
Semantics Driven Disambiguation:
A comparison of different approaches

Akim Demaille, Renaud Durlin, Nicolas Pierron, Benôıt Sigoure

EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire - FR-94276 Le Kremlin-Bicêtre Cedex - France

Abstract

Context-sensitive languages such as C or C++ can be parsed using a context-free
but ambiguous grammar, which requires another stage, disambiguation, in order
to select the single parse tree that complies with the language’s semantical rules.
Naturally, large and complex languages induce large and complex disambiguation
stages. If, in addition, the parser should be extensible, for instance to enable the
embedding of domain specific languages, the disambiguation techniques should fea-
ture traditional software-engineering qualities: modularity, extensibility, scalability
and expressiveness.

We evaluate three approaches to write disambiguation filters for SDF grammars:
algebraic equations with ASF, rewrite-rules with programmable traversals for Strat-
ego, and attribute grammars with TAG (Transformers Attribute Grammar), our
system. To this end we introduce Phenix, a highly ambiguous language. Its “stan-
dard” grammar exhibits ambiguities inspired by those found in the C and C++

standard grammars. To evaluate modularity, the grammar is layered: it starts with
a small core language, and several layers add new features, new production rules,
and new ambiguities.

Key words: Transformers, context-free grammar, attribute
grammar, Stratego, ASF, SDF, disambiguation, parsing, program
transformation, term rewriting

1 Introduction

Of course C and C++ are not ambiguous languages: there exist nonambiguous
grammars to analyze them — compilers do that every day world wide. Un-
fortunately these grammars are not context-free in many ways. Some context
dependencies can easily be solved in a deterministic way; for instance, the
question whether ‘a * b’ is a product or a declaration of a variable b of type

Preprint submitted to Elsevier Preprint 22 February 2008

pointer-to-a can be answered by having the parser maintain a symbol-table
that is consulted by the scanner. C++ includes many other forms of ambigui-
ties that require much deeper analysis of the context, and compilers have no
choice but to accept temporarily some ambiguities, deferring disambiguation
to a later step.

The Transformers [2] project aims at producing a high quality flexible
C/C++ front-end for either the Stratego/XT toolset, or the ASF+SDF meta-
environment. Both require that we use SDF. Since the SDF parser, SGLR, is
scannerless, the traditional hacks (maintaining a symbol table) do not apply.
Contrary to tools such as Yacc, SGLR (Scanner-less Generalized LR) rather
than supporting user-actions, it directly builds the parse tree, and therefore,
no tricks to implement context-sensitivity apply. Therefore parsing C or C++

typically yields a parse forest , several parse trees, and a later stage, disam-
biguation, performs semantics driven context-sensitive analysis to guide the
removal of invalid parse trees.

Because of their size and complexity, C and especially C++ are extremely
delicate languages to disambiguate. To this end, the Transformers project
initially used Algebraic Specification Formalism (ASF), then Stratego, and
we finally decided to implement Transformers Attribute Grammar (TAG),
an Attribute Grammars (AGs) engine for Syntax Definition Formalism (SDF)
grammars [7]. In this paper, we compare these three approaches.

Small and moderately ambiguous grammars do not stress the implementa-
tion enough, so we looked for more realistic test cases. C and C++ are so large
and so complex that the authors decided not to consider starting three im-
plementations. Nevertheless, since we are especially interested in C and C++,
we reduced their ISO grammars to a more reasonable size. Finally, because
we want modular C and C++ front-ends, for instance, in order to be able to
add domain specific extensions, modularity is of first importance. Therefore,
we designed Phenix, a family of languages, largely inspired by the features
(read “deficiencies”) of the C and C++ standard grammars. We used it for
the comparison and wrote an ambiguous SDF grammar for this language.

Contributions The contributions of this paper are: (1) Phenix, a family of
ambiguous grammars that can be used to compare disambiguation methods.
(2) Implementations of its disambiguation in ASF, Stratego, and TAG. (3) A
comparison between these methods.

