ
v

(
uλ

s

∣∣N λ
s

) =
I∑

i=1

∑
(s,t)

τ (s,t)=i

Ri (λ)
∣∣uλ

s − uλ
t

∣∣
+

∑
s

δ(λ, vs)
(
1 − uλ

s

)
. (15)

From all what precedes we obtain the following

Proposition:

Proposition 7. If the total posterior energy Ev(u) is
levelable and such that all local conditional posterior
energies Ev(· | Ns) are convex functions (even if their
regularization or observation part may not), then the
same level-by-level minimization scheme of Part I ap-
plies for global optimization.

In [23], Zalesky studies the general form of levelable

function while we have focused on levelable energies

dedicated to image processing. In next section we treat

the minimization of non-convex levelable energies.

4. Minimization Algorithms for Levelable
Energies

The previous level-independent minimization scheme

can no more hold for non-convex levelable energies

(non-convexity could arise from the attachment to data

as well as from the regularization energies). We are

thus led to devise a graph construction such that its

minimum cost cut provides a global minimizer. We

would to emphasize that Zalesky proposes in [23] a
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minimization algorithm which relies on submodular

function minimization [15], while we propose an al-

gorithm which relies on minimum cuts. In the specific

total variation case we compare our graph structure to

the one proposed by Ishikawa in [14].

4.1. Reformulation of the Total Levelable Posterior
Energy

First we drop out constant C̃ in Eq. (13) and write the

total posterior energy as a functional of the (L − 1)

binary images uλ:

Ev({uλ}) =
L−2∑
λ=0

{
I∑

i=1

∑
(s,t)

τ (s,t)=i

Ri (λ)
∣∣uλ

s − uλ
t

∣∣
+

∑
s

δ(λ, vs)
(
1 − uλ

s

)}
, (16)

where Ri (·) is a positive non-decreasing function on

L. As the convexity assumption no more holds, the

monotony condition (4): ∀s ∀λ ≤ μ uλ
s ≤ uμ

s can

thus no more be guaranteed. Since this condition is

equivalent to

∀s ∀λ ∈ L∗ uλ
s ≤ uλ+1

s , (17)

the minimization of (16) is equivalent to the following

constrained problem:

min
{uλ}

Ev({uλ}) subject to constraints

∀s∀λ ∈ L∗ H
(
uλ

s − uλ+1
s

) ≤ 0, (18)

where H : IR 
→ IR is the Heaviside function defined

as

H (x) =
{

0 if x ≤ 0,

1 else.
(19)

We define for this purpose the new unconstrained en-

ergy Eα,v({·λ}) as:

Eα,v({uλ}) = Ev({uλ}) + α

L−2∑
λ=0

∑
s

H
(
uλ

s − uλ+1
s

)
with α > 0. (20)

4.2. Graph-Cut Representation and Minimization

In [16], Kolmogorov et al. gives sufficient and neces-

sary conditions for a fonction to be minimized via graph

cuts. Such functions are also called submodular [16].

We can now formulate the following proposition:

Proposition 8. The unconstrained functional
Eα,v({uλ}) defined by (20) is submodular, i.e.,
graph-representable in the sense of Kolmogorov
et al. [16].

Since each function of a single binary variable is graph-

representable it is enough to prove the regularity prop-

erty (defined in [16]):

A(0, 0) + A(1, 1) ≤ A(0, 1) + A(1, 0)

for each function A(·, ·) of two binary variables

appearing in (20).

See proof in Appendix D.

We now show in which conditions the minimization

of (20) can lead to a minimizer of (13). We first notice

the following Proposition:

Proposition 9. Suppose that {ûλ} is a minimizer of
Eα,v({·λ}) such that ∀s ∀λ ûλ

s ≤ ûλ+1
s . Then the image

û ∈ LS defined as:

∀s ûs = min
{
λ, uλ

s = 1
}
,

is a minimizer of Ev(·).

See proof in Appendix E.

