
A Set of Tools to Teach Compiler Construction

Akim Demaille Roland Levillain Benoı̂t Perrot

EPITA Research and Development Laboratory (LRDE)
Paris, France

13th Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE)

Universidad Politécnica de Madrid, Spain – July 2, 2008

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 1

Context and Motivation

The School
EPITA: a French engineering school teaching computer science to
graduate students.
Third year (among five) is dedicated to the core curriculum.
Strong practical emphasis on projects.

The Needs
Ten years ago, the school asked for a long and challenging project.
Should virtually be a potpourri of every subject from computer
science courses taught in third year.

A (Miraculous) Solution
A compiler construction project.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 2

Context and Motivation

The School
EPITA: a French engineering school teaching computer science to
graduate students.
Third year (among five) is dedicated to the core curriculum.
Strong practical emphasis on projects.

The Needs
Ten years ago, the school asked for a long and challenging project.
Should virtually be a potpourri of every subject from computer
science courses taught in third year.

A (Miraculous) Solution
A compiler construction project.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 2

Context and Motivation

The School
EPITA: a French engineering school teaching computer science to
graduate students.
Third year (among five) is dedicated to the core curriculum.
Strong practical emphasis on projects.

The Needs
Ten years ago, the school asked for a long and challenging project.
Should virtually be a potpourri of every subject from computer
science courses taught in third year.

A (Miraculous) Solution
A compiler construction project.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 2

Goals

Aim
Compiler construction as a by-product

Complete Project Specifications, implementation, documentation,
testing, distribution.

Several iterations 7 (optionally up to 11) steps, for 6 (resp. up to 9)
months.

Algorithmically challenging Applied use of well known data structures
and algorithms.

Team Management Project conducted in group of four students.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 3

Goals

Aim
Compiler construction as a by-product

Complete Project Specifications, implementation, documentation,
testing, distribution.

Several iterations 7 (optionally up to 11) steps, for 6 (resp. up to 9)
months.

Algorithmically challenging Applied use of well known data structures
and algorithms.

Team Management Project conducted in group of four students.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 3

Goals

Aim
Compiler construction as a by-product

Complete Project Specifications, implementation, documentation,
testing, distribution.

Several iterations 7 (optionally up to 11) steps, for 6 (resp. up to 9)
months.

Algorithmically challenging Applied use of well known data structures
and algorithms.

Team Management Project conducted in group of four students.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 3

Goals

Aim
Compiler construction as a by-product

Complete Project Specifications, implementation, documentation,
testing, distribution.

Several iterations 7 (optionally up to 11) steps, for 6 (resp. up to 9)
months.

Algorithmically challenging Applied use of well known data structures
and algorithms.

Team Management Project conducted in group of four students.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 3

Goals

Aim
Compiler construction as a by-product

Complete Project Specifications, implementation, documentation,
testing, distribution.

Several iterations 7 (optionally up to 11) steps, for 6 (resp. up to 9)
months.

Algorithmically challenging Applied use of well known data structures
and algorithms.

Team Management Project conducted in group of four students.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 3

Goals (cont.)

C++ Expressive power; uses both low- and high-level
constructs; industry standard.

Object Oriented (OO) Design and Design Pattern (DP) Practice
common OO idioms, apply DPs.

Development Tools Autotools, Doxygen, Flex, Bison, GDB, Valgrind,
Subversion, etc.

Understanding Computers Compiler and languages are tightly related
to computer architecture.

English Everything is to be written in English (code,
documentation, test).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 4

Goals (cont.)

C++ Expressive power; uses both low- and high-level
constructs; industry standard.

Object Oriented (OO) Design and Design Pattern (DP) Practice
common OO idioms, apply DPs.

Development Tools Autotools, Doxygen, Flex, Bison, GDB, Valgrind,
Subversion, etc.

Understanding Computers Compiler and languages are tightly related
to computer architecture.

English Everything is to be written in English (code,
documentation, test).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 4

Goals (cont.)

C++ Expressive power; uses both low- and high-level
constructs; industry standard.

Object Oriented (OO) Design and Design Pattern (DP) Practice
common OO idioms, apply DPs.

Development Tools Autotools, Doxygen, Flex, Bison, GDB, Valgrind,
Subversion, etc.

Understanding Computers Compiler and languages are tightly related
to computer architecture.

English Everything is to be written in English (code,
documentation, test).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 4

Goals (cont.)

C++ Expressive power; uses both low- and high-level
constructs; industry standard.

