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Abstract
In this paper, a new language identification system is presented
based on the total variability approach previously developed in
the field of speaker identification. Various techniques are em-
ployed to extract the most salient features in the lower dimen-
sional i-vector space and the system developed results in excel-
lent performance on the 2009 LRE evaluation set without the
need for any post-processing or backend techniques. Additional
performance gains are observed when the system is combined
with other acoustic systems.
Index Terms: Ivector representation, Support Vector Ma-
chines, Linear Discriminant Analysis, Neighborhood Compo-
nent Analysis, Within Class Covariance Normalization.

1. Introduction
Language identification (LID) refers to the process of automat-
ically identifying the language spoken in a speech sample usu-
ally under the assumption that a single language is present. Over
the years a number of techniques have been developed to per-
form this task ranging from high level systems, typically focus-
ing on phones and the frequency of the sequences of phones ob-
served in each target language, to systems based on the spectral
characteristics of each language usually referred to as acoustic
systems. Gaussian mixture models (GMM) [1, 2] and support
vector machines (SVM) [3] have been the classifiers of choice
over recent years for acoustic modeling, consistently outper-
forming their high-level counterparts. For the GMM and SVM
classifiers, a number of techniques developed within the speaker
recognition area have shown excellent performance when ap-
plied to the language identification task. For example, tech-
niques such as nuisance attribute projection (NAP) [3, 4] and
factor analysis [5, 11] that have provided notable improvements
over the last few years to speaker identification systems have
also resulted in performance gains for acoustic language identi-
fication systems.

In this paper, we continue the trend of borrowing techniques
developed for speaker recognition and applying them to the lan-
guage identification task. In particular, we described the appli-
cation of the i-vector or total variability space approach to the
language identification task. The i-vector representation is a
data-driven approach for feature extraction that provides an ele-
gant and general framework for audio classification and identi-
fication. It consists of mapping a sequence of frames for a given
utterance into a low-dimensional vector space, referred to as the
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total variability space, based on a factor analysis technique. We
evaluate our system using different techniques of dimensional-
ity reduction in order to compensate for the intersession effects.
These approaches include Linear Discriminant Analysis (LDA),
Neighborhood Component Analysis (NCA) [6] and their com-
bination with Within Class Covariance Normalization (WCCN)
[7]. Every approach defines a new basis that maximizes the dis-
crimination between the different language classes based on the
defined criterion.

The remainder of the paper is as follows. Section 2 de-
scribes the experimental system including the total variability
approach and scoring mechanism with alternatives for process-
ing the vectors within the lower dimensional space. Section 3
presents the experimental setup with section 4 describing the re-
sults obtained for the system including fusion with other acous-
tic systems. Section 5 includes conclusions and avenues for
future work.

2. System description
2.1. Feature extraction

The feature extraction stage used in this work is similar to that
employed in [8]. Speech is windowed at 20ms with a 10ms
frame rate filtered through a mel-scale filter bank and then
RASTA. Each vector is then converted into a 56-dimensional
vector following a shifted delta cepstral parameterization using
a 7-1-3-7 scheme and concatenation to the static cepstral coeffi-
cients. Speech activity detection is then applied and the speech
is normalized following a standard normal distribution.

2.2. Total variability modeling

The total variability space or i-vector approach concept was
first introduced in the context of speaker verification [9, 10].
This approach was motivated by the success of the Joint Fac-
tor Analysis [11], which models both speaker and intersession
subspaces separately. Unlike JFA, the total variability approach
models all the important variability in the same low dimensional
subspace. The basic idea of the total variability space consists
of adapting the Universal Background Model (UBM) (which is
trained on all the available language data for this paper) to a
set of given speech frames based on the eigenvoice adaptation
technique in order to estimate the utterance dependent GMM.
The eigenvoice adaptation technique operates on the assump-
tion that all the pertinent variability is captured by a low rank
rectangular matrix T named the Total variability matrix. The
GMM supervector (vector created by stacking all mean vectors
from the GMM) for a given utterance can be modeled as follows

M = m+ Tw + ε (1)
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where m is the Universal Background Model supervector, the
i-vector w is a random vector having a normal distribution
N (0, I), and the residual noise term ε ∼ N (0,Σ) models the
variability not captured by the matrix T . In our new model-
ing, we apply an SVM directly to the low dimensional i-vector
(which is the coordinate of the speech segment in the total vari-
ability space) instead of applying the SVM in the GMM super-
vector space as done in [12].