Outline The remainder of this paper is organized as follows: In Sect. 2,
we present SDF and SGLR and the three environments we used to implement
disambiguation filters: ASF, Stratego, and TAG. They are evaluated in Sect. 3
on the various layers of Phenix. Sect. 4 summarizes the results, and Sect. 5
concludes.

2

2 Semantics Driven Disambiguation for SDF

2.1 SDF/SGLR

SDF (Syntax Definition Formalism) SDF [11] is the syntax used by the
generic parser SGLR. SDF is intended for the high-level description of gram-
mars for programming languages, application languages, domain-specific lan-
guages, data formats and other computer-based formal languages. It features:
Modularity (parametrized modules, symbol renaming), Scannerlessness (inte-
grated lexical and context-free syntax), Declarative disambiguation constructs
(priorities, associativity, and more), Regular expression shorthands.

SGLR (Scanner-less Generalized LR) SGLR [12] supports any context-
free grammar. It implements generalized LR parsing [10], a parsing method
supporting nondeterminism and ambiguity, local or global. For an ambiguous
input it yields a parse forest, i.e., all the possible derivation trees.

2.2 Disambiguation methods

In this paper, we compare three systems to implement disambiguation: ASF,
Stratego and TAG. Because of space constraints, we can only describe them
superficially, see the references for more detailled presentations.

ASF (Algebraic Specification Formalism) ASF [4] is intended for the
high-level, modular, description of the syntax and semantics of computer-
based formal languages. It supports conditional rewrite rules and traversal
functions using a user-defined (concrete) syntax. It allows the concise specifi-
cation of program transformation, therefore it is suitable for semantics driven
disambiguation, as described by [3].

Stratego The Stratego language [5] provides rewrite rules in concrete syntax
to express basic program transformations using of the syntax of the object lan-
guage, programmable rewriting strategies to control the application of rules,
and dynamic rewrite rules to capture context-sensitivity, thus supporting the
development of transformation components at a high level of abstraction.

TAG (Transformers Attribute Grammar) AGs [8] express syntax-driven
specifications of the semantics of context-free languages. Attributes hold val-
ues that are attached to symbols of the grammar. Semantic rules are bound
to production rules, and they express only local computations: they relate
attributes of the symbols of the production only. Attributes computed using
values from the parent are inherited , whereas those using values from the chil-
dren are synthesized . At run-time, an evaluator computes the (global) order
in which attributes can be computed for the whole parse tree.

TAG, the implementation used in Transformers [7,9], embeds Stratego
code in the SDF grammar in order to compute the values. Attributes are

3

arbitrary terms (integers, strings, trees, tables. . .). TAG features automatic
attribute propagation that frees the programmer from providing semantic rules
to forward some values from their definition site to their possibly very distant
uses.

3 Disambiguation of the Phenixes

This section introduces the layers of Phenix and their disambiguation by the
three methods. The first layer is especially detailed to present how disam-
biguation (i.e., the removal of invalid derivation trees) is performed in the
three frameworks. But because of space constraints only the most significant
results are presented. Knowing the three tool-sets is probably needed to fully
understand the code.

3.1 Phenix 1 — Declaration and use

This module lets us declare int and float variables and gives them different
lexical categories. This ambiguity does not exist as such in C or C++, but it
is a stripped down version of the kind-of-the-identifier problem: in ‘a * b’,
is a a type, or a variable? Besides, disambiguating C++ templates requires
type-checking, which is exactly what disambiguating Phenix 1 requires:

int foo; foo;

The ambiguity is when foo is used; its declaration must be remembered.

ASF The original SDF grammar must be extended with rules to be able
to define the symbol table, and to enable concrete syntax in ASF equations
(Fig. 1.a). The disambiguation module consists in equations that perform our
own traversal (default traversals do not fit to our needs) and equations that
perform disambiguation (Fig. 1.b).