Object Oriented (OO) Design and Design Pattern (DP) Practice
common OO idioms, apply DPs.

Development Tools Autotools, Doxygen, Flex, Bison, GDB, Valgrind,
Subversion, etc.

Understanding Computers Compiler and languages are tightly related
to computer architecture.

English Everything is to be written in English (code,
documentation, test).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 4

Goals (cont.)

C++ Expressive power; uses both low- and high-level
constructs; industry standard.

Object Oriented (OO) Design and Design Pattern (DP) Practice
common OO idioms, apply DPs.

Development Tools Autotools, Doxygen, Flex, Bison, GDB, Valgrind,
Subversion, etc.

Understanding Computers Compiler and languages are tightly related
to computer architecture.

English Everything is to be written in English (code,
documentation, test).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 4

Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are
unlikely to ever design a compiler. [Debray, 2002]

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 5

Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are
unlikely to ever design a compiler. [Debray, 2002]

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 5

Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are
unlikely to ever design a compiler. [Debray, 2002]

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 5

Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are
unlikely to ever design a compiler. [Debray, 2002]

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 5

Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are
unlikely to ever design a compiler. [Debray, 2002]

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 5

Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are
unlikely to ever design a compiler. [Debray, 2002]

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 5

Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are
unlikely to ever design a compiler. [Debray, 2002]

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 5

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 6

The Tiger Project

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 7

The Tiger Project

A Compiler Construction Project Relevant to Core
Curriculum

Based on Andrew Appel’s Tiger language and Modern Compiler
Implementation books [Appel, 1998]...

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 8

The Tiger Project

A Compiler Construction Project Relevant to Core
Curriculum (cont.)

...and largely adapted [Demaille, 2005].
Compiler (to be) written in C++.
Initial Tiger language definition (a Pascal-descendant language,
dressed in a clean ML-like syntax).
Augmented with import statements, adjustable prelude, OO
constructs, etc.
Better defined (no implementation-defined behavior left).
More compiler modules and features than in the initial design.
In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 9

The Tiger Project

A Compiler Construction Project Relevant to Core
Curriculum (cont.)

...and largely adapted [Demaille, 2005].
Compiler (to be) written in C++.
Initial Tiger language definition (a Pascal-descendant language,
dressed in a clean ML-like syntax).
Augmented with import statements, adjustable prelude, OO
constructs, etc.
Better defined (no implementation-defined behavior left).
More compiler modules and features than in the initial design.
In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 9

The Tiger Project

A Compiler Construction Project Relevant to Core
Curriculum (cont.)

...and largely adapted [Demaille, 2005].
Compiler (to be) written in C++.
Initial Tiger language definition (a Pascal-descendant language,
dressed in a clean ML-like syntax).
Augmented with import statements, adjustable prelude, OO
constructs, etc.
Better defined (no implementation-defined behavior left).
More compiler modules and features than in the initial design.
In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 9

The Tiger Project

A Compiler Construction Project Relevant to Core
Curriculum (cont.)

...and largely adapted [Demaille, 2005].
Compiler (to be) written in C++.
Initial Tiger language definition (a Pascal-descendant language,
dressed in a clean ML-like syntax).
Augmented with import statements, adjustable prelude, OO
constructs, etc.
Better defined (no implementation-defined behavior left).
More compiler modules and features than in the initial design.
In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 9

The Tiger Project

Project’s Modus Operandi

The compiler is designed as a long pipe composed of several
modules.
The project is divided in several steps, where students have to
implement one (or two) module(s).
Code with gaps.
Work is evaluated by a program at each delivery.
Students defend their work every two steps in front of a teaching
assistant.
Several optional assignments are given as extra modules.
Motivated students can choose to proceed with the
implementation of the back-end of the compiler.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 10

The Tiger Project

Project’s Modus Operandi

The compiler is designed as a long pipe composed of several
modules.
The project is divided in several steps, where students have to
implement one (or two) module(s).
Code with gaps.
Work is evaluated by a program at each delivery.
Students defend their work every two steps in front of a teaching
assistant.
Several optional assignments are given as extra modules.
Motivated students can choose to proceed with the
implementation of the back-end of the compiler.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 10

The Tiger Project

Project’s Modus Operandi

The compiler is designed as a long pipe composed of several
modules.
The project is divided in several steps, where students have to
implement one (or two) module(s).
Code with gaps.
Work is evaluated by a program at each delivery.
Students defend their work every two steps in front of a teaching
assistant.
Several optional assignments are given as extra modules.
Motivated students can choose to proceed with the
implementation of the back-end of the compiler.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 10