We now investigate the cases where the hypotheses

of Proposition 9 always hold. To this aim we exhibit

a finite positive value for α such that the monotony

constraint (17) holds.

Proposition 10. Let α > 
 supλ,i Ri (λ) − infλ≥1,vs

δ(λ, vs), where 
 is the total connectivity. Then a min-
imizer {ûλ} of Eα,v({·λ}) verifies the inequality

∀s ∀λ uλ
s ≤ uλ+1

s .

See proof in Appendix F.

The value of α could in fact be adjusted locally for

each site s. Experiments show indeed that α needs not

to be so high.
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In other words, we have shown that a levelable

function with every potential satisfying conditions of

Proposition 5 is exactly minimizable via a minimum

cost cut. In terms of submodularity, it means that such

a function is a sum of submodular functions over all

level sets.

4.3. Notes on the Graph Construction

We now consider the case of the total variation mini-

mization. We briefly compare the approach proposed

by Ishikawa [14] which also solves exactly this prob-

lem and ours. The Ishikawa’s approach also consists

in building a graph on which a minimum cost cut is

computed. The structure of this graph is composed of

layers. Each layer corresponds to a grey level. More

precisely, a node is created for each value that a pixel

can take. The node nl
s which corresponds to the pixel

at site s which takes the value l is connected to spatial

neighbors at same level, i.e., to nodes nl
t with t ∼ s. It

is also connected to nodes nm
s with |m − l| = 1. The

nodes located at the first (respectively last) layers are

connected to the source (sink respectively). The struc-

ture of this graph structurally imposes the monotone

property to hold. The Ishikawa’s graph is depicted in

Fig. 2(a).

Contrary to the graph of Ishikiwa, our graph is not

made of layers. However, it contains the same number

of nodes and arcs. A node is created for each binary

variable uλ
s . Each of these nodes is connected to the

source, the sink, the nodes uλ
t with s ∼ t , and the nodes

uμ
s with μ = λ±1. Compared to the graph of Ishikiwa,

the main difference is that all nodes are connected to

Figure 2. The graph constructed with the Ishikawa approach is depicted in (a) while our graph is presented in (b). We consider a one dimensional

signal with 3 sites (|S| = 3) with 3 available labels (|L| = 3). The source and the sink are respectively denoted by s and t . Note that all nodes

are connected to the source s and to the sink t for our graph although all arcs are not depicted in b).

the source and to the sink. The minimal path from the

source to the sink is equal to 2 for our graph and to L
for the Ishikiwa’s one. The graph we build is depicted

in Fig. 2(b)). A main class of minimum-cut/maximum

flow algorithms are based on the augmenting path ap-

proach [1]. Such algorithms work iteratively and look

for a path from the source to the sink where the flow can

be increased. Since our graph is more compact (in the

sense that each node is connected to both the source and

the sink) it is reasonable to conjecture that our graph

is better suited for augmented path based algorithms.

These considerations are confirmed by the numerical

experiments presented in the next section.

4.4. Experiments and Discussion

Our implementation relies on the graph construction

proposed by Kolmogorov et al. in [16] and we use the

graph cut algorithm described by Boykov et al. in [7].

For all experiments, we have checked that the minimiz-

ers computed by the Ishikawa’s approach [14] and our

algorithm have the same energy. We show here our as-

sociated restoration results when the image is corrupted

by impulsive noise of parameter p. The attachment to

data term is thus:

gs(us) = f (us, vs)

=
⎧⎨⎩− ln

(
(1 − p) + p

L

)
if us = vs,

− ln
p

L
else.

This implies that the total energy Ev(·) is highly non-
convex. We used a 3 GHz Pentium4 with 1024 Kbytes
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Table 1. CPU times (in seconds) for total variation minimization

with an impulsive noise of parameter p and for 256 × 256 size

images. The gain factor obtained by our algorithm (Levelable time

wrt. Ishikawa time) is also shown.

