
TWEAST: A Simple and Effective Technique to
Implement Concrete-Syntax AST Rewriting Using

Partial Parsing

Akim Demaille Roland Levillain Benoı̂t Sigoure

EPITA Research and Development Laboratory (LRDE), Paris, France

24th Annual ACM Symposium on Applied Computing (SAC)

Waikiki Beach, Honolulu, Hawaii, USA – March 9 - 11, 2009

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 1

Intent

Context and Scope
Implementation of front ends of compilers, interpreters and other
language processing tools.
Scope restricted to the front end of these tools.

Facts
Program transformation based on rewriting rules is a useful
paradigm for the implementation of the aforementioned tools.
Rewriting rules are often expressed using the abstract syntax of
the processed language, by manipulating Abstract Syntax
Trees (ASTs). . .
. . . But concrete syntax is much more legible!
Compare ‘Op (Int (1), Plus, Int (2))’ with ‘1 + 2’.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 2

Intent

Context and Scope
Implementation of front ends of compilers, interpreters and other
language processing tools.
Scope restricted to the front end of these tools.

Facts
Program transformation based on rewriting rules is a useful
paradigm for the implementation of the aforementioned tools.
Rewriting rules are often expressed using the abstract syntax of
the processed language, by manipulating Abstract Syntax
Trees (ASTs). . .
. . . But concrete syntax is much more legible!
Compare ‘Op (Int (1), Plus, Int (2))’ with ‘1 + 2’.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 2

Intent

Context and Scope
Implementation of front ends of compilers, interpreters and other
language processing tools.
Scope restricted to the front end of these tools.

Facts
Program transformation based on rewriting rules is a useful
paradigm for the implementation of the aforementioned tools.
Rewriting rules are often expressed using the abstract syntax of
the processed language, by manipulating Abstract Syntax
Trees (ASTs). . .
. . . But concrete syntax is much more legible!
Compare ‘Op (Int (1), Plus, Int (2))’ with ‘1 + 2’.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 2

Intent

Context and Scope
Implementation of front ends of compilers, interpreters and other
language processing tools.
Scope restricted to the front end of these tools.

Facts
Program transformation based on rewriting rules is a useful
paradigm for the implementation of the aforementioned tools.
Rewriting rules are often expressed using the abstract syntax of
the processed language, by manipulating Abstract Syntax
Trees (ASTs). . .
. . . But concrete syntax is much more legible!
Compare ‘Op (Int (1), Plus, Int (2))’ with ‘1 + 2’.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 2

Intent

Context and Scope
Implementation of front ends of compilers, interpreters and other
language processing tools.
Scope restricted to the front end of these tools.

Facts
Program transformation based on rewriting rules is a useful
paradigm for the implementation of the aforementioned tools.
Rewriting rules are often expressed using the abstract syntax of
the processed language, by manipulating Abstract Syntax
Trees (ASTs). . .
. . . But concrete syntax is much more legible!
Compare ‘Op (Int (1), Plus, Int (2))’ with ‘1 + 2’.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 2

Intent (cont.)

More Facts
There are several tools to implement concrete-syntax AST
rewriting (ASF+SDF [van den Brand et al., 1995], Stratego/XT
[Bravenboer et al., 2006], TXL [Cordy, 2006]). . .
. . . but then you have to depend on an extra
language/tool/framework.

Goal
Design a simple and adaptable framework to generate and rewrite
ASTs using the concrete syntax of the processed language.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 3

Intent (cont.)

More Facts
There are several tools to implement concrete-syntax AST
rewriting (ASF+SDF [van den Brand et al., 1995], Stratego/XT
[Bravenboer et al., 2006], TXL [Cordy, 2006]). . .
. . . but then you have to depend on an extra
language/tool/framework.

Goal
Design a simple and adaptable framework to generate and rewrite
ASTs using the concrete syntax of the processed language.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 3

Intent (cont.)

More Facts
There are several tools to implement concrete-syntax AST
rewriting (ASF+SDF [van den Brand et al., 1995], Stratego/XT
[Bravenboer et al., 2006], TXL [Cordy, 2006]). . .
. . . but then you have to depend on an extra
language/tool/framework.

Goal
Design a simple and adaptable framework to generate and rewrite
ASTs using the concrete syntax of the processed language.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 3

Intent (cont.)

More Facts
There are several tools to implement concrete-syntax AST
rewriting (ASF+SDF [van den Brand et al., 1995], Stratego/XT
[Bravenboer et al., 2006], TXL [Cordy, 2006]). . .
. . . but then you have to depend on an extra
language/tool/framework.