The process of training the total variability matrix T is a
little bit different compared to learning the eigenvoice adapta-
tion matrix [13]. In eigenvoice training for speaker recognition,
all the recordings of a given speaker are considered to belong
to the same person; in the case of the total variability matrix
however, we pretend that every utterance from a given speaker
is produced by different speakers. If we follow the same total
variability matrix training process for language identification,
we assume that every utterance for a given language class is
considered a different class. Additional details on the i-vector
extraction procedure are described in [10].

2.3. Support Vector Machine and cosine kernel

Support vector machines are supervised binary classifiers. Pro-
posed in [14], they are based on the idea of finding, from a set of
learning examples X = {(w1, y1) , (w2, y2) , ..., (wN , YN)} ,
the best linear separator H for distinguishing between the pos-
itive examples (yi = +1) and negative examples (yi = −1).
When the kernel function is used the SVM separator is defining
as follow.

H : RN → R

w �→ H(w) =
m∑
i=1

α
∗
i yik(w,wi) + b0 (2)

where α∗i and b0 are the SVM parameters set during the train-
ing step. As in the case of speaker identification, we considered
several kernel functions with the best set of results obtained by
using the cosine kernel function. This kernel is linear and com-
puted as follows:

k (w1, w2) =
wt

1 . w2

‖w1‖ ‖w2‖
(3)

where w1 and w2 correspond to two i-vectors. There are two
strategies to extend the SVM approach to a multi-class problem.
The first strategy is the one versus one separator, which consists
of estimating a separator between the target language class and
each of the competing classes with the final decision obtained
by a majority vote over all classifiers. The second approach,
which is used in our system, is based on the one versus all strat-
egy. For each target class, we consider its samples as positive
examples with all the other classes samples corresponding to
negative examples. The number of separators in this approach
corresponds to the number of classes. The class label of a given
test sample is based on the separator that obtains the highest
score.

2.4. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a very popular technique
for dimension reduction in the machine learning field. It has the
advantage of defining new axes that maximize the discrimina-
tion between the different classes. In the context of language
recognition, each class represents a different language. The
LDA procedure consists of finding the basis that maximizes

the between classes variability while minimizing the intra-class
variability. The LDA axes are then defined by a projection ma-
trix A, which contains the eigenvectors corresponding to the
highest eigenvalues in the decomposition. The solution is ob-
tained by solving the general eigenvalue problem.

Σbv = λΣwv (4)

where λ is the diagonal matrix of eigenvalues. The matrices
Σb and Σw correspond to the between classes and within class
covariance matrices, respectively.

Σb =

L∑
i=1

(wi −w) (wi − w)t (5)

Σw =
L∑

l=1

1

nl

nl∑
i=1

(
w

l
i −wl

)(
w

l
i −wl

)t

(6)

where wl =
1

nl

∑nl

i=1
wl

i is the mean of the i-vectors for each
language class, L is the total number of language classes and
nl is the number of utterances for each language l. We assume
that the mean vector of the entire i-vectors w is equal to the
null vector since they have a standard Normal distribution w ∼
N (0, I) with zero mean.

Based on the performance of the combination of the LDA
and within class covariance normalization combination for
speaker verification [7], we proposed two different combina-
tions. The first combination is exactly the same LDA and
WCCN combination as done in [9, 10]

k (w1, w2) =

(
Atw1

)t
√

(Atw1)
t
W−1 (Atw1)

W
−1

(
Atw2

)
√

(Atw2)
t
W−1 (Atw2)

(7)

whereW is the within class covariance matrix estimated as fol-
lows:

W =
1

L

L∑
l=1

1

nl

nl∑
l=1

(
w

l
i − wl

)(
w

l
i − wl

)t

(8)

where A is the LDA projection matrix, wl = 1

nl

∑nl

i=1
Atwl

i

is the mean of the LDA projected i-vectors for each language l,
L is the total number of language classes, and nl is the number
of ivectors of each language l. The second combination uses
the diagonal eigenvalues matrix to normalize the cosine kernel
between two i-vectors w1 and w2.

k (w1, w2) =

(
Atw1

)t
λ
(
Atw2

)
√

(Atw1)
t
λ (Atw1)

√
(Atw2)

t
λ (Atw2)

(9)
where λ is the diagonal matrix of eigenvalues. Both kernel nor-
malization matrices, WCCN and the diagonal eigenvalues ma-
trix assign more importance to the dimensions with higher be-
tween classes variance during the cosine kernel computation.

