
Attribute Grammars for Modular Disambiguation

Valentin David† Akim Demaille‡ Olivier Gournet‡

† University of Bergen, Norway
‡ EPITA Research and Development Laboratory (LRDE)

14-16, rue Voltaire - F-94276 Le Kremlin-Bicêtre Cedex - France
transformers@lrde.epita.fr, http://transformers.lrde.epita.fr.

Abstract

To face the challenges to tomorrow’s software en-
gineering tools, powerful language-generic program-
transformation components are needed. We propose the use
of Attribute Grammars (AGs) to generate language specific
disambiguation filters. In this paper, a complete implemen-
tation of a language-independent AG system is presented.
As a full scale experiment, we present an implementation of
a flexible C front-end. Its specifications are concise, modu-
lar, and the result is efficient. On top of it, transformations
such as software renovation, code metrics, domain specific
language embedding can be implemented.

Introduction

Modern software engineering tools provide the program-
mer with a host of powerful features to manipulate source
code. A trend to design such tools consists in building them
from language-generic components: generic parsers, pro-
gram transformation environments and pretty-printers, for
instance, exist. It is then possible to provide a language with
new tools (code metrics, refactoring environments, etc.) or
new features (embedded SQL, design by contract, etc.).

In such a framework the parsing is truly context-free, but
most programming languages are not context-free. To cope
with this discrepancy, parsers actually accept an ambigu-
ous superset of the language, leaving the context-sensitive
disambiguation phase to a later filter. This paper presents
a new approach based on an extension of AG [12] to cope
with ambiguity. We report on an implementation of such an
AG system, and demonstrate the soundness of the approach
by describing a complete ISO C 99 polyvalent front-end.
Thanks to the use of AGs, its implementation is both con-
cise and modular. Both the AG engine and the C front-
end are free-software covered by the GNU General Public
License (GNU GPL), freely available on the Internet [13].

The paper is structured as follows. Section 1 presents
the context of our work, and motivates the use of ambigu-
ous AGs for the automatic generation of semantics driven
disambiguation filters. Section 2 details the user side: how
to run a disambiguation chain powered by an AG. Section 3
presents the implementer side: how to write disambiguating
AG rules, and how the filter is generated. Section 4 reports
about a full scale use of these tools to implement and use
a C flexible front-end. Existing and future works are pre-
sented in Section 5. Finally Section 6 concludes.

1. Context

Generalized Parsing Even though LALR(1) parsing
ruled the world thanks to Yacc, truly context-free languages
are infrequent: most are context sensitive. This dependency
is usually addressed with ad hoc actions in the parser such
as symbol table maintenance, which prevents any form of
modularity. Because in addition no interesting class of de-
terministic languages is stable under union, techniques sup-
porting the full class of context-free languages are desirable.
Generalized LR (GLR) parsing [15] meets these require-
ments.

GLR handles local ambiguities “for free” using un-
bounded look-ahead, and global ambiguities (requiring con-
text sensitive information such as typing) typically by pro-
viding the user with a means to decide how to process al-
ternatives. GLR parser generators such as Elkhound [14] or
GNU Bison extend the Yacc model: user actions are exe-
cuted. Using tailored actions during parsing enables excel-
lent performances, comparable to usual parsers, but using
similar tricks. Then again modularity is lost: user actions
need to be modified when mixing several languages.

Alternatively some generated parsers directly build the
Parse Tree (PT) / Abstract Syntax Tree (AST). Scanner-
less Generalized LR (SGLR) [18] is one such tool; if the
input is ambiguous it yields a parse forest that a latter pass
is expected to prune (Section 2).

Flexible Front-ends State of the art technologies maxi-
mize reuse, including of front-ends. This is in sharp contrast
with the traditional front-ends that embed actions tailored
to the job at hand: even if at some time the grammar was
taken from a grammar base, hand editing made it diverge
from its root. Using a formalism such as Syntax Definition
Formalism (SDF) [17] together with a generic parser such
as SGLR [18] makes it possible to design a library of pro-
gram transformation components: parser, pretty-printer etc.
The grammar behaves as a contract for the whole tool-chain
[10]. These components can be used off-the-shelf, or mod-
ified in a modular way for a specific task.