Goal
Design a simple and adaptable framework to generate and rewrite
ASTs using the concrete syntax of the processed language.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 3

Foreword

Examples use C++, but the approach is applicable to any general
purpose language.
No specific tool is required. Illustrations make use of the GNU
Bison parser generator [Corbett et al., 2003], but this is not a
requirement.
Applications: program transformation within a small compiler for a
simple language, Tiger [Appel, 1998].

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 4

TWEAST: A Simple and Effective Technique to
Implement Concrete-Syntax AST Rewriting Using
Partial Parsing

1 Concrete-Syntax Manipulation

2 Examples

3 Implementing TWEASTs

4 Conclusions

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 5

Concrete-Syntax Manipulation

Concrete-Syntax Manipulation

1 Concrete-Syntax Manipulation

2 Examples

3 Implementing TWEASTs

4 Conclusions

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 6

Concrete-Syntax Manipulation

Front End & Tasks

A front end can be decomposed as a sequence of tasks.
Tasks communicate by exchanging Abstract Syntax Trees (ASTs).
In our Tiger compiler, we found it convenient to order tasks (solid
arrows) according to their dependencies (dashed arrows).

Parse Bind Type

Translate DesugarBounds
Checking Inline

RenameProgram

IR

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 7

Concrete-Syntax Manipulation

Front End & Tasks

A front end can be decomposed as a sequence of tasks.
Tasks communicate by exchanging Abstract Syntax Trees (ASTs).
In our Tiger compiler, we found it convenient to order tasks (solid
arrows) according to their dependencies (dashed arrows).

Parse Bind Type

Translate DesugarBounds
Checking Inline

RenameProgram

IR

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 7

Concrete-Syntax Manipulation

Front End & Tasks

A front end can be decomposed as a sequence of tasks.
Tasks communicate by exchanging Abstract Syntax Trees (ASTs).
In our Tiger compiler, we found it convenient to order tasks (solid
arrows) according to their dependencies (dashed arrows).

Parse Bind Type

Translate DesugarBounds
Checking Inline

RenameProgram

IR

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 7

Concrete-Syntax Manipulation

Abstract Syntax Manipulation

Each task manipulates an AST (traversal, generation, rewriting)
Usually done using the abstract notation of the tree.
The abstract syntax directly maps a tree to a textual, linear form.

1 + 2

op

int + int

1 2

Op (Int (1), Plus, Int (2))

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 8

Concrete-Syntax Manipulation

Abstract Syntax Manipulation
Example

Parsing a Boolean “and” operator as an if-then-else construct:
A & B → if A then B <> 0 else 0

exp: exp "&" exp
{

$$ = new If($1,
new Op($3, Op::NotEqual , new Int(0)),
new Int(0));

};

‘&’ can be considered syntactic sugar in Tiger.
We desugar it as a core language construct.
Understandable, yet not very concise nor really scalable.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 9

Concrete-Syntax Manipulation

Abstract Syntax Manipulation
Example

Parsing a Boolean “and” operator as an if-then-else construct:
A & B → if A then B <> 0 else 0

exp: exp "&" exp
{

$$ = new If($1,
new Op($3, Op::NotEqual , new Int(0)),
new Int(0));

};

‘&’ can be considered syntactic sugar in Tiger.
We desugar it as a core language construct.
Understandable, yet not very concise nor really scalable.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 9

Concrete-Syntax Manipulation

Abstract Syntax Manipulation
Example

Parsing a Boolean “and” operator as an if-then-else construct:
A & B → if A then B <> 0 else 0

exp: exp "&" exp
{

$$ = new If($1,
new Op($3, Op::NotEqual , new Int(0)),
new Int(0));

};

‘&’ can be considered syntactic sugar in Tiger.
We desugar it as a core language construct.
Understandable, yet not very concise nor really scalable.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 9

Concrete-Syntax Manipulation

Abstract Syntax Manipulation
Example

Parsing a Boolean “and” operator as an if-then-else construct:
A & B → if A then B <> 0 else 0

exp: exp "&" exp
{

$$ = new If($1,
new Op($3, Op::NotEqual , new Int(0)),
new Int(0));

};

‘&’ can be considered syntactic sugar in Tiger.
We desugar it as a core language construct.
Understandable, yet not very concise nor really scalable.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 9

Concrete-Syntax Manipulation

Abstract Syntax Manipulation
Example

Parsing a Boolean “and” operator as an if-then-else construct:
A & B → if A then B <> 0 else 0

exp: exp "&" exp
{

$$ = new If($1,
new Op($3, Op::NotEqual , new Int(0)),
new Int(0));

};

‘&’ can be considered syntactic sugar in Tiger.
We desugar it as a core language construct.
Understandable, yet not very concise nor really scalable.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 9

Concrete-Syntax Manipulation

Program Transformation

The previous example illustrates a program transformation in the
parser.
Roughly, a substitution of an abstract syntax subtree pattern.
Some leaves of the pattern are labels called metavariables.