The Tiger Project

Project’s Modus Operandi

The compiler is designed as a long pipe composed of several
modules.
The project is divided in several steps, where students have to
implement one (or two) module(s).
Code with gaps.
Work is evaluated by a program at each delivery.
Students defend their work every two steps in front of a teaching
assistant.
Several optional assignments are given as extra modules.
Motivated students can choose to proceed with the
implementation of the back-end of the compiler.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 10

The Tiger Project

A Compiler as A Long Pipe

Bind Type

Translate

CanonInstr. sel.Liveness an.Reg. alloc.

tokens ASTchars

IG

pre-asm

Parse

Bison AstGen bound
and typed

AST

HIR

MonoBURG

bound
AST

LIR

HAVM

asm

Nolimips

Scan

hand-written module generated module

parse.y

Flex

scan.l

mips.brg

ast.yml

interpretergenerator

generator input

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 11

The Tiger Project

A Compiler as A Long Pipe

Bind Type

Translate

CanonInstr. sel.Liveness an.Reg. alloc.

tokens ASTchars

IG

pre-asm

Parse

Bison AstGen bound
and typed

AST

HIR

MonoBURG

bound
AST

LIR

HAVM

asm

Nolimips

Scan

hand-written module generated module

parse.y

Flex

scan.l

mips.brg

ast.yml

interpretergenerator

generator input

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 11

The Tiger Project

A Compiler as A Long Pipe

Bind Type

Translate

CanonInstr. sel.Liveness an.Reg. alloc.

tokens ASTchars

IG

pre-asm

Parse

Bison AstGen bound
and typed

AST

HIR

MonoBURG

bound
AST

LIR

HAVM

asm

Nolimips

Scan

hand-written module generated module

parse.y

Flex

scan.l

mips.brg

ast.yml

interpretergenerator

generator input

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 11

The Tiger Project

Figures

9 years of existence.
250 students per year (on average).
Project done in groups of 4 (formerly 6) students.
7 mandatory steps (compiler front-end).
4 optional steps (compiler back-end).
Reference compiler: 25KLOC.
Students are expected to write about 5500 lines (or about 7000
lines, with the optional assignments).
250+ pages of documentation (reference manual
[Demaille, 2007b] and project assignments [Demaille, 2007a]).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 12

Compiler Components Generation

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 13

Compiler Components Generation

Generated Components

Many components of the Tiger compiler are generated.
Some generators are provided to the students, others are for
teachers’ use only.

Generated components (for both students & teachers)
The parser, generated by GNU Bison.
The code generator, generated by MonoBURG.

Generated components (for teachers only)
Data structures (classes) of the Abstract Syntax Tree (AST).
Traversals (visitors) of the AST.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 14

Compiler Components Generation

Generated Components

Many components of the Tiger compiler are generated.
Some generators are provided to the students, others are for
teachers’ use only.

Generated components (for both students & teachers)
The parser, generated by GNU Bison.
The code generator, generated by MonoBURG.

Generated components (for teachers only)
Data structures (classes) of the AST.
Traversals (visitors) of the AST.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 14

Compiler Components Generation

Generated Components

Many components of the Tiger compiler are generated.
Some generators are provided to the students, others are for
teachers’ use only.

Generated components (for both students & teachers)
The parser, generated by GNU Bison.
The code generator, generated by MonoBURG.

Generated components (for teachers only)
Data structures (classes) of the AST.
Traversals (visitors) of the AST.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 14

Compiler Components Generation

Rationale

Generated components are easier to
Understand They provide concise contents—for both students and

teachers— with more semantics than bare source code.
Maintain The generation process tends to unify the output;

moreover, it makes the selection of code hidden to
students easier for the teachers.

Extend The conciseness of the input helps to focus on the added
material.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 15

Compiler Components Generation

Rationale

Generated components are easier to
Understand They provide concise contents—for both students and

teachers— with more semantics than bare source code.
Maintain The generation process tends to unify the output;

moreover, it makes the selection of code hidden to
students easier for the teachers.

Extend The conciseness of the input helps to focus on the added
material.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 15

Compiler Components Generation

Rationale

Generated components are easier to
Understand They provide concise contents—for both students and

teachers— with more semantics than bare source code.
Maintain The generation process tends to unify the output;

moreover, it makes the selection of code hidden to
students easier for the teachers.