The first ASF equation of Fig. 1.b is used when an int is declared. It
stores the information that the identifier Id is an int in the symbol table env.
The second equation is called when an identifier is used. If an int is found in
the symbol table, the ambiguous node is rewritten into an int node. Similar
equations are defined for float declaration and use.

Stratego A set of filters (Fig. 1.c) rewrite the parse forest into a parse
tree, resolving the ambiguities using specified traversals and transformations.
Dynamic rules are used to keep the necessary knowledge about the declared
symbols. The main strategy, core-disamb, is a combination of other strate-
gies:

• decl to create a dynamic rule when an identifier is declared. The first
part, ‘?VarDecl(IntType(), x)’, tries to match an int declaration. If it
succeeds, a dynamic rule is created.

4

imports

containers/Table[Id Kind]

exports

context-free syntax

Table[[Id, Kind]] → Env

("int" | "float") → Kind

variables

"S"[0-9\’]* → Stm

"S*"[0-9\’]* → Stm*

"TU"[0-9\’]* → TypeUse

"TU*"[0-9\’]* → {TypeUse ","}*

"env"[0-9\’]* → Env

(a) ASF variables

equations

[env-int]

store-env(int Id;, env) = store(env , Id, int)

[use-int]

Id := Int ,

lookup(env , Id) == int

==

disamb(amb(TU*1, Int , TU*2), env) = Int

(b) ASF equations

module core-disamb

strategies

decl = ?VarDecl(IntType (), x)

; rules(use:+ amb(as) → t where <getfirst(?IntUse(x))> as

⇒ t)

core-disamb = decl <+ use <+ all(core-disamb)

(c) Stratego

TypeDecl Id → Decl

{attributes(disamb:

root.lr_table_syn :=

![(Id.string , TypeDecl.type) | root.lr_table_inh])}

Id → Int

{attributes(disamb:

root.ok := <lookup(Id.string)> root.lr_table_inh ⇒ Int())}

(d) TAG

Fig. 1. Disambiguation of Phenix 1 in ASF, Stratego, and TAG.

• use the dynamic rule. Rewrite an ambiguous node, ‘amb(as)’, to an IntUse

if one of its children is an int.

• all to apply a strategy to all the children of the current term.

5

Even though Stratego supports specification of patterns in the concrete
syntax of the object language, this feature is not employed because Phenix
is too ambiguous. Each construction should be prefixed to make it clear to
which node it refers. In fact, the matching with the abstract syntax tree is
simpler.

TAG Attributes are embedded in SDF using the attributes annotation.
In Fig. 1.d, a single value is computed in the lr table syn attribute of the
root node (Decl). It adds ‘(Id.string, TypeDecl.type)’ to the symbol
table. Id.string is the identifier name and TypeDecl.type is the type of the
variable. For attributes automatically propagated from left to right (lr), the
suffixes (inh/ syn) distinguish incoming/outgoing values. This rule adds the
identifier’s name to the inherited symbol table, mapped to a Type, and puts
it in the synthesized table.

To filter ambiguous nodes using AGs, an attribute, ok, is used to store
the validity of a node with a Boolean value. The nodes which are not ok are
removed from the tree after the attribute processing is done. Thus, the disam-
biguation step needs to adjust the ok attributes for some nodes, depending on
a symbol table, in order to prune the invalid derivations. The semantic rules
of Phenix 1 require that identifiers used as integers have been declared with
int; this is what asserts the second attribute rule in Fig. 1.d. If the Id was
declared as an Int, the lookup succeeds and the attribute ok is true otherwise
it is false.

3.2 Phenix 2 — Scope

This first extension adds scoping: a variable name may denote different bind-
ings. Declarations made in a scope must be discarded when leaving it. In the
following example, the innermost use of foo is bound to the float declaration,
whereas the outermost foo is an int.

int foo; { float foo; foo; } foo;

ASF To restore the previous symbol table when leaving the scope, first the
disamb equation is called on the scope to get the corresponding disambiguated
tree. Then the equation is called on the following nodes with the same symbol
table as before the scope (Fig. 2.a).