&

e1 e2 {

if

e1 op

e2 <> int

0

int

0

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 10

Concrete-Syntax Manipulation

Concrete Syntax Manipulation

The abstract syntax notation is effective, but clutters the
transformation.
Concrete syntax is preferable in many cases.
We propose a simple architecture where the previous example
can be rewritten as this:
exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Principle: re-use the existing parser and pretty-printer (“unparser”)
to implement partial parsing.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 11

Concrete-Syntax Manipulation

Concrete Syntax Manipulation

The abstract syntax notation is effective, but clutters the
transformation.
Concrete syntax is preferable in many cases.
We propose a simple architecture where the previous example
can be rewritten as this:
exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Principle: re-use the existing parser and pretty-printer (“unparser”)
to implement partial parsing.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 11

Concrete-Syntax Manipulation

Concrete Syntax Manipulation

The abstract syntax notation is effective, but clutters the
transformation.
Concrete syntax is preferable in many cases.
We propose a simple architecture where the previous example
can be rewritten as this:
exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Principle: re-use the existing parser and pretty-printer (“unparser”)
to implement partial parsing.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 11

Concrete-Syntax Manipulation

Concrete Syntax Manipulation

The abstract syntax notation is effective, but clutters the
transformation.
Concrete syntax is preferable in many cases.
We propose a simple architecture where the previous example
can be rewritten as this:
exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Principle: re-use the existing parser and pretty-printer (“unparser”)
to implement partial parsing.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 11

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Tweast() creates an object composed of
a growing string with “gaps” ("if (. . .) then (. . .) <> 0 else 0")
two (sub-)ASTs (the already parsed operands of ‘&’, represented by
$1 and $3).

This object is called Text With Embedded Abstract Syntax
Trees (TWEAST).

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 12

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Tweast() creates an object composed of
a growing string with “gaps” ("if (. . .) then (. . .) <> 0 else 0")
two (sub-)ASTs (the already parsed operands of ‘&’, represented by
$1 and $3).

This object is called Text With Embedded Abstract Syntax
Trees (TWEAST).

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 12

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Tweast() creates an object composed of
a growing string with “gaps” ("if (. . .) then (. . .) <> 0 else 0")
two (sub-)ASTs (the already parsed operands of ‘&’, represented by
$1 and $3).

This object is called Text With Embedded Abstract Syntax
Trees (TWEAST).

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 12

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

Tweast() creates an object composed of
a growing string with “gaps” ("if (. . .) then (. . .) <> 0 else 0")
two (sub-)ASTs (the already parsed operands of ‘&’, represented by
$1 and $3).

This object is called Text With Embedded Abstract Syntax
Trees (TWEAST).

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 12

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

The TWEAST object holds the data of the (partially constructed)
desugared ‘&’ expression:

: Tweast
"if _exp(0)
then _exp(1) <> 0
else 0"

: std::string

: MetavarMap<Exp>

$1_exp(0) : Exp

_exp(1) : Exp $3

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 13

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

This object represents a state of partial parsing:
the sub-ASTs are the product or a previous parsing,
while the string is to be parsed later to produce the final AST.

The call to parse() finishes the parsing: it builds an AST for the
whole expression, without reparsing the operands ($1 and $3).
Operator ‘<<’ constructs this object step by step:
Expression tweast << x

populates tweast’s inner string when x is a string;
registers x and creates a new metavariable when x is an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 14

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

This object represents a state of partial parsing:
the sub-ASTs are the product or a previous parsing,
while the string is to be parsed later to produce the final AST.

The call to parse() finishes the parsing: it builds an AST for the
whole expression, without reparsing the operands ($1 and $3).
Operator ‘<<’ constructs this object step by step:
Expression tweast << x

populates tweast’s inner string when x is a string;
registers x and creates a new metavariable when x is an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 14

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

This object represents a state of partial parsing:
the sub-ASTs are the product or a previous parsing,
while the string is to be parsed later to produce the final AST.

The call to parse() finishes the parsing: it builds an AST for the
whole expression, without reparsing the operands ($1 and $3).
Operator ‘<<’ constructs this object step by step:
Expression tweast << x

populates tweast’s inner string when x is a string;
registers x and creates a new metavariable when x is an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 14

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

This object represents a state of partial parsing:
the sub-ASTs are the product or a previous parsing,
while the string is to be parsed later to produce the final AST.