Extend The conciseness of the input helps to focus on the added
material.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 15

Compiler Components Generation

Benefits for Students

More time spent on the core of a topic for a given step,
e.g. writing and debugging a grammar (parser);
or understanding and applying pattern-based tree-rewriting
principles (code generator).

. . . Rather than on “side-effect issues”
memory allocation,
C++ idiosyncrasies,
lack of expressive power from the language in some areas,
etc.

Those secondary-order problems are important though, and
should be part of the assignments

→ Hence there are parts of the project that do not use generators.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 16

Compiler Components Generation

Benefits for Students

More time spent on the core of a topic for a given step,
e.g. writing and debugging a grammar (parser);
or understanding and applying pattern-based tree-rewriting
principles (code generator).

. . . Rather than on “side-effect issues”
memory allocation,
C++ idiosyncrasies,
lack of expressive power from the language in some areas,
etc.

Those secondary-order problems are important though, and
should be part of the assignments

→ Hence there are parts of the project that do not use generators.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 16

Compiler Components Generation

Benefits for Students

More time spent on the core of a topic for a given step,
e.g. writing and debugging a grammar (parser);
or understanding and applying pattern-based tree-rewriting
principles (code generator).

. . . Rather than on “side-effect issues”
memory allocation,
C++ idiosyncrasies,
lack of expressive power from the language in some areas,
etc.

Those secondary-order problems are important though, and
should be part of the assignments

→ Hence there are parts of the project that do not use generators.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 16

Compiler Components Generation

Benefits for Teachers

According to our experience the cost of using or even developing
a generator is generally lower than writing everything by hand.
For instance, the number of sources lines of codes of our AST
description and its generators is less than the third of the lines of
the generated C++ classes.
Generators save us a huge amount of time when conducting
experiments (renewing the project, adding optional assignments).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 17

Compiler Components Generation

Benefits for Teachers

According to our experience the cost of using or even developing
a generator is generally lower than writing everything by hand.
For instance, the number of sources lines of codes of our AST
description and its generators is less than the third of the lines of
the generated C++ classes.
Generators save us a huge amount of time when conducting
experiments (renewing the project, adding optional assignments).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 17

Compiler Components Generation

Benefits for Teachers

According to our experience the cost of using or even developing
a generator is generally lower than writing everything by hand.
For instance, the number of sources lines of codes of our AST
description and its generators is less than the third of the lines of
the generated C++ classes.
Generators save us a huge amount of time when conducting
experiments (renewing the project, adding optional assignments).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 17

Compiler Components Generation Parser Generation

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 18

Compiler Components Generation Parser Generation

Bison, the GNU Yacc implementation
[Corbett et al., 2003]

Free software (GNU GPL).
Backward-compatible with Yacc.
With many additions:

C++ and Java back-ends,
GLR algorithm in addition to LALR(1),
improved programming interface,
better debug tools.

Used along with Flex (free software Lex implementation).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 19

Compiler Components Generation Parser Generation

Our Contributions to Bison

A LALR(1) C++ back-end.
A GLR C++ back-end.
Helpers to pretty-print symbols and manage memory during error
handling.
Improved debug information from Bison and the generated parser.
Named symbols in productions.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 20

Compiler Components Generation Parser Generation

Our Contributions to Bison

A LALR(1) C++ back-end.
A GLR C++ back-end.
Helpers to pretty-print symbols and manage memory during error
handling.
Improved debug information from Bison and the generated parser.
Named symbols in productions.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 20

Compiler Components Generation Parser Generation

Our Contributions to Bison

A LALR(1) C++ back-end.
A GLR C++ back-end.
Helpers to pretty-print symbols and manage memory during error
handling.
Improved debug information from Bison and the generated parser.
Named symbols in productions.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 20

Compiler Components Generation Parser Generation

Our Contributions to Bison

A LALR(1) C++ back-end.
A GLR C++ back-end.
Helpers to pretty-print symbols and manage memory during error
handling.
Improved debug information from Bison and the generated parser.
Named symbols in productions.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 20

Compiler Components Generation Parser Generation

Our Contributions to Bison

A LALR(1) C++ back-end.
A GLR C++ back-end.
Helpers to pretty-print symbols and manage memory during error
handling.
Improved debug information from Bison and the generated parser.
Named symbols in productions.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 20

Compiler Components Generation Parser Generation

Our Contributions to Bison
Debug Information from Bison.

Textual (improved
with initial
automaton state,
easier-to-read state
labels, lookahead
symbols).
Graphical
(Graphviz’s dot
format).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 21

Compiler Components Generation Parser Generation

Our Contributions to Bison
Debug Information from Bison.