Stratego Stratego’s scoped dynamic rules [6] are used to handle scopes
(Fig. 2.b). If the current node is a scope, ‘?Scope()’, ‘all(disamb)’ ap-
plies disamb to all its children. The rule is scoped (with ‘{|’ and ‘|}’): all
dynamic rules named use created inside this strategy will be discarded at the
end of the strategy.

6

equations

[scope]

S*1’ := disamb(S*1, env)

==

disamb ({ S*1 } S*2, env) = { S*1’ } disamb(S*2, env)

(a) ASF

module scope-disamb

strategies enter-scope = ?Scope(_) ; {| use: all(disamb) |}

(b) Stratego

"{" Stm+ "}" → Stm

{attributes(disamb: root.lr_table_syn := !root.lr_table_inh)

}

(c) TAG

Fig. 2. Disambiguation of Phenix 2 in ASF, Stratego, and TAG.

TAG When leaving a scope the symbol table must be restored: the synthe-
sized table is equal to the inherited table (Fig. 2.c).

3.3 Phenix 3 and 4 — Namespace and Structure

The second extension adds namespaces (named scopes). The third extension,
which adds structures, introduces the same ambiguities because all members
inside a structure are static so the notation ’::’ can be used.

namespace A

{

int foo;

foo;

}

A::foo;

These extensions combine the two previous problems:

• When using the notation with ’::’, the grammar cannot make the difference
between an int and a float.

• A declaration can hide a previous one. Outside of the namespace, the prior
type must be retrieved.

It also adds another ambiguity: when the parser sees something like the
following example, it must not only check whether foo is an int or a float

but also whether S is a namespace or a structure.

struct S { int foo; };

S::foo;

7

equations

[namespace]

<S*1’, ns ’ env ’> := disamb(S*1, Id::ns env),

==

disamb(namespace Id { S*1 } S*2, ns env) =

namespace Id { S*1’ } disamb(S*2, ns env ’)

[struct]

<S*1’, ns ’ env ’> := disamb(S*1, Id::ns env),

==

disamb(struct Id { S*1 }; S*2, ns env) =

struct Id { S*1’ }; disamb(S*2, ns env ’)

(a) ASF

module namespace-disamb

strategies

enter-namespace (|ns) = ?Namespace(n, _) ; all(disamb (| [ns | n])

)

enter-struct (|ns) = ?Struct(n, _) ; all(disamb (| [ns | n])

)

(b) Stratego

"namespace" Id "{" stm:Stm+ "}" → Stm

{attributes(disamb:

stm.lr_ns_inh := ![Id.string | root.lr_ns_inh])}

"struct" Id "{" stm:DeclStm* "}" → Decl

{attributes(disamb:

stm.lr_ns_inh := ![Id.string | root.lr_ns_inh])}

(c) TAG

Fig. 3. Disambiguation of Phenix 3&4.

ASF The current namespace name must be kept in addition to the symbol
table. Unfortunately this requires to update all previous equations to reflect
this change. The first equation in Fig. 3.a appends the namespace name
(Id) to the current namespace name (ns). The second equation addresses the
structs.

Stratego As for ASF, this extension is very intrusive because all the previ-
ous strategies must be updated to take a term as parameter, the namespace
name for disambiguation purpose. This term is updated when entering in a
namespace or in a structure (Fig. 3.b). At the beginning of a namespace or
a structure, the name (n) is concatenated with the current namespace name
(ns) to obtain the new namespace name.