Flexible front-ends unleash a host of new possibilities:
Domain Specific Languages (DSLs) can be embedded in
host languages, local idioms can be normalized (e.g., trans-
lation from GNU C to ISO C), etc. The METABORG
method [8, 7] uses Dryad, a flexible Java front-end, together
with a toolchain to implement assimilation, i.e., the compi-
lation of extended Java down to regular Java. The authors
demonstrate METABORG by hosting within Java a Domain
Specific Embedded Language (DSEL) for Swing interface
design, another for regular expressions, and another for Java
Abstract Syntax Tree (AST) handling.

Unfortunately no such framework is available for C, let
alone for C++. The Transformers project [13] aims at pro-
viding C (and eventually C++) flexible front-ends. Trans-
formers is free-software covered by the GNU GPL, freely
available on the Internet.

Tools for Program Transformation Flexibility results
from tight common conventions between the tools, we
chose SDF as the spine for the Transformers project and the
Stratego/XT tool set [21]. This collection of tools provides
language generic components for the whole processing. In
particular the Stratego programming language [19] provides
powerful term rewriting features, controlled and composed
by rewriting strategies. A rich set of operators allows to
build arbitrarily complex transformations (i.e., strategies)
from simple atomic ones. Context sensitive transformations
are easily coped with thanks to dynamic (rewriting) rules.
Finally, thanks to a tight integration with SDF, Stratego fea-
tures concrete syntax: although rewriting rules do transform
abstract syntax trees, rules can be written in the target’s lan-
guage concrete syntax [20].

Although C and C++ front-ends already exist, two
foundamental limitations prompted the design of an
SDF/SGLR support for C and C++: firstly no other formal-
ism features an equivalent level of modularity, and secondly
this is mandated to enjoy the benefits of C or C++ concrete
syntax in Stratego.

contex t−f r e e syntax
” t r ue ” −> Bool
” f a l s e ” −> Bool

Bool ” | ” Bool −> Bool

This grammar is taken from [5]. Contrary to the Backus
Naur Form (BNF) tradition, in SDF arrows are oriented
as reductions, not productions.

Figure 1. A simple ambiguous SDF grammar.

SGLR
parser

C
source

Parse
forest

Parse
tree

AST Transformations AST Pretty
printer

C
source

Standard
C compiler

Concrete syntax to abstract syntax

Disambiguation

Given a C grammar written in SDF, the SGLR parser
reads the text and yields a set of parse trees: a parse
forest. A disambiguation step keeps a single parse tree
(Section 2), transformed into an AST suitable for the
transformation(s). Finally the AST is pretty-printed
back into compiler-ready C source text.

Figure 2. A C program transformation chain

2. Disambiguation chain

The decomposition of the analysis of context-sensitive
languages in two steps, (context-free ambiguous) parsing
and then disambiguation, is well known and well described
in the literature [11, 5, 8]. The main contribution of this
paper is demonstrating that AGs, extended to support ambi-
guities, provide a nice way to implement such filters.

As a running example, consider the simple ambiguous
SDF grammar from Figure 1. The associativity of | is un-
specified, leaving two possible syntactic analysis of true
| true | true. Such an ambiguity can be handled dur-
ing the construction of the parser. Nevertheless we use it
because it is extremely simple and already discussed by [5].
[16] discusses a more complex yet simple ambiguous lan-
guage (Section 5.1).

The following sections follow the stream depicted in Fig-
ure 2 from the original source text, down to the possibly
transformed final source text.

2.1. Upstream

Before attribute evaluation several phases may have been
run. For instance, if we were to process C or C++, one would
have to run the preprocessor to handle all the # directives

2

and macros. SGLR might be run by this phase, but whatever
the architecture of the upstream phase, it must result in a
(possibly ambiguous) PT.

In our running example, the analysis of a simple phrase
such as true | true | true yields an ambiguous
PT, which represents the two possible analysis1: (true
| true) | true and true | (true | true). In
the following, we chose the former, corresponding to the
left associativity.

2.2. Attributes

We propose the use of AGs to specify context-sensitive
rules. Attribute Grammars (AGs) [12] is a formalism
that supports syntax directed semantic analysis: (grammar)
rules are decorated with a set of equations that relate a
node’s attributes with those of its parents and/or children.
AGs allow to focus on local aspects, leaving the global eval-
uation order aside, under the responsibility of a generic en-
gine. Although AGs cannot modify the trees, their use for
disambiguation is straightforward. Attributes convey infor-
mation, e.g., a symbol table. Conflicting branches of the
parse forest are flagged, and a (language generic) filter is
run afterward on the parse forest, pruning inconsistent al-
ternatives.