Textual (improved
with initial
automaton state,
easier-to-read state
labels, lookahead
symbols).
Graphical
(Graphviz’s dot
format).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 21

Compiler Components Generation Parser Generation

Our Contributions to Bison
Named Symbols in Productions

Before:
exp: "identifier" "[" exp "]" "of" exp
//$$ $1 $2 $3 $4 $5 $6
{ $$ = new Array (@$, new Type (@1, $1), $3, $6) }

After:
exp: "identifier"$type "[" exp$size "]" "of" exp$init
{ $$ = new Array(@$, new Type(@type, $type), $size, $init) }

Work in progress (should be integrated into the project next year).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 22

Compiler Components Generation Parser Generation

Our Contributions to Bison
Named Symbols in Productions

Before:
exp: "identifier" "[" exp "]" "of" exp
//$$ $1 $2 $3 $4 $5 $6
{ $$ = new Array (@$, new Type (@1, $1), $3, $6) }

After:
exp: "identifier"$type "[" exp$size "]" "of" exp$init
{ $$ = new Array(@$, new Type(@type, $type), $size, $init) }

Work in progress (should be integrated into the project next year).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 22

Compiler Components Generation Parser Generation

Assignments and Results

First stage Students have to write an LALR(1) parser (along with a
scanner generated by Flex) from scratch using Bison and
its C++ back-end.

Second stage Students convert their LALR(1) parser to a GLR one
(e.g., they can simplify the grammar to accept local
ambiguities).

Results
Students debug their parser easier and faster than before, thanks
to Bison’s helpful information.
They learn more material from language theory (GLR, for
instance) in the same amount of time.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 23

Compiler Components Generation Parser Generation

Assignments and Results

First stage Students have to write an LALR(1) parser (along with a
scanner generated by Flex) from scratch using Bison and
its C++ back-end.

Second stage Students convert their LALR(1) parser to a GLR one
(e.g., they can simplify the grammar to accept local
ambiguities).

Results
Students debug their parser easier and faster than before, thanks
to Bison’s helpful information.
They learn more material from language theory (GLR, for
instance) in the same amount of time.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 23

Compiler Components Generation Parser Generation

Assignments and Results

First stage Students have to write an LALR(1) parser (along with a
scanner generated by Flex) from scratch using Bison and
its C++ back-end.

Second stage Students convert their LALR(1) parser to a GLR one
(e.g., they can simplify the grammar to accept local
ambiguities).

Results
Students debug their parser easier and faster than before, thanks
to Bison’s helpful information.
They learn more material from language theory (GLR, for
instance) in the same amount of time.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 23

Compiler Components Generation Abstract Syntax Tree and Traversals Generation

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 24

Compiler Components Generation Abstract Syntax Tree and Traversals Generation

Why Generating the Abstract Syntax Tree and its
Traversals?

From the input (concrete syntax) the parser generates an AST.
Usually, in Object-Oriented Language:

ASTs node types are implemented as “uniform” classes.
Tree traversals are based on the  design pattern.

Hence both might be generated.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 25

Compiler Components Generation Abstract Syntax Tree and Traversals Generation

A Teacher-Only Generator

Writing AST and traversal is part of the first C++ assignment of the
project, that students are expected to write.

→ This part of the compiler is actually generated, but
students only see the output, with gaps;
the AST description (input) and the generators are kept private.

Input is a simple Y description, generators are written in
Python.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 26

Compiler Components Generation Abstract Syntax Tree and Traversals Generation

A Teacher-Only Generator

Writing AST and traversal is part of the first C++ assignment of the
project, that students are expected to write.

→ This part of the compiler is actually generated, but
students only see the output, with gaps;
the AST description (input) and the generators are kept private.

Input is a simple Y description, generators are written in
Python.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 26

Compiler Components Generation Abstract Syntax Tree and Traversals Generation

A Teacher-Only Generator

Writing AST and traversal is part of the first C++ assignment of the
project, that students are expected to write.

→ This part of the compiler is actually generated, but
students only see the output, with gaps;
the AST description (input) and the generators are kept private.

Input is a simple Y description, generators are written in
Python.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 26

Compiler Components Generation Abstract Syntax Tree and Traversals Generation

Generating the AST

Y description

Top-most class of the AST class hierarchy.