Image Impulsive p Levelable Ishikawa Gain

Lena 0.20 114.78 425.14 3.70

Lena 0.40 159.14 633.09 3.98

Lena 0.70 252.67 1203.22 4.76

Girl 0.20 114.09 469.44 4.11

Girl 0.40 171.68 648.72 3.78

Girl 0.70 272.72 1553.66 5.70

cache memory for our tests. Each experiment has been

repeated 30 times, using the 4-connectivity approxima-

tion of the total variation. Average CPU times for lena
and girl images are given in Table 1 for both our al-

gorithm and Ishikawa’s (image size: 256 × 256). Time

results show that our graph construction yields a gain

factor about 4 compared to Ishikawa’s method.

Associated denoised images for the image girl are

presented in Fig. 3 for noise parameter p with respec-

tive values 20%, 40% and 70%. In each of these cases

the regularization parameter β was chosen in order to

yield the best visual result. We also observe on Figs.

(b) and (d) that minimizers have some pixels which are

not regularized enough. We verify experimentally that

these pixels do not change during the algorithm. This

is to compare with observations of Nikolova in [17, 18]

for the detection of outliers. In Fig. 4. we compare to

the results from the (sub-optimal) direct random de-

scent. Its principle is the following: pick randomly a

site, and a new gray level value. If this new value for

this pixel makes decrease the energy then this transi-

tion is accepted, otherwise the pixel keeps its value. We

iterate this process until no moves are allowed. To con-

clude at this point, our graph cut method yields very

good results visually speaking, but comparison with

other methods such as the morphological approach of

Coupier et al. [9] remains to be done.

5. Extension to Convex Non-Levelable
Regularization Energies

In this section we proceed even further by extending

the previous results to non-levelable regularization en-

ergies provided they have a convex form, while no con-

ditions are imposed on data fidelity terms. As an exam-

ple, this section shows how to find a global minimizer

of energies which has the following form [18]:

Ev(u)=
∑
s∈S

js |us −vs |p +β
∑
(r,s)

brs |us −ut |q p, q ≥1,

where js ≥ 0 is a local “outlier” detector and brs ≥ 0

is a local boundary detector can be exactly minimized.

First of all, we present an algorithm based on graph-cuts

which computes an exact minimizer. Note that in [14],

Ishikawa solves exactly the same problem with the use

of graph-cuts. However, the graphs built are quite dif-

ferent from each others. We also propose an alternative

condition for devising stochastic optimization.

5.1. Reformulation of the Total Posterior Energy

Our approach for exact minimization is similar to that

previously encountered for the levelable case. Recall

that we assume that priors are convex functions. More-

over we shall assume in the sequel that each regulariza-

tion potential (noted Ust (us, ut ) for sake of generality)

is also symmetric and depends on the difference of its

two grey level variables as in Eq. (1), i.e.,

Ust (us, ut ) = Vst (us − ut ) = Vst (ut − us).

These assumptions imply the convexity of each Vst (·)
on ] − L + 1, L − 1[.

Now, proceeding similarly to paragraph 4.1 we first

reformulate the total posterior energy as a functional

of the L − 1 binary images uλ.

Proposition 11. The total posterior energy (1) can be
rewritten as:

Ev({uλ}) =
∑
(s,t)

{
L−2∑
μ=0

L−2∑
λ=0

Uλ,μ
st

(
uλ

s , uμ
t

)
+

L−2∑
λ=0

[
Dλ

st

(
uλ

s

) + Dλ
st

(
uλ

t

)] }

+
∑

s

L−2∑
λ=0

�λ
s

(
uλ

s

∣∣v) + C, where (21)

Uλ,μ
st

(
uλ

s , uμ
t

) = Gst (λ, μ)
(
1 − uλ

s

)(
1 − uμ

t

)
,

wi th Gst (λ, μ) = 2Vst (λ − μ) − Vst (λ − μ − 1)