TAG Another attribute (called ns) is added to store the current names-
pace name. All the previous code must be updated to use this new attribute.
When entering in a namespace, the new namespace name becomes the con-

8

module typedef-disamb

strategies

typedef (|ns) = ?Typedef(type , x)

; rules(get-type:+ amb(as) → (type , t)

where <getfirst(?TypedefUse(x))> as ⇒ t)

; rules(use:+ amb(as) → t

where <getfirst(?TypedefUse(x))> as ⇒ t)

(a) Stratego

"typedef" td:TypeDecl Id → Decl

{attributes(disamb:

root.lr_table_syn :=

![Typedef(td.lr_ns_syn , td.type) | td.lr_table_syn])}

(b) TAG

Fig. 4. Disambiguation of Phenix 5 in Stratego, and TAG.

catenation of the name of the new namespace (Id.string) and the current
namespace name (root.lr ns inh) (Fig. 3.c). This attribute is used similarly
when entering a structure.

3.4 Phenix 5 — Typedef

A Typedef declaration introduces a name that, within its scope, becomes a
synonym for the given type. In order to be able to find the type of x, the
disambiguation must check which type t denotes:

typedef int t; t x; x;

ASF From this extension, the construction requires complex traversals and
complex manipulations of the structure used by the disambiguation process.
The disambiguation of remaining extensions is made only with Stratego and
TAG.

Stratego When a typedef is seen, two dynamic rules are created. The first
one holds the type of a variable. This rule returns a tuple, the type of the
variable and its name. The second rule is used when an ambiguous node is
rewritten into the good sub-tree (Fig. 4.a).

TAG With AGs, the disambiguation process uses the symbol table to store
all the information needed to disambiguate Typedef (Fig. 4.b). The construc-
tor ‘Typedef()’ is used to remember the data type. Two parameters are used
to store the current namespace name (this attribute also contains the name
of the variable) and the type associated to the typedef.

9

module using-disamb

strategies

using(|ns) = ?UsingNs(n)

; {| get-access:

all(disamb (|ns))

|}

; rules(get-access := <conc> ([ns | n], <get-access >))

using(|ns) = ?Using(n)

; {| get-access:

all(disamb (|ns))

; get-type ⇒ (type , n)

; rules(use:+ amb(as) → t where <getfirst(?type #([n]))> as ⇒
t)

|}

(a) Stratego

"using" "namespace" NamespaceName ";" → Stm

{attributes(disamb:

local.access :=

<lookup > (root.lr_ns_inh , root.lr_table_inh) ⇒ Namespace(<id

>)

; <conc > (NamespaceName.lr_access_ns_syn , <id >)

root.lr_access_ns_syn :=

<conc > (local.access , root.lr_access_ns_inh)

root.lr_table_syn :=

![(root.lr_ns_inh , Namespace(local.access) | root.

lr_table_inh])}

"using" TypeUse ";" → Stm

{attributes(disamb:

local.type :=

<lookup > (TypeUse.lr_ns_syn , root.lr_table_inh)

root.lr_table_syn :=

![(root.lr_ns_inh , local.type) | root.lr_table_inh]

)}

(b) TAG

Fig. 5. Disambiguation of Phenix 6 in Stratego, and TAG.

3.5 Phenix 6 — Using and Using namespace

This extension allows importing (parts of) a namespace into another one. In
the example below, after ‘using namespace A’, foo and bar are reachable.
After ‘using B::baz’, only baz is reachable (not qux).

namespace A { int foo; int bar; }

namespace B { int baz; int qux; }

using namespace A;

using B::baz;

10

Stratego With this extension, another dynamic rule (get-access) must be
added to keep a list of accessible namespaces. This rule needs to be used
everywhere the Stratego code uses the other dynamic rules to find the type of
a variable. This extension leads to an update of all the previous code.

Fig. 5.a (first strategy) illustrates how the get-access dynamic rule is cre-
ated. First, the node inside the using namespace is disambiguated, then the
dynamic rule is spawned with a new value for get-access. The current names-
pace name is added to the list of accessible namespaces.

Fig. 5.b (second strategy) describes what the disambiguation does when a
using is seen. The type of the variable inside the using is extracted thanks to
the dynamic rule get-type that was previously defined.