Ast:

attributes:

- location:

type: Location

desc: Scanner position information

Dec:

super: Ast Typable

attributes:

- name:

type: Symbol

desc: Name of the defined entity

owned: False

C++ code generated

class Dec: public Ast, public Typable {
public:
Dec (const Location& l, const Symbol& n);
virtual ˜Dec ();

/** \name Visitors entry point. \{ */

/// Accept a const visitor \a v.

virtual void accept (ConstVisitor& v) const = 0;
/// Accept a non-const visitor \a v.

virtual void accept (Visitor& v) = 0;
/** \} */

/** \name Accessors. \{ */

/// Return name of the defined entity.

const Symbol& name_get () const;
/// Set name of the defined entity.

void name_set (const Symbol&);
/** \} */

protected:
/// Name of the defined entity.

Symbol name_;

};

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 27

Compiler Components Generation Abstract Syntax Tree and Traversals Generation

Benefits

Architecture (as well as gaps in the code) are easy to change from
year to year.

→ Discourages teaching by stealing code from previous years.
Language changes/extensions are made easier and faster.
For instance, adding AST classes and basic visitors (abstract,
identity, cloning and pretty-printing visitors) for OO constructs took
only 50 lines of Y description.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 28

Compiler Components Generation Code Generator Generation

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 29

Compiler Components Generation Code Generator Generation

Parsing vs Code Generation

Code generation (aka instruction selection) is symmetric to
parsing.

Parsing Code generation
Input (Tiger) Code IR trees
Tool Parser Code generator
Output AST Assembly language code

Both task make use of a grammar to match their entries.
Yet another part to be generated.
Existing literature and tools (Twig [Appel, 1987], BURG
[Fraser et al., 1991]).
Again, existing tools did no suit our plans.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 30

Compiler Components Generation Code Generator Generation

Parsing vs Code Generation

Code generation (aka instruction selection) is symmetric to
parsing.

Parsing Code generation
Input (Tiger) Code IR trees
Tool Parser Code generator
Output AST Assembly language code

Both task make use of a grammar to match their entries.
Yet another part to be generated.
Existing literature and tools (Twig [Appel, 1987], BURG
[Fraser et al., 1991]).
Again, existing tools did no suit our plans.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 30

Compiler Components Generation Code Generator Generation

MonoBURG

We extended MonoBURG, from the Mono Project.
C++ features (namespaces, references).
Named arguments in rules.
Modules (%include directive).
Better debugging (#line statements in emitted code).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 31

Compiler Components Generation Code Generator Generation

Benefits

Helped students write their code generators.
Allowed some of them to write a few optimizations.
Allowed us to provide a second back-end (IA-32) in addition to the
first one (MIPS).
Writing a tree pattern matcher by hand in C++ is a tedious task.
Less interesting than focusing on the tree rewriting task itself.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 32

Pedagogical Interpreters

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 33

Pedagogical Interpreters

Checking Outputs of the Compiler

Many deliveries (7, up to 11) from students, all to be automatically
checked.
Compiler produces outputs at almost every stage: pretty-printed
AST (possibly annotated), intermediate representation, code
generation, etc.
Interpreters are needed

for students, to check their compiler during development;
for teachers, to assess the work of students.

Two interpreters have been developed
Havm A virtual machine interpreting code from the

intermediate representation (middle-end).
Nolimips A simulator executing MIPS code (back-end).

Both are free software and are available on the Internet.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 34

Pedagogical Interpreters

Checking Outputs of the Compiler

Many deliveries (7, up to 11) from students, all to be automatically
checked.
Compiler produces outputs at almost every stage: pretty-printed
AST (possibly annotated), intermediate representation, code
generation, etc.
Interpreters are needed

for students, to check their compiler during development;
for teachers, to assess the work of students.

Two interpreters have been developed
Havm A virtual machine interpreting code from the

intermediate representation (middle-end).
Nolimips A simulator executing MIPS code (back-end).

Both are free software and are available on the Internet.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 34

Pedagogical Interpreters

Checking Outputs of the Compiler

Many deliveries (7, up to 11) from students, all to be automatically
checked.
Compiler produces outputs at almost every stage: pretty-printed
AST (possibly annotated), intermediate representation, code
generation, etc.
Interpreters are needed

for students, to check their compiler during development;
for teachers, to assess the work of students.

Two interpreters have been developed
Havm A virtual machine interpreting code from the

intermediate representation (middle-end).
Nolimips A simulator executing MIPS code (back-end).