2.5. Neighborhood component analysis

Neighborhood component analysis (NCA) is a dimension re-
duction technique [6]. It estimates a linear projection matrix
based on optimizing the leave-one-out criteria of the nearest
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neighborhood classifier on a given training data. Given a set of
i-vectors {w1, w2, ..., wN} of dimension d and the correspond-
ing language label set {y1, y2, ...., yN}, the NCA approach
learns a projection matrix B of dimension (p× d) that defines a
Mahalanobis distance metric, which maximizes the accuracy of
the nearest neighbor classifier in the projected space.

d (wi, wj) = (Bwi −Bwj)
t (Bwi −Bwj) (10)

The differentiable optimization criterion of the NCA is
based on a stochastic “soft” neighbor assignment in the pro-
jected space instead of using directly the k-nearest neighbored
classifier. Every vector i in the training set can select its neigh-
bor j with probability Pij , which is a softmax over Euclidean
distances in the transformed space. This probability is given by
the following equation

Pij =
exp

(
−‖Bwi −Bwj‖

2
)

∑
k �=i

exp
(
−‖Bwi −Bwk‖

2
) (11)

The NCA approach consists of maximizing the expected
number of samples that are classified using the leave one out
strategy on the training dataset. Lets define pi =

∑
j∈Ci

pij
which corresponds to the probability that a sample i will be
correctly classified and the set Ci = {j|classi = classj} con-
tains all the samples of the same class as vector i. The objective
function that needs to be optimized can be defined as follows:

f (B) =
∑
i

∑
j ∈ Cipij =

∑
i

Pi (12)

This objective function can be optimized by differentiating
f(B) with the respect to projection matrix B, which yields the
following gradient optimization rule.

∂f

∂B
= 2B

∑
i

⎛
⎝pi

∑
k

pikwikw
t
ik −

∑
j∈Ci

pijwijw
t
ij

⎞
⎠

(13)
where wij = wi − wj . It is clear that the function f(B) is
not a convex function. The choice of the initial matrix B is
crucial in the convergence of the algorithm. In our experiments,
the first initialization of the matrix B corresponds to the linear
discriminant analysis matrix. Similar to LDA, we tested the
combination of NCA and WCCN.

2.6. Backend

The backend system employed for the experiments described in
this paper is similar to the backend discussed in [8] and consists
of a per-system calibration stage followed by a linear fusion. As
in [8], the calibration stage employs a single discriminatively
trained Gaussian with shared covariance and is used for all du-
rations through a duration based parametric function.

3. Experimental setup
The data used for development of the systems are also similar to
that employed in [8] and includes two main sources of data, con-
versational telephone speech (CTS) and broadcast news (BN).
The CTS partition includes data from multiple corpora includ-
ing CallFriend, CallHome, Mixer, OHSU and the OGI-22 col-
lections. The BN partition includes data from VoA as supplied
by NIST and is processed as described in [8]. The data are
pooled and then divided into two partitions, a development par-
tition and a test partition with similar number of cuts on each
set.

Table 1: Results obtained for various i-vector dimensions and
speech durations. Performance is shown in EER.

30s 10s 3s
Dim = 200 4.3% 9.3% 18.3%
Dim = 300 4.4% 8.6% 18.3%
Dim = 400 3.9% 8.2% 17.9%
Dim = 500 4.0% 8.5% 17.6%

Table 2: Comparison of various ivector systems using differ-
ent intersession compensation techniques with GMM-MMI and
SVM-GSV. The results are given in EER on the NIST 2009
LRE.