TAG This extension is very intrusive: many changes are necessary. The
attribute ns does not suffice to know whether a variable is reachable. A new
attribute, access ns, stores a list of reachable namespaces. This attribute
must be added and kept up-to-date in all the rules.

The first production rule in Fig. 5.b outlines how the attribute access ns is
updated and stored in the symbol table. The local attribute access extracts
the current access ns from the symbol table and concatenates it with the
access ns of the namespace declared in the ‘using namespace’. Then the
result is added to root.lr access ns syn, the list of reachable namespaces,
and put in root.lr table syn, the symbol table.

A ‘using namespace’ extends the attribute adding a new reachable names-
pace in the list. When the disambiguation process checks if a variable is reach-
able, it no longer uses the ns attribute. the variable is looked up in all the
namespaces in access ns.

The second production rule in Fig. 5.b presents the disambiguation of
using. The local attribute type extracts the type of the variable used in the
using from the symbol table. It is then stored in the symbol table.

3.6 Phenix 7 — Template

This extension adds a simplified version of C++ templates with only one pa-
rameter. Template specialization is also added:

// S<T> is a container of elements of type T.

template <T> struct S { T x; };

S<int >::x;

// S<float > has a special definition.

template <> struct S<float > { float x; };

S<float >::x;

Stratego The first template strategy in Fig. 6.a is used when a template
declaration is seen. The rule add-var creates a dynamic rule in order to be
able to retrieve the tree associated to the declaration. This is done because

11

instantiate-template =

?spe@Instance(tn, ptd)

; get-var (|tn) ⇒ (ns , TemplateDecl(tree))

; !tree ⇒ Template(param , _, _)

; <add-var > (param , <data-var >)

; <add-nsn > (param , TypedefType(<data-nsn >))

; <specialized-tree > (tree , ptd)

; register-specialization

; <remove-var > param

; <remove-nsn > param

template (|ns) = ?tree@Template(param , tn, decls)

; where(<add-var > (tn, TemplateDecl(tree)))

template (|ns) = {| get-access:

instantiate-template ⇒ (ns , TemplateInst(access))

|})

(a) Stratego

"template" "<" tn:Id ">" "struct" sn:Id "{" stm:DeclStm* "}" →
Decl

{attributes(disamb:

local.object_ns := ![sn.string | root.lr_ns_inh]

local.tree := id

root.lr_table_syn := ![(NotSpecialized(local.object_ns), local.

tree)

| root.lr_table_inh]

root.ext_table := extern

)}

Id "<" TypeDecl ">" → Struct

{attributes(disamb:

local.object_ns := ![Id.bu_string | root.lr_ns_inh]

root.lr_table_syn :=

<lookup > (NotSpecialized(local.object_ns), root.lr_table_inh)

; <set-attribute >(<id >, "disamb", "ext_table", root.lr_table_inh

)

; attr-eval

)}

(b) TAG

Fig. 6. Disambiguation of Phenix 7 in Stratego, and TAG.

the disambiguation process must be delayed until all the needed information
(the type of the parameter) is known.

The second template strategy is used when a template is instantiated. This
strategy calls instantiate-template that retrieves the tree previously stored.
The tree is then used to instantiate the template and creates a specialized
version of this template.

TAG As the type is not fully known at the declaration site, the evaluation
must be delayed until the template is instantiated, that is to say, until all
the needed information (the type of the parameter) is known. The sub-tree
corresponding to the template is kept in the symbol table (Fig. 6.b).

12

When the template is instantiated, the system has enough information to
disambiguate the template. The type of the parameter is added to the symbol
table and then the attribute evaluator is called with the template sub-tree.
The attributes are computed and the symbol table is filled with the variables
corresponding to the instantiation.