Both are free software and are available on the Internet.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 34

Pedagogical Interpreters Register-based Intermediate Language

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 35

Pedagogical Interpreters Register-based Intermediate Language

Assessment of the Middle-End

Checking the Intermediate Representation (IR) is troublesome
before completion of the compiler.
Evaluation done by executing the IR.
The IR from the Tiger compiler uses the T language, a
high-level register-based Intermediate Language (IL).
No tool available.

→ Havm, a T interpreter.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 36

Pedagogical Interpreters Register-based Intermediate Language

Assessment of the Middle-End

Checking the Intermediate Representation (IR) is troublesome
before completion of the compiler.
Evaluation done by executing the IR.
The IR from the Tiger compiler uses the T language, a
high-level register-based IL.
No tool available.

→ Havm, a T interpreter.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 36

Pedagogical Interpreters Register-based Intermediate Language

Assessment of the Middle-End

Checking the Intermediate Representation (IR) is troublesome
before completion of the compiler.
Evaluation done by executing the IR.
The IR from the Tiger compiler uses the T language, a
high-level register-based IL.
No tool available.

→ Havm, a T interpreter.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 36

Pedagogical Interpreters Register-based Intermediate Language

Havm

Free students from handling the stack (implicit support for
recursion).
Support for an unlimited set of temporaries (pseudo-registers).
Trace mode.
Performance measurement (profiling).
Havm proved to be a valuable tool to help student develop and
understand the middle-end, and improve it.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 37

Pedagogical Interpreters MIPS Assembly Language

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 38

Pedagogical Interpreters MIPS Assembly Language

MIPS

MIPS is simple and elegant, perfectly fitted for education.
However, MIPS is not necessarily common hardware in a
computer science school.
Moreover, a MIPS machine would not be able to execute code
without register allocation.

→ Use a simulator.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 39

Pedagogical Interpreters MIPS Assembly Language

Nolimips

Existing simulators (SPIM [Larus, 1990], MARS
[Vollmar and Sanderson, 2006]) are good, but lack some features.
Nolimips, a new MIPS simulator.

Can execute code using an arbitrary number of registers.
Can up- or downgrade the MIPS architecture by
increasing/decreasing the number of registers.
Provides with a small set of system calls (I/O, memory
management).
Trace mode.
Interactive shell.

A useful tool to diagnose mistakes and debug the back-end of the
compiler.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 40

Pedagogical Interpreters MIPS Assembly Language

Nolimips

Existing simulators (SPIM [Larus, 1990], MARS
[Vollmar and Sanderson, 2006]) are good, but lack some features.
Nolimips, a new MIPS simulator.

Can execute code using an arbitrary number of registers.
Can up- or downgrade the MIPS architecture by
increasing/decreasing the number of registers.
Provides with a small set of system calls (I/O, memory
management).
Trace mode.
Interactive shell.

A useful tool to diagnose mistakes and debug the back-end of the
compiler.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 40

Results and discussion

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 41

Results and discussion

Other Tools

The Tiger project also features (teacher) tools for:
Generating code with gaps Based on annotations in either code or

description of components.
Automating deliveries Students just have to upload their work, which

get a timestamp and is possibly immediately evaluated.
Automating evaluation Runs a big (private) test suite, and makes use

of the reference compiler and interpreters (Havm &
Nolimips).

Interactive compiler sessions The Tiger Compiler Shell: a Python- or
Ruby-based shell giving access to the compiler’s
component.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 42

Results and discussion

Feedback From the Users

According to teaching assistants, interaction with students is less
demanding from year to year.
Students are aware of the flaws of their work

either because they used the tools and discovered them
themselves,
or because we (teachers/assistants) pointed them at errors
(interpreters are used to grade and generate automated
post-delivery reports to students).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 43

Results and discussion

Feedback from the Teachers

Quality of the delivered compiler increased.
From one year to the following,

Groups whose parser passes more than 97% of the tests ×2
Number of correct ASTs ×3
Average grade for the binding stage ×2

Automating is a gain of time, allowing teacher and assistants to
work on other, more advanced issues.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 44

Results and discussion

Frequent Reports from Alumni

“I understood those design patterns thanks to the Tiger project
(and I’m using them right now).”
“I’m usually the one being asked questions about
C++/design/development/tools in my professional environment
thanks to what I learned during this project.”
“I had a problem last week, and I remembered (and reused!) a
solution from my own instance of the Tiger project.”