Attribute Evaluation. In our implementation, rules relat-
ing attribute values are attached to the SDF grammar as an-
notations of type attributes. In the running example, left
associativity expressed locally to a |-node stands as “no
right-child of a |-node is a |-node”. The following example
presents a straightforward implementation of this idea.

contex t−f r e e syntax
” t r ue ” | ” f a l s e ” −> Bool

{ a t t r i b u t e s (a s s o c :
r o o t . i s a t o m := t rue

) }

b1 : Bool ” | ” b2 : Bool −> Bool
{ a t t r i b u t e s (a s s o c :

r o o t . i s a t o m := f a l s e
r o o t . ok := b2 . i s a t o m

) }

The symbol root always denotes the root of the node:
the right-hand side of the (SDF-)rule. The user may use
labels such as b1/b2 to refer to symbols. A single attribute
is atom is computed for each node. The special attribute
ok specifies whether the node is valid or not.

Technically the computation of the attributes is per-
formed by the evaluator compiled from an AG. Its con-
struction is presented in Section 3. It runs on a PT and yields

1The parentheses are not part of the language under study, they are used
as meta-notation to distinguish the alternatives.

an attributed PT, i.e., a PT whose nodes are decorated by at-
tribute values. It is thanks to the extreme flexibility of the
PT format, AsFix2, and the tools that process it that we can
decorate it so easily.

The evaluation of an ambiguous AG is somewhat dif-
ferent from the usual case because a synthesized attribute
could have different values on different branches of an am-
biguity. To select the right one, the evaluator depends on
the ok attribute. Indeed, directly or indirectly, every synthe-
sized attribute should depend on an ok. If ok is false, the
value of synthesized attribute is fail, which propagates to
“infected” attribute values. In the end, the ambiguity node
is presented only with a set of at most one possible value;
if it turns out all the values fail, the ambiguity node’s at-
tribute itself is set to fail.

This design frees the user from having to explicitly carry
the ok attribute everywhere. It is comparable to an excep-
tion system which destroys a branch of a computation until
an exception handler is met: an amb node.

Pruning & Checking. The evaluation phase is pure: it does
not modify the PT, it merely decorates its nodes. In partic-
ular it flags invalid alternatives of an ambiguous PT with a
false ok attribute. A filter then prunes invalid branches, and
afterwards another makes sure no ambiguity remains.

2.3. Downstream

Although they fall outside the scope of this paper, it is
interesting to introduce passes that are typically run once
an unambiguous PT is obtained. Implosion transforms the
PT into an AST: basically nodes are no longer labeled by
their corresponding production rule, but by simple labels,
constructors, also specified as addition SDF rule annota-
tions. For instance a PT node labeled by Bool | Bool
-> Bool will implode into an AST node labeled by a sim-
ple constructor Or. This AST is the ideal format to run
program transformations (1). Such transformations include
software renovation, assimilation, and so on. Alternatively
data can be extracted, such as code metrics. Finally, the
AST is pretty-printed back into a source file.

3. Attribute Grammars in SDF

The generation and compilation of an AG evaluator for a
specific grammar comprises several steps detailed below. A
set of SDF modules with AG rules (Section 3.1) are packed
together and preprocessed (Section 3.2), its AG rules are
checked and completed (Section 3.3), and finally compiled
into an evaluator and a parse table (Section 3.4).

3

3.1. Attribute Rules in SDF

From the point of view of syntax, there are many avail-
able options to specify attribute computation rules. Because
developing an AG system for SDF was not our primary
goal, we made a number of decisions to simplify the de-
sign. In the long run, several of these shortcuts should be
reconsidered (Section 5.2).

We embed attribute rules in the SDF grammar. The ratio-
nale is that since we use AG to disambiguate an ambiguous
grammar, the disambiguation information really belongs to
the grammar itself. As a matter of fact, this is not different
from embedding precedence and associativity information
in the grammar, which is already the case in SDF. Actually
SDF features several other disambiguation types of built-in
filters [6].