4 Discussion

ASF provides tight coupling with concrete syntax, supports functional and al-
gebraic specification, and a fast and scalable underlying term rewriting engine.
Using equations to describe term rewriting leads to a clean formalism. Unfor-
tunately, many equations have to be written with ASF, since the traversals
must be explicitly described, intertwined with the computation itself. Every
rewrite rule is potentially executable on any node, there can be hidden inter-
actions between some equations, leading to cycles or unwanted effects. Our
initial attempt to disambiguate C++ was with ASF, but it turned out to be
exceedingly complex, and the approach was dropped. The CodeBoost project,
which is interested in C++ program transformation, faced the same issues and
moved from ASF to Stratego [1, Section 8].

Stratego is very expressive. Complex traversals can be expressed easily us-
ing the various combination operators and user-defined strategies. Additional
flexibility comes with the concept of scoped dynamic rules, which allow to have
a global context without explicitly carrying it everywhere. Scoped dynamic
rules provide an excellent support for modularity: they traverse transparently
unrelated nodes, and directly apply where needed. Of course, when the gram-
mar is extended, one must be careful to make sure that the code can handle
it because Stratego modules are not directly linked to the grammar.

AGs are conceptually elegant, being both declarative at the rule level and
imperative at the attribute level. The rules are fairly independent from each
other. AGs are naturally extended, just like the SDF grammar. Since the
disambiguation code is broken down at the rule level, adding new rules tends
to fit well into the existing code. Nevertheless AGs by-the-book do not support
modularity: if an extension introduces new attributes, then forwarding these
attributes in the rest of the grammar may require additional rules. Our TAG
system solves this problem, since attributes may be propagated automatically,
much like with Stratego’s dynamic rules. Using Stratego in order to compute
the attributes brings several good features, such as the flexibility of the ATerm
format, the Stratego standard library, and more generally the expressiveness
of the language.

But like the other methods, TAGs are not perfect. Separation of concerns is
hard to achieve. Since the semantical rules are embedded in the grammar, the
various processing (e.g., disambiguation, type-checking, etc.) are intertwined

13

in the same file. TAG provides namespaces, but this is not a full scale solution.
TAGs tend to clutter the grammar. The code for the attribute computation is
somewhat mixed with the rule declarations and the other annotations. When
the code gets long and complicated, the grammar becomes less readable.

Yet we recommand the use of AGs to disambiguate and to type languages.
The main reason people use Context-Free Grammar (CFG) grammars is be-
cause most context-sensitive grammar formalisms are complex and hard to
understand, but most languages are definitely context-sensitive (think of type-
checking). Disambiguation filters and type checkers are not just “some” pro-
gram transformation filters: they belong to the very definition of the language
itself. As a matter of fact, AGs, a combination of a CFG and some semantic
rules, are precisely a means to define context-sensitive grammars.

5 Conclusion

We have presented the concept of Scanner-less Generalized LR parsing and
shown why this kind of parsers requires a disambiguation step. We have intro-
duced Phenix, our own toy language that replicates ambiguities from both
C and C++ ISO standards. An ambiguous grammar that generates Phenix
language has been written in SDF. We have seen how to perform semantic
disambiguation on this language with three different approaches:

• Term rewriting using the ASF which is purely declarative.

• Term rewriting using the paradigm of strategies (Stratego), which is mostly
imperative (with a functional flavor).

• TAG, using Stratego code to compute the attributes, are both declarative
and imperative.

The modularity of these three methods has been evaluated.

Acknowledgments We thank the anonymous reviewers for their comments,
Daniela Becker and Steve Frank for their proofreading. The ASF and Strat-
ego/XT communities are very reactive and helped us whenever we needed it.
Martin Bravenboer also brought invaluable help during the development of
the Transformers project.

References

[1] Bagge, O. S., K. T. Kalleberg, M. Haveraaen and E. Visser, Design of the
CodeBoost transformation system for domain-specific optimisation of C++
programs, in: D. Binkley and P. Tonella, editors, Third IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM’03) (2003), pp.
65–74.