The call to parse() finishes the parsing: it builds an AST for the
whole expression, without reparsing the operands ($1 and $3).
Operator ‘<<’ constructs this object step by step:
Expression tweast << x

populates tweast’s inner string when x is a string;
registers x and creates a new metavariable when x is an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 14

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

This object represents a state of partial parsing:
the sub-ASTs are the product or a previous parsing,
while the string is to be parsed later to produce the final AST.

The call to parse() finishes the parsing: it builds an AST for the
whole expression, without reparsing the operands ($1 and $3).
Operator ‘<<’ constructs this object step by step:
Expression tweast << x

populates tweast’s inner string when x is a string;
registers x and creates a new metavariable when x is an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 14

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

This object represents a state of partial parsing:
the sub-ASTs are the product or a previous parsing,
while the string is to be parsed later to produce the final AST.

The call to parse() finishes the parsing: it builds an AST for the
whole expression, without reparsing the operands ($1 and $3).
Operator ‘<<’ constructs this object step by step:
Expression tweast << x

populates tweast’s inner string when x is a string;
registers x and creates a new metavariable when x is an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 14

Concrete-Syntax Manipulation

Concrete Syntax and TWEAST (cont.)

exp: exp "&" exp
{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

};

This object represents a state of partial parsing:
the sub-ASTs are the product or a previous parsing,
while the string is to be parsed later to produce the final AST.

The call to parse() finishes the parsing: it builds an AST for the
whole expression, without reparsing the operands ($1 and $3).
Operator ‘<<’ constructs this object step by step:
Expression tweast << x

populates tweast’s inner string when x is a string;
registers x and creates a new metavariable when x is an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 14

Concrete-Syntax Manipulation

Implementation of Abstract Syntax Trees

In Object-Oriented Programming (OOP):

Abstract Syntax Tree (AST)
nodes are implemented as a
hierarchy of classes.

Ast

Exp Dec ...

Int For ... Function ...

AST traversals are instances of
the V design pattern
[Gamma et al., 1995].

Cloner

Desugarer BoundsChecker Inliner ...

Visitor

PrettyPrinter ...

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 15

Concrete-Syntax Manipulation

Implementation of Abstract Syntax Trees

In Object-Oriented Programming (OOP):

Abstract Syntax Tree (AST)
nodes are implemented as a
hierarchy of classes.

Ast

Exp Dec ...

Int For ... Function ...

AST traversals are instances of
the V design pattern
[Gamma et al., 1995].

Cloner

Desugarer BoundsChecker Inliner ...

Visitor

PrettyPrinter ...

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 15

Concrete-Syntax Manipulation

Implementation of Abstract Syntax Trees

In Object-Oriented Programming (OOP):

Abstract Syntax Tree (AST)
nodes are implemented as a
hierarchy of classes.

Ast

Exp Dec ...

Int For ... Function ...

AST traversals are instances of
the V design pattern
[Gamma et al., 1995].

Cloner

Desugarer BoundsChecker Inliner ...

Visitor

PrettyPrinter ...

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 15

Concrete-Syntax Manipulation

Rewriting Times

Program transformation can occur virtually anywhere in the
front-end, provided enough information (names, types) is
available.
Either directly at the parsing stage

Implemented in the parser.
The parser does the job of matching a pattern (through a
production).

Or later, when the AST is built.
More semantic information may be available.
Implemented as a V (AST traversal).
Matching a pattern can be tedious.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 16

Concrete-Syntax Manipulation

Rewriting Times

Program transformation can occur virtually anywhere in the
front-end, provided enough information (names, types) is
available.
Either directly at the parsing stage

Implemented in the parser.
The parser does the job of matching a pattern (through a
production).

Or later, when the AST is built.
More semantic information may be available.
Implemented as a V (AST traversal).
Matching a pattern can be tedious.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 16

Concrete-Syntax Manipulation

Rewriting Times

Program transformation can occur virtually anywhere in the
front-end, provided enough information (names, types) is
available.
Either directly at the parsing stage

Implemented in the parser.
The parser does the job of matching a pattern (through a
production).

Or later, when the AST is built.
More semantic information may be available.
Implemented as a V (AST traversal).
Matching a pattern can be tedious.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 16

Examples

Examples

1 Concrete-Syntax Manipulation

2 Examples

3 Implementing TWEASTs

4 Conclusions

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 17

Examples

Applications of AST rewriting

Desugaring I.e, removing syntactic sugar.
→ Language extensions as sugar on top of

the core language.
Optimization Replace some patterns by faster equivalent

code, or code requiring less resources (e.g.,
memory).