Rules are embedded as regular SDF annotations, there-
fore we can use the usual SDF tool set: no additional de-
velopment and maintenance is needed. As a natural con-
sequence, our disambiguation filters benefit from the ex-
act same concept of modularity as the SDF modules them-
selves. We can freely mix SDF modules: the disambigua-
tion AG taking care of context-sensitivity is also inter-
mixed. Of course, additional disambiguation rules might
be needed.

3.2. Grammar Modules Preprocessing

Before generating the attribute evaluator several prepro-
cessing phases take place. First, pack-esdf, an extended
version of the pack-sdf tool from Stratego/XT, gathers
and checks SDF grammar dependencies, and produces a
self-contained unique grammar file. Some tweaks are also
used to transform this unique file into a form suitable for
sdf2table, the off-the-shelf parse-table generator. These
parse tables are extremely rich and contain all the data
needed to generate an AG evaluator: the production rules,
the symbols labels, and all the annotations, including at-
tribute rules.

3.3. Completion and Checking

The attr-defs tool processes these parse tables to
implement a number of features such as automatic propa-
gation. Indeed, some attributes such as symbol tables virtu-
ally traverse the whole PT; writing down their propagation
is tedious and error prone. Support for synthesized (bottom
up), inherited (top down), and chain (left to right) attributes
is implemented. Without such a feature one could no longer
benefit from operators such as *, +, | and so forth: one
would have to decompose into a set of plain syntax rules
spelling out the detail of the propagation of attributes. In

other words, without such a feature no AG system can pre-
tend to be modular.

Cycles in attribute dependencies are looked using an al-
gorithm from [12]. Because attr-defs is basically a
graph cruncher, a data type with which Stratego is uneasy,
it was rewritten in C++.

3.4. Evaluator Generation

The last module, attrc, handles two issues. First it
removes all the AG related data to produce parse tables as
expected by SGLR. Second and foremost, it generates the
attribute evaluator.

This evaluator uses a strategy based on attribute depen-
dencies to compute the order of evaluation. In this respect
laziness is a nice feature that virtually determines the eval-
uation order by itself, a fact used in the implementation of
Utrecht University Attribute Grammar System (UU-AG) in
the Haskell lazy functional programming language [1]. To
benefit from laziness, we generate a single (huge) Stratego
program compiled by a Stratego compiler modified to sup-
port a weak form of laziness. This weak support consists
in implementing all the attribute values as functions with
memoization: the first time its value is requested, it is com-
puted and cached for subsequent calls.

4. Case Study: C-Front

As a real world experiment of our AG system, we report
its use to disambiguate ISO C 99. Although C is one of
the most used languages, there are few flexible front-ends
usable off-the-self. The front-end we describe aims at filling
this gap for SDF users.

4.1. An SDF Attribute Grammar for C

In order to enable the experimentation of extensions to
the standard and to minimize the risk of recognizing a lan-
guage very close to, but different from the standard, we
chose to remain close to the grammar as specified by the
C standard [9]. As a consequence the style is sometimes a
bit convoluted and unnatural: not all the SDF features are
used; for instance precedence and associativity are encoded
in the grammar via additional non-terminals and rules. This
results in bigger ASTs.

The C grammar counts 126 symbols and 356 rules, split
into 53 small and manageable sub-grammars. The bound-
aries of these sub-grammars were chosen to address coher-
ent, atomic, related issues; they are finer than those of the
standard that breaks the grammar in only 4 parts [9, Annex
A]. The AG part of the grammar counts 10 different kinds

4

Filter Duration (s)
pack-esdf 3.12

misc. processing 9.31
sdf2table 7.28
attr-defs 0.41

attrc 10.08
Stratego compilation 112.95

C compilation 32.35
Total 175.54

The experiment was run on a P4 3Ghz with 1Gb RAM.
The memory footprint is below 120Mb.

Figure 3. Compile time performances

of attributes, and 190 attribute rules. The completion of at-
tribute rules with automatic propagation raises that count up
to 1183 (Section 3.3).

4.2. Performance

Efficiency is measured in two different contexts: the
compilation of an AG, and then its execution.

Compile time.
The compilation of the evaluator is slow but bearable:

three minutes (Figure 3). Interestingly a significant portion
of the computation time is spent uselessly in pretty-printing
(aka, unparsing) at the end of a tool, immediately followed
by parsing by the following tool. This will be easily solved
by the authors of the tools, since they all share the compact
binary representation of trees, ATerms [3].