14

URL http://www.stratego-language.org/Stratego/
DesignOfTheCodeBoostTransformationSystem

[2] Borghi, A., V. David and A. Demaille, C-Transformers — A framework to
write C program transformations, ACM Crossroads 12 (2006), http://www.
acm.org/crossroads/xrds12-3/contractc.html.

[3] van den Brand, M., S. Klusener, L. Moonen and J. J. Vinju, Generalized
parsing and term rewriting: Semantics driven disambiguation, Electronic Notes
in Theoretical Computer Science 82 (2003).

[4] van den Brand, M. G. J., A. van Deursen, T. B. Dinesh, J. F. T. Kamperman
and E. Visser, editors, “Proceedings of the Workshop on Generating Tools
from Algebraic Specifications (ASF+SDF’95),” Technical Report P9504,
Programming Research Group, University of Amsterdam, 1995.
URL http:
//ftp.wins.uva.nl/pub/programming-research/reports/1995/P9504/

[5] Bravenboer, M., K. T. Kalleberg, R. Vermaas and E. Visser, Stratego/XT 0.16.
Components for transformation systems, in: ACM SIGPLAN 2006 Workshop
on Partial Evaluation and Program Manipulation (PEPM’06) (2006).

[6] Bravenboer, M., A. van Dam, K. Olmos and E. Visser, Program transformation
with scoped dynamic rewrite rules, Fundamenta Informaticae 69 (2006),
pp. 123–178.

[7] David, V., A. Demaille and O. Gournet, Attribute grammars for modular
disambiguation, in: Proceedings of the IEEE 2nd International Conference
on Intelligent Computer Communication and Processing (ICCP’06), Technical
University of Cluj-Napoca, Romania, 2006.

[8] Knuth, D. E., Semantics of context-free languages, Journal of Mathematical
System Theory (1968), pp. 127–145.

[9] Pierron, N., Formal Definition of the Disambiguation with Attribute Grammars,
Technical report, EPITA Research and Development Laboratory (LRDE)
(2007).
URL http://publications.lrde.epita.fr/200706-Seminar-Pierron

[10] Tomita, M., “Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems,” Kluwer Academic Publishers, 1985.

[11] Visser, E., A family of syntax definition formalisms, Technical Report P9706,
Programming Research Group, University of Amsterdam (1997).
URL http://www.wins.uva.nl/pub/programming-research/reports/
1997/P9706.ps.gz

[12] Visser, E., Scannerless generalized-LR parsing, Technical Report P9707,
Programming Research Group, University of Amsterdam (1997).
URL http://www.wins.uva.nl/pub/programming-research/reports/
1997/P9707.ps.gz

15

http://www.stratego-language.org/Stratego/DesignOfTheCodeBoostTransformationSystem
http://www.stratego-language.org/Stratego/DesignOfTheCodeBoostTransformationSystem
http://www.acm.org/crossroads/xrds12-3/contractc.html
http://www.acm.org/crossroads/xrds12-3/contractc.html
http://ftp.wins.uva.nl/pub/programming-research/reports/1995/P9504/
http://ftp.wins.uva.nl/pub/programming-research/reports/1995/P9504/
http://publications.lrde.epita.fr/200706-Seminar-Pierron
http://www.wins.uva.nl/pub/programming-research/reports/1997/P9706.ps.gz
http://www.wins.uva.nl/pub/programming-research/reports/1997/P9706.ps.gz
http://www.wins.uva.nl/pub/programming-research/reports/1997/P9707.ps.gz
http://www.wins.uva.nl/pub/programming-research/reports/1997/P9707.ps.gz

	Introduction
	Semantics Driven Disambiguation for SDF
	SDF/SGLR
	Disambiguation methods

	Disambiguation of the Phenixes
	Phenix 1 --- Declaration and use
	Phenix 2 --- Scope
	Phenix 3 and 4 --- Namespace and Structure
	Phenix 5 --- Typedef
	Phenix 6 --- Using and Using namespace
	Phenix 7 --- Template

	Discussion
	Conclusion
	References