Code Instrumentation Perform additional tasks for many grounds:
safety, debugging, profiling, etc.

Engineering Code renovation & refactoring, automated or
semi-automated migrations, etc.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 18

Examples

Applications of AST rewriting

Desugaring I.e, removing syntactic sugar.
→ Language extensions as sugar on top of

the core language.
Optimization Replace some patterns by faster equivalent

code, or code requiring less resources (e.g.,
memory).

Code Instrumentation Perform additional tasks for many grounds:
safety, debugging, profiling, etc.

Engineering Code renovation & refactoring, automated or
semi-automated migrations, etc.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 18

Examples

Applications of AST rewriting

Desugaring I.e, removing syntactic sugar.
→ Language extensions as sugar on top of

the core language.
Optimization Replace some patterns by faster equivalent

code, or code requiring less resources (e.g.,
memory).

Code Instrumentation Perform additional tasks for many grounds:
safety, debugging, profiling, etc.

Engineering Code renovation & refactoring, automated or
semi-automated migrations, etc.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 18

Examples

Applications of AST rewriting

Desugaring I.e, removing syntactic sugar.
→ Language extensions as sugar on top of

the core language.
Optimization Replace some patterns by faster equivalent

code, or code requiring less resources (e.g.,
memory).

Code Instrumentation Perform additional tasks for many grounds:
safety, debugging, profiling, etc.

Engineering Code renovation & refactoring, automated or
semi-automated migrations, etc.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 18

Examples

Applications of AST rewriting

Desugaring I.e, removing syntactic sugar.
→ Language extensions as sugar on top of

the core language.
Optimization Replace some patterns by faster equivalent

code, or code requiring less resources (e.g.,
memory).

Code Instrumentation Perform additional tasks for many grounds:
safety, debugging, profiling, etc.

Engineering Code renovation & refactoring, automated or
semi-automated migrations, etc.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 18

Examples

Syntactic Sugar Removal
In the Parser

Desugaring unary minus as a binary minus (−e { (0 − e)).
exp: "-" exp
{

$$ = parse(Tweast() << "0 - " << $2);
};

Desugaring Boolean operators as if-then-else expressions.
exp:
exp "&" exp

{

$$ = parse(Tweast() <<
"if" << $1 << "then" << $3 << "<> 0 else 0");

}

| exp "|" exp
{

$$ = parse(Tweast () <<
"if " << $1 << " then 1 " << "else " << $3 << " <> 0");

};

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 19

Examples

Syntactic Sugar Removal (cont.)
Desugaring a for loop as a while loop (using a visitor)

Ast* Desugarer::operator() (const For& e) {
Exp* lo = recurse(e.vardec().init());

Exp* hi = recurse(e.hi());

Exp* body = recurse(e.body());

const Symbol& var = e.vardec().name();
return parse(Tweast() <<

" let"

" var _lo := " << lo <<

" var _hi := " << hi <<

" var " << var << " := _lo"

" in"

" if _lo <= _hi then"

" while 1 do ("

" " << body << ";"

" if " << var << " = _hi then"

" break;"

" " << var << " := " << var << " + 1"

")"

" end");

}

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 20

Examples

Optimization
Inlining of function bodies

Aim: translate the following code� �
let function add(x : int, y : int) =
x + y

in
add(42, 51)

end� �
into

� �
let var x := 42

var y := 51
in
x + y

end� �

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 21

Examples

Optimization
Inlining of function bodies (cont.)

Ast* Inliner::operator() (const Call& e)
{

const Function& fun(e.definition());
// A recursive function cannot be inlined.

if (recursive_functions_set.has(fun))
return clone(e);

else
{

Tweast t;

t << "let";

// Introduce temporaries to evaluate formal arguments once.

foreach (const Exp& a, e.args())
{

Symbol v = Symbol::fresh();

t << "var" << v << " : " << a.type() << " := " << clone(a);

}

// Inlined call.

t << "in" << recurse(fun.body()) << "end";

return parse(t);
}

}

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 22

Examples

Optimization
More applications

Loop unrolling (when the bounds are statically known).
Constants propagation.
Partial evaluation (when some or all of the terms of an expression
are statically known).
Vectorization.
Etc.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 23

Examples

Code Instrumentation

Add run-time checks of array accesses (bounds checking).
Trace the execution of the program by logging events like function
entries and exits, memory allocations, etc.
Record run-time information (time elapsed in functions, memory
consumption) for profiling purpose.
Etc.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 24

Implementing TWEASTs

Implementing TWEASTs

1 Concrete-Syntax Manipulation