The resulting front-end passes all its test suite, composed
of about 800 tests from the GCC test suite (the tests that
were left out address either GNU extensions, or issues not
related to parsing) plus 100 additional tests tailored to exer-
cise the disambiguation.

Run time.
Finding large programs in standard C, to bench our dis-

ambiguating chain, turned out to be troublesome. In par-
ticular, GNU C extensions are fairly commonly used; its
support in our C front-end is future work.

The figures are both reassuring, and disturbing. Indeed,
the run time of the disambiguation filter is acceptable in
most situations, and we are actually confident that several ad
hoc optimizations could significantly cut it down. Unfortu-
nately the performance of the rest of the tool-chain is harder
to improve. As a matter of fact, the slowness of SGLR has
already been reported [14]. It has been said that in the fu-
ture SGLR might directly produce an AST instead of a PT,
a much smaller data structure. More ideas for speed im-
provements are proposed in Section 5.2.

5. Discussion

5.1. Other works

Algebraic Specification Language & Syntax Defini-
tion Formalism (ASF+SDF) [4] is a complete environ-
ment that parallels SDF grammar modules with ASF equa-
tion modules. ASF is a declarative term rewriting language
featuring concrete syntax, conditional rewrite rules, and
traversal functions. Given an ambiguous grammar, ASF
can be educated to process its extension with amb(iguity)
nodes. Then algebraic specifications prune invalid alter-
natives. This setup is presented by [5]. Their approach
shares several features with ours, most prominently declar-
ativity. Indeed ASF equations are very comparable to at-
tribute rules: one focuses only on the local computation,
leaving the global evaluation order aside. Some modular-
ity follows as a natural consequence, but with performance
issues.

In Stratego, rewriting strategies allow to specify evalua-
tion orders. While strategies are comparable to ASF+SDF’s
traversal functions, the concept is pushed much further.
Strategies are explicit and programmable: starting with a
set of primitive strategies and strategy combinators, the user
can design higher level strategies. Early experiments of
a C++ disambiguation filter in Stratego demonstrated that
it is able to tackle its most difficult part, that related to
template. Since then, benefiting from more recent fea-
tures of Stratego (in particular concrete syntax and dynamic
rewriting rules), Dryad, the Java front-end developed at
the Utrecht University, demonstrated that the approach pro-
posed by the METABORG method [8, 7] is very successful
and efficient.

In both cases the user has to spell out the traversal order,
either by choosing it, or programming it. AGs frees the
developer from this task, which also enables an attractive
form of modularity: composing two components will create
a whole new traversal order, unrelated to the two “primitive”
traversals. This order is also naturally efficient. A more
extensive comparison similar to [16] is underway.

5.2. Future Work

Syntax. The current syntax can be improved in many ways.
Probably foremost, the fact that it is physically bound to
its production rule goes against the separation of concerns.
This simplification is acceptable for our current application
— disambiguation — but if new applications, such as type-
checking, were to be developed, they would add clutter to
the grammar. A better designed DSL should also include
support to declare attributes, declare their special properties
(such as default propagation rules) etc. much as is done in
UU-AG [1].

5

Queens HelloW Lemon Eval
Lines of code 56 448 4 135 28 392
Ambiguities 78 103 6 410 68 195

PT Sizes Tree Mem Tree Mem Tree Mem Tree Mem
Ambiguous 10 14 63 62 912 642 10 280 5 689
Attributed 9 28 109 403 813 2 884 7 625 19 661

Final 15 162 1 104 5 497
Duration s % s % s % s %

Preprocessing 0.09 29 0.2 2 0.2 1 0.2 1
Parsing 0.04 12 1.3 33 4.8 17 33.6 10

Concatenation 0.01 3 0.7 18 1.5 5 3.2 1
Evaluation 0.07 22 0.8 20 11.4 40 177.6 55

Pruning 0.05 16 0.5 13 5.6 20 60.4 18
Cleaning 0.01 3 0.2 4 1.5 5 12.2 3
Checking 0.01 3 0.1 1 0.6 2 4.6 2

Conversion 0.03 9 0.2 3 2.1 7 29.3 9
Total 0.31 100 3.8 100 28.0 100 322.5 100

Queens is an extremely short program that includes no header. HelloW is the simple “hello, world” program with an #include
<stdio.h>. Lemon is a parser generator that fits in a single C file. Eval is the AG evaluator for C generated in C by the
Stratego compiler. The number of lines was computed by sloccount. The sizes of the Parse Tree count the total number
of nodes and its memory footprint in Kb; the measurements were performed before the disambiguation (Ambiguous), after the
disambiguation and pruning (Attributed), and after the removal of the attributes (Final). The timings were performed on a P4
3Ghz with 3Gb RAM.