30s 10s 3s
BB AB BB AB BB AB

LDA 4.6 2.4 9.2 4.8 19.2 14.2
LDA+eigen 4.1 2.4 8.1 4.8 18.1 14.2
LDA+WCCN 4.2 2.4 8.5 4.8 18.6 14.2
NCA 4.3 2.3 9.3 5.2 19.1 14.9
NCA+WCCN 3.9 2.3 8.6 5.2 18.5 14.9
MMI 7.9 2.3 10.8 4.4 17.9 12.9
SVM-GSV 7.5 2.3 11.2 5.0 20.4 15.4

The evaluation data used is the data defined by NIST for
the 2009 LRE and includes evaluation segments for 30s, 10s
and 3s and covers 23 language classes. For the results in this
paper, we focus on the closed set problem and do not include
the out-of-set data. The total variability space is based on an
UBM comprised by 2048 Gaussian components.

4. Results
In this section results are reported for an SVM classifier across
different dimensions of the total variability space. These exper-
iments are carried out for all different durations described in the
previous section. The purpose of these experiments is to define
the optimal i-vector dimensionality for language identification.
The results given in Table 1 are obtained without a backend
post-processing stage.

The results show that the most consistent performance
across all speech duration conditions is obtained with the 400
dimensional i-vectors. We will use this dimensionality for the
remainder of the paper.

4.1. Dimensionality reduction techniques

We evaluated several dimensionality reduction approaches and
results are presented in this section. All systems are based on
SVM approaches. We found that the best performances using
LDA and NCA were obtained when we reduce the dimension
from 400 to 23. We also compared the i-vector approach with
two other well known language identification systems. The first
system is the GMM approach based on the Maximum Mutual
Information (MMI) criteria [8]. The second system is a sup-
port vector machines system [7] based on the GMM supervec-
tor (GSV). The results are reported before (BB) and after (AB)
applying the backend.

There are a number of interesting results observed in Ta-
ble 2. First, the NCA and WCCN system outperforms all
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Table 3: Score fusion results between i-vector systems with the
GMM-MMI and SVM-GSV systems. The results are given in
EER on the NIST 2009 LRE.
ivector + MMI + SVM-GSV 30s 10s 3s
LDA 2.2% 3.9% 11.8%
LDA+eigen 2.3% 3.9% 11.9%
LDA+WCCN 2.3% 3.9% 11.9%
NCA 2.2% 4.0% 12.0%
NCA+WCCN 2.3% 4.0% 13.0%
GMM-MMI+SVM-GSV 2.2% 3.9% 12.1%

other systems before the backend and results in similar per-
formance to other systems on the 30s task. For the 10s and
3s tasks the best pre-backend performance is provided by the
LDA+eigenvalue normalization system with post-backend per-
formance being similar for the LDA systems. It is also clear that
the i-vector systems outperform the MMI and GSV systems be-
fore backend post-processing likely providing better calibration
without the need for a backend. However, the GMM-MMI sys-
tem still provides the best performance after the backend partic-
ularly on 10s and 3s tasks.

4.2. Fusion

In this section, fusion results are presented between the i-vector
systems, the GMM-MMI system and the SVM-GSV system.
The fusion is based on logistic regression as presented in [8].
We also present pairwise fusion results for the best combination
of a total variability system and either the GMM-MMI or the
GSV system for additional comparisons. The results are given
in Table 3.

The results show that adding the i-vector system in the fu-
sion did not help a lot in both speech duration conditions 30s
and 10s. However, we obtained more improvement in the 3s
condition when the EER decrease from 12.1% without i-vector
system to 11.8% with our system. We also notice that the fusion
based on the i-vector with LDA only achieved the best perfor-
mance in almost all conditions. Additional combination of the
GSV system with the NCA system shows a minor gain on the
30s task.

5. Conclusions
In this paper, we have presented results for a language recogni-
tion system using a total variability subspace approach and var-
ious techniques for enhancing the discriminative power within
the subspace. Results obtained are very competitive with state
of the art acoustic LID systems and generally do not require
backend post-processing to improve performance. The obtained
results showed additional improvements when combined with
these state of the art systems resulting in EER of 2.2% on the
2009 evaluation set.

In the future, we intend to continue exploring new ideas
for constructing the variability subspace and other techniques
for improving the discriminative power in the low dimensional
subspace. Additionally, we would like to extend the evaluation
to other classification techniques besides SVMs.
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