− Vst (λ − μ + 1) ≤ 0,

Dλ
st

(
uλ

s

) = (Vst (λ + 1) − Vst (λ))
(
1 − uλ

s

)
,

�λ
s

(
uλ

s |v
) = (gs(λ + 1) − gs(λ))

(
1 − uλ

s

)
,

and C =
∑

s

gs(0).
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Figure 3. Image girl corrupted with impulse noise. Noise parameter value: (a) : 20%, (c) : 40%, (e) : 70%. Associated respective resto-

ration results: (b), (d), (f).
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Figure 4. Results of the restoration of the image girl corrupted with impulse noise using a direct random descent algorithm. Figures (a), (b)

and (c) correspond to minimizer of images corrupted with an impulse noise of parameter 20%, 40% and 70%, respectively.

The principle relies on decomposing each regulariza-

tion potential as two sums over grey level variables

instead of one. See Proof in Appendix G.

5.2. Graph-Cut Representation and Minimization

The proposed approach is similar to the one presented

for levelable energies. We define the constrained total

posterior energy as: Eα,v(·)

Eα,v({uλ}) = Ev({uλ}) +
∑

s

L−2∑
λ=0

αH
(
uλ

s − uλ+1
s

)
with α > 0, (22)

where H is the Heaviside function defined by Eq. (19).

The purpose of this last term is, as before, to enforce

the monotone property Eq. (4) to hold i.e.,

∀λ uλ
s ≤ uλ+1

s .

The fact that regularization terms {Vst } are convex func-

tions is of capital importance for the minimization algo-

rithm that we present now. Notice that results hold even

for non-symmetric convex regularization energies.

Proposition 12. Let α be a non-negative value. The en-
ergy Eα,v(·) in Eq. (22) is submodular, i.e., it is graph-
representable in the Kolmogorov et al. [16] sense.

The main argument relies on the fact that each func-

tion of two binary variables in Eq. (21) is graph-

representable since all terms Gst (λ, μ) ≤ 0 by the

convexity hypothesis. See Proof in Appendix H.

We now build a graph associated to Eα,v({·λ}) such

that its minimum cost cut yields a global minimizer. We
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show that there exists a finite value for α such that we

can construct a minimizer for Ev(·) from a minimizer

for Eα,v({·λ}).

Proposition 13. Let α be a positive value such that

α > sup
(s∼t),λ,μ

∣∣Uλ,μ
st

(
uλ

s , uμ
t

)∣∣ + 
 sup
(s∼t),λ

∣∣Dλ
st

(
uλ

s

)∣∣
+ sup

s,λ

∣∣�λ
s

(
uλ

s |v
)∣∣,

where 
 is the the total connectivity. Then a minimizer
{ûλ} of Eα,v({·λ}) satisfies the inequality

∀s ∀λ uλ
s ≤ uλ+1

s .

Proof: The proof is similar to the one given for

Propositions 9 and 10.

This last proposition shows that a Markov Random

Field with convex regularization terms can be globally

optimized using minimum cost cuts. The same result

is proposed by Ishikawa in [14].

In the next paragraph we show that the coupled Sim-

ulated Annealing investigated in Part I applies as well

to this convex non-levelable case.

5.3. Stochastic Minimization

Since we assume that the levelable hypothesis no more

holds, we have now to keep the general dependence

wrt. neighborhood grey variables {ut }t∼s in each local

posterior conditional energy Ev(·| Ns). However we

claim the following as well, which is essentially the

same as Lemma 2:

Proposition 14. A necessary and sufficient condition
that the monotony conditions hold is that all local con-
ditional energies Ev(· | Ns) are convex functions for
any neighborhood configuration Ns and local observed
data vs .

See proof in Appendix I.

We can thus devise the same coupled Gibbs sampler

and Simulated Annealing that was devised in Part I for

the exact minimization of total energy. This concludes

the stochastic approach to this work and to the work

of [14].