Figure 4. Running time of the C-Transformers chain

In parallel some idioms could be isolated for frequent
types of disambiguation schemes, for instance the depen-
dency on the kind of an identifier (a type name? a value
name?), and a dedicated syntax could be submitted.

Performance. The current run time enables to experiment
C program transformations, explored in [2]. Several minor
optimizations can probably cut down the execution time,
nevertheless we believe that a better set up would be to eval-
uate the attributes during parse time. While it is clear that
parsers that automatically build an PT or AST are an im-
provement over hand-written user actions à la Yacc, it is
also a significant loss in performance: none of the authors
believes this technique will ever be able to compete with in-
dustrial strength compilers such as the GNU C++ Compiler
that includes parse-time disambiguation actions. The true
added value is in modularity and separation of concerns,
not the physical separation of phases. Provided modularity
and separation of concerns are available there is no reason
to banish the possibility to generate a tailored parser. The
benefits are immediate: because most real-world ambigu-
ities are solved by a simple left-to-right reading, most of
the ambiguous nodes would not even be built. The peak of
memory consumption, the size of the graph the evaluator
would have to compute, would both become much smaller,

henceforth, much faster to process. As an example out of
68 195 ambiguities in Eval in Figure 4 no less than 58 460
are due to value identifiers that can either denote a variable
name, or a enum value. This possibility to disambiguate
at parse time is specific to AGs. This requires a complete
rewrite of SDF, a whole topic in itself.

6. Conclusion

We have proposed a new declarative approach to the
specification of context-sensitivity using ambiguous at-
tribute grammars. We report about the implementation of
a such tool well integrated in SDF frameworks such as
ASF+SDF or Stratego/XT. This tool was used to implement
a fully C standard compliant flexible front-end. These ex-
periments demonstrated that Attribute Grammars are very
well suited to the generation of disambiguation filters. In
particular, their specifications are very concise, and modu-
lar. The run time performance of the whole system are very
satisfying, enabling the handling of C in any SDF powered
transformation framework.

Acknowledgments The authors thank Karl Trygve Kalle-
berg for his comments on earlier drafts.

6

References

[1] A. Baars, D. Swierstra, and A. Lh. Utrecht University At-
tribute Grammar System, 1999. http://www.cs.uu.
nl/wiki/Center/AttributeGrammarSystem.

[2] A. Borghi, V. David, and A. Demaille. C-transformers - a
framework to write C program transformations. ACM Cross-
roads, ???(??):???, ??? 2006. Accepted.

[3] M. van den Brand, H. de Jong, P. Klint, and P. Olivier. Ef-
ficient annotated terms. Software, Practice and Experience,
30(3):259–291, 2000.

[4] M. van den Brand, A. v. Deursen, J. Heering, H. d.
Jonge, M. d. Jonge, T. Kuipers, P. Klint, L. Moonen,
P. Olivier, J. Scheerder, J. Vinju, E. Visser, and J. Visser.
The ASF+SDF Meta-Environment: a component-based lan-
guage development environment. In R. Wilhelm, editor,
Compiler Construction 2001 (CC’2001), volume 2027 of
LNCS, pages 365 – 370. Springer-Verlag, 2001.

[5] M. van den Brand, S. Klusener, L. Moonen, and J. J. Vinju.
Generalized parsing and term rewriting: Semantics driven
disambiguation. volume 82 of Electronic Notes in Theoreti-
cal Computer Science. Elsevier Science Publishers, 2003.

[6] M. G. J. van den Brand, J. Scheerder, J. Vinju, and
E. Visser. Disambiguation filters for scannerless general-
ized LR parsers. In N. Horspool, editor, Compiler Construc-
tion (CC’02), volume 2304 of Lecture Notes in Computer
Science, pages 143–158, Grenoble, France, April 2002.
Springer-Verlag.

[7] M. Bravenboer, R. de Groot, and E. Visser. Metaborg in ac-
tion: Examples of domain-specific language embedding and
assimilation using Stratego/XT. In Proceedings of the Sum-
mer School on Generative and Transformational Techniques
in Software Engineering (GTTSE’05), Braga, Portugal, July
2005.