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 45

Results and discussion

Conclusion and Future Work

Tools in a CS programming assignment are profitable.
We highly encourage to either use, extend or even develop them!
Some presented here are already available.
Contact us about the others.
We would like to share experience and tools on the Tiger Project.

http://tiger.lrde.epita.fr

tiger@lrde.epita.fr

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 46

http://tiger.lrde.epita.fr
mailto:tiger@lrde.epita.fr

Results and discussion

A Set of Tools to Teach Compiler Construction

1 The Tiger Project

2 Compiler Components Generation
Parser Generation
Abstract Syntax Tree and Traversals Generation
Code Generator Generation

3 Pedagogical Interpreters
Register-based Intermediate Language
MIPS Assembly Language

4 Results and discussion

http://tiger.lrde.epita.fr

tiger@lrde.epita.fr

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 47

http://tiger.lrde.epita.fr
mailto:tiger@lrde.epita.fr

History

2000 Beginning of the Tiger Project: a front-end, a single
teacher, no assistant.

2001 Have students learn and use the Autotools for project
maintenance.

2002 Teaching Assistants involved in the project.
Interpreter for the Intermediate Representation (IR)
language (HAVM).

2003 Addition of back-end, partly from the work of motivated
students.
Interpreter for the MIPS language (Nolimips).
The structures of the Abstract Syntax Tree (AST) and a
visitor are generated from a description file.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 48

History (cont.)

2005 A second teacher in the project maintenance and
supervision.
First uses of some Boost library (Boost.Variant, Boost
Graph Library (BGL), Smart Pointers).
First use of concrete-syntax program transformations
(code generation)

2007 Tiger becomes an Object-Oriented Language (OOL).
Full concrete-syntax rewriting engine (code matching &
generation).

2008 Extension of Bison’s grammar to handle named
parameters (pending).

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 49

Bibliography I

Appel, A. W. (1987).
Concise specifications of locally optimal code generators.
Technical Report CS-TR-080-87, Princeton University, Dept. of
Computer Science, Princeton, New Jersey.

Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

Corbett, R., Stallman, R., and Hilfinger, P. (2003).
Bison: GNU LALR(1) and GLR parser generator.
http://www.gnu.org/software/bison/bison.html.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 50

http://www.gnu.org/software/bison/bison.html

Bibliography II

Debray, S. (2002).
Making compiler design relevant for students who will (most likely)
never design a compiler.
In Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, pages 341–345. ACM Press.

Demaille, A. (2005).
Making compiler construction projects relevant to core curriculums.

In Proceedings of the Tenth Annual Conference on Innovation and
Technology in Computer Science Education (ITICSE’05), pages
266–270, Universidade Nova de Lisboa, Monte da Pacarita,
Portugal.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 51

Bibliography III

Demaille, A. (2007a).
The Tiger Compiler Project Assignment.
EPITA Research and Development Laboratory (LRDE), 14-16 rue
Voltaire, FR-94270 Le Kremlin-Bicêtre, France.
http://www.lrde.epita.fr/˜akim/ccmp/assignments.pdf.

Demaille, A. (2007b).
The Tiger Compiler Reference Manual.
EPITA Research and Development Laboratory (LRDE), 14-16 rue
Voltaire, FR-94270 Le Kremlin-Bicêtre, France.
http://www.lrde.epita.fr/˜akim/ccmp/tiger.pdf.

Fraser, C. W., Henry, R. R., and Proebsting, T. A. (1991).
BURG–fast optimal instruction selection and tree parsing.
Technical Report CS-TR-1991-1066.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 52

http://www.lrde.epita.fr/~akim/ccmp/assignments.pdf
http://www.lrde.epita.fr/~akim/ccmp/tiger.pdf

Bibliography IV

Larus, J. R. (1990).
SPIM S20: A MIPS R2000 simulator.
Technical Report TR966, Computer Sciences Department,
University of Wisconsin–Madison.

Vollmar, K. and Sanderson, P. (2006).
MARS: An education-oriented MIPS assembly language simulator.

In Proceedings of the 37th SIGCSE technical symposium on
Computer science education (SIGCSE’06), pages 239–243,
Houston, Texas, USA. ACM Press.

A. Demaille, R. Levillain, B. Perrot (LRDE) Tools to Teach Compiler Construction ITiCSE 2008 53

	The Tiger Project
	Compiler Components Generation
	Parser Generation
	Abstract Syntax Tree and Traversals Generation
	Code Generator Generation

	Pedagogical Interpreters
	Register-based Intermediate Language
	MIPS Assembly Language

	Results and discussion
	Appendix