6. Conclusion

In this paper we have presented an algorithm which

computes an exact solution for the minimization of the

total variation under a convex constraint. The method

relies on the decomposition of the problem into binary

ones using the level sets of an image. Moreover, this

algorithm is quite fast. In the second Part of this paper

we have extended these results to the following trends:

first we have developed the concept of levelable func-

tions which generalizes the decomposability property

of total variation on level sets. Then we have shown that

convex levelable posterior energies can be exactly min-

imized as in Part I. Then we have extended our graph-

cut optimization scheme to the case of non-convex lev-

elable energies with impulsive noise restoration as an

example. Further comparison to existing methods re-

mains to be done in this case. Last we proved more

generally that all convex models of the form

Ev(u) =
∑
s∈S

js |us − vs |p + β
∑
(r,s)

brs |us − ut |q

p, q ≥ 1,

where js ≥ 0 is a local “outlier” detector and brs ≥ 0

is a local boundary detector can be exactly minimized.

We have also proposed an exact optimization algorithm

based on minimum cost cut for MRFs with convex

priors.

A fast algorithm based on graph cuts for exact opti-

mization of MRFs with both convex data fidelity terms

and priors will be presented in a forthcoming paper.

We also work on using this formulation for vectorial

images. We are currently investigating a class of mod-

els enjoying the perfect sampling property. This might

in turn pave the way for fast hyperparameter estima-

tion, a problem still of importance for the variational

community.

Appendix

A. Proof of Proposition 3

Case b) ⇒ a). The set of levelable functions is clearly

a vector space.

Case a) ⇒ b). We shall be concerned by cliques of

order two at most in the sequel, however the proof is

easily established by induction to any finite order clique

energies. Assume the total energy decomposes as

φ(us, ut , ur . . .) =
∑
(s,t)

U (us, ut ) +
∑

s

T (us)

=
L−2∑
λ=0

ψ(λ, 1lλ<us , 1lλ<ut , 1lλ<ur , . . .)
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Assign ur = 0 ∀r /∈ {s, t} in previous formula. One

gets

U (us, ut ) + T (us) + T (ut ) + C

=
L−2∑
λ=0

ψ(λ, 1lλ<us , 1lλ<ut , 0, 0 . . .)︸ ︷︷ ︸
↓

=
L−2∑
λ=0

ψst (λ, 1lλ<us , 1lλ<ut ).

Since by Proposition 2 single variable functions T (us)

and T (ut ) are levelable, the proof is established for

clique of order two energy U (us, ut ).

B. Proof of Proposition 4

• Sufficient - Let us assume that (8) holds. First note

that from Proposition 2, D(x)+D(y) is a symmetric

levelable function of both variables x and y. On the

other hand the following formula can be written:

S(max(x, y)) − S(min(x, y))

= S(x) + S(y) − 2 S(min(x, y))

Since 1lλ<min(x,y) = 1lλ<x · 1lλ<y one gets from (7):

S(max(x, y)) − S(min(x, y))

=
L−2∑
λ=0

(S(λ+1)−S(λ))(1lλ<x +1lλ<y −2 1lλ<x · 1lλ<y)

=
L−2∑
λ=0

(S(λ + 1) − S(λ)) | 1lλ<x − 1lλ<y |.

• Necessary - Previous argument leads us to ex-

pand U (x, y) on the basis of {1lλ<x , 1lλ<y}λ and

{|1lλ<x − 1lλ<y |}λ rather than {1lλ<x , 1lλ<y}λ and

{1lλ<x × 1lλ<y}λ:

U (x, y)

=
L−2∑
λ=0

R(λ)|1lλ<x −1lλ<y |+
L−2∑
λ=0

θ (λ)[1lλ<x + 1lλ<y]

=
L−2∑
λ=0

(S(λ + 1) − S(λ)) | 1lλ<x − 1lλ<y |

+
L−2∑
λ=0

(D(λ + 1) − D(λ))[ 1lλ<x + 1lλ<y],

where S(λ) are D(λ) are respective “primitives” of

R(λ) and θ (λ), e.g.⎧⎪⎨⎪⎩
S(0) = D(0) = 0,

S(λ) =
∑
μ<λ

R(μ), D(λ) =
∑
μ<λ

θ (μ) ∀λ ≥ 1.