[8] M. Bravenboer and E. Visser. Concrete syntax for ob-
jects. Domain-specific language embedding and assimila-
tion without restrictions. In D. C. Schmidt, editor, Pro-
ceedings of the 19th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA’04), pages 365–383, Vancouver, Canada,
October 2004. ACM Press.

[9] ISO/IEC. ISO/IEC 9899:1999 (E). Programming languages
- C, 1999.

[10] M. de Jonge and J. Visser. Grammars as contracts. In G. But-
ler and S. Jarzabek, editors, Generative and Component-
Based Software Engineering, Second International Sympo-
sion, GCSE 2000, volume 2177 of Lecture Notes in Com-
puter Science, pages 85–99, Erfurt, Germany, Oct. 2001.
Springer.

[11] P. Klint and E. Visser. Using filters for the disambigua-
tion of context-free grammars. In G. Pighizzini and P. San
Pietro, editors, Proc. ASMICS Workshop on Parsing Theory,
pages 1–20, Milano, Italy, October 1994. Tech. Rep. 126–
1994, Dipartimento di Scienze dell’Informazione, Univer-
sità di Milano.

[12] D. E. Knuth. Semantics of context-free languages. Journal
of Mathematical System Theory, pages 127–145, 1968.

[13] LRDE — EPITA Research and Developpement Labo-
ratory. Transformers home page, 2005. http://
transformers.lrde.epita.fr.

[14] S. McPeak. Elkhound: A Fast, Practical GLR Parser Gen-
erator, Dec 2002. http://www.cs.berkeley.edu/
∼smcpeak/elkhound/.

[15] M. Tomita. Efficient Parsing for Natural Language: A Fast
Algorithm for Practical Systems. Kluwer Academic Pub-
lishers, 1985.

[16] C. Vasseur. Semantics driven disambiguation: a com-
parison of different approaches. Technical report,
LRDE, 2004. http://publis.lrde.epita.fr/
20041201-Seminar-Vasseur-Disambiguation-Report.

[17] E. Visser. A family of syntax definition formalisms. Tech-
nical Report P9706, Programming Research Group, Univer-
sity of Amsterdam, July 1997.

[18] E. Visser. Scannerless generalized-LR parsing. Technical
Report P9707, Programming Research Group, University of
Amsterdam, July 1997.

[19] E. Visser. Stratego: A language for program transformation
based on rewriting strategies. System description of Strat-
ego 0.5. In A. Middeldorp, editor, Rewriting Techniques
and Applications (RTA’01), volume 2051 of Lecture Notes
in Computer Science, pages 357–361. Springer-Verlag, May
2001.

[20] E. Visser. Meta-programming with concrete object syntax.
In D. Batory, C. Consel, and W. Taha, editors, Genera-
tive Programming and Component Engineering (GPCE’02),
volume 2487 of Lecture Notes in Computer Science, pages
299–315, Pittsburgh, PA, USA, October 2002. Springer-
Verlag.

[21] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-0.9. In
C. Lengauer et al., editors, Domain-Specific Program Gen-
eration, volume 3016 of Lecture Notes in Computer Science,
pages 216–238. Spinger-Verlag, June 2004.

7

http://www.cs.uu.nl/wiki/Center/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/Center/AttributeGrammarSystem
http://transformers.lrde.epita.fr
http://transformers.lrde.epita.fr
http://www.cs.berkeley.edu/~smcpeak/elkhound/
http://www.cs.berkeley.edu/~smcpeak/elkhound/
http://publis.lrde.epita.fr/20041201-Seminar-Vasseur-Disambiguation-Report
http://publis.lrde.epita.fr/20041201-Seminar-Vasseur-Disambiguation-Report

	1 . Context
	2 . Disambiguation chain
	2.1 . Upstream
	2.2 . Attributes
	2.3 . Downstream

	3 . Attribute Grammars in SDF
	3.1 . Attribute Rules in sdf
	3.2 . Grammar Modules Preprocessing
	3.3 . Completion and Checking
	3.4 . Evaluator Generation

	4 . Case Study: C-Front
	4.1 . An sdf Attribute Grammar for C
	4.2 . Performance

	5 . Discussion
	5.1 . Other works
	5.2 . Future Work

	6 . Conclusion