Then (7) implies, up to a constant:

U (x, y)

= S(max(x, y))−S(min(x, y))+D(x) + D(y)

= S(max(x, y))−S(min(x, y))+D(max(x, y))

+D(min(x, y)).

C. Proof of Proposition 5

The minimum energetic condition A 4. writes from

Eq. (9) as:

(a) ∀x ≥ y U (x, y) = F(x) − G(y) ≥
U (y, y) = F(y) − G(y) ⇒ F(x) ≥ F(y)

(b) ∀x ≤ y U (x, y) = F(y) − G(x) ≥
U (y, y) = F(y) − G(y) ⇒ G(x) ≤ G(y)

These inequalities must hold ∀y ∈ L. Thus F , G and

S = (F + G)/2 should be increasing functions on L.

This in turn implies that R(λ) = S(λ+1)−S(λ) should

be a positive function on L∗. The level summation for-

mula (10) results immediately from the previous proof

of Proposition 4. �

D. Proof of Proposition 8

It is sufficient for this purpose to prove that each term

Ri,λ
st

(
uλ

s , uλ
t

) = Ri (λ)
∣∣uλ

s − uλ
t

∣∣,
and

Hλ
st

(
uλ

s , uλ
t

) = αH
(
uλ

s − uλ+1
s

)
,

should verify the regularity property i.e.,

Ri,λ
st (0, 0) + Ri,λ

st (1, 1) ≤ Ri,λ
st (0, 1) + Ri,λ

st (1, 0),

(23)

and

Hλ
st (0, 0) + Hλ

st (1, 1) ≤ Hλ
st (0, 1) + Hλ

st (1, 0). (24)
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This is obviously the case: first inequality (23) holds

(Ri is a positive function), then inequality (24) also

holds since α > 0 and from the definition of H .

The total energy Eα,v({uλ}) in (20) is thus a sum

of graph-representable terms and is thus itself graph-

representable [16]. �

E. Proof of Proposition 9

Notice that minimizer {ûλ} verifies the monotony prop-

erty. We thus define the grey level value ûs from the

usual reconstruction formula ∀s ûs = min{λ, uλ
s = 1}

[13]. Is is clear that with these conditions one has

Ev(û) = Eα,v({ûλ}),

since ∀s α H (ûλ
s − ûλ+1

s ) = 0, and since the other

components of energies (16) and (20) have identical

values. This concludes the proof.

F. Proof of Proposition 10

Let us assume that minimizer {ûλ} of Eα,v({·λ}) is such

that

∃s, λ s.t. Hα

(
ûμ

s − ûμ+1
s

) = 0 ∀μ < λ

and Hα

(
ûλ

s − ûλ+1
s

)
> 0 ⇔ ûλ

s = 1 and ûλ+1
s = 0.

i.e., the monotony condition is satisfied for s up to

μ ≤ λ. We want to discard this solution in order to

preserve monotony, and thus

�φs(λ + 1)

= Eλ
v

(
uλ+1

s =1
∣∣ N λ+1

s

) − Eλ
v

(
uλ+1

s =0
∣∣ N λ+1

s

)
< 0.

From (16) this means

�φs(λ + 1)

=
I∑

i=1

∑
t∼s

τ (s,t)=i

Ri (λ + 1)
(
2uλ+1

t −1
) − δ(λ, vs) − α<0.

In the conditions of the proposition one has effectively

α > 
 sup
λ,i

Ri (λ) − inf
λ≥1,vs

δ(λ, vs)

>

I∑
i=1

∑
t∼s

τ (s,t)=i

Ri (λ + 1)
(
1 − 2uλ+1

t

) − δ(λ, vs)

Thus {ûλ} cannot be a minimizer of Eα,v({·λ}). This

concludes the proof.

G. Proof of Proposition 11

We only deal with the regularization terms since the

decomposition has already been performed for data

terms in Section 3. We decompose g(·, ·) in cascade

over the two variables using (7), so that we have

∀k, l ∈ [0, L − 1]2 :

U (k, l) =
L−2∑
λ=0

(U (λ + 1, l) − U (λ, l)) 1lλ<k + U (0, l)

=
L−2∑
μ=0

L−2∑
λ=0

{U (λ + 1, μ + 1) − U (λ, μ + 1)

− U (λ + 1, μ) + U (λ, μ)} 1lλ<k1lμ<l

+
L−2∑
λ=0

(U (λ + 1, 0) − U (λ, 0)) 1lλ<k

+
L−2∑
μ=0

(U (0, μ + 1) − U (0, μ)) 1lμ<l

+ U (0, 0). (25)

This decomposition holds whatever function U (·, ·).
We now inject the assumption that U (x, y) = V (x − y)

∀x, y ∈ L into Eq. (25), and we get:

U (k, l) =
L−2∑
μ=0

L−2∑
λ=0

{2V (λ − μ) − V (λ − μ − 1)

− V (λ − μ + 1)} 1lλ<k1lμ<l

+
L−2∑
λ=0

(V (λ+1) − V (λ)) [1lλ<k +1lλ<l]+V (0).

(26)

Since we assume that V (·) is also a convex function,

the following holds:

∀λ, μ G(λ, μ)

= 2V (λ−μ)−V (λ − μ − 1) − V (λ − μ + 1) ≤ 0.

(27)

The work is almost done using Eq. (26) for regular-

ization terms. We inject this equality and the one for

the data terms (given by Proposition 2) into Eq. (1).

Besides, note that 1lλ<us = (1 − uλ
s ). So we get the

expected result. This concludes the proof. �
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H. Proof of Proposition 12

Each term of Eq. (22) is submodular, i.e., graph-

representable in the Kolmogorov et al. [16]:

• H : the justification is given in Section 4.

• Dλ
st and �λ

s in Eq. (21) are functions of a single

binary variable. Thus they are graph-representable.

• each term Uλ,μ
st (uλ

s , uμ
t ) = Gst (λ, μ) (1−uλ

s )(1−uμ
t )

involving two binary variables in Eq. (21) is graph-

representable because it satisfies the regularity prop-

erty (see Appendix D Eqs. (23) and (24)):

Uλ,μ
st (0, 0) + Uλ,μ

st (1, 1) ≤ Uλ,μ
st (1, 0) + Uλ,μ

st (0, 1),

since Gst (·, ·) is non-positive by the convexity as-

sumption.

In [16], Kolmogorov et al. show that the sum of graph-

representable functions is graph-representable, which

is the case for the energy Eα({·λ}|v). This concludes

the proof. �

I. Proof of Proposition 14

Each local conditional energy may be decomposed sim-

ilarly to Part I as:

Ev(us | Ns)

=
L−2∑
λ=0

(Ev(λ + 1 | Ns) − Ev(λ | Ns))
(
1 − uλ

s

)
+Ev(0 | Ns)

=
L−2∑
λ=0

(�φs(λ) uλ
s + χs(λ))

where �φs(λ) = −(Ev(λ + 1 | Ns) − Ev(λ | Ns)).

(28)

The local posterior Gibbs distribution at a given level

writes thus:

P
(
uλ

s = 1 | Ns, vs
) = 1

1 + exp {�φs(λ)} .

Validating the coupled Gibbs sampling scheme of Part I

requires that

∀Ns, vs, P
(
uλ

s = 1|Ns, vs
)

is non-decreasing with λ,

and thus from (28):

∀Ns, vs, −�φs(λ)

= Ev(λ+1|Ns)−Ev(λ|Ns) is non-decreasing with λ.

Thus ∀Ns, vs , Ev(·| Ns) should be a convex function

on ]0, L − 1[.
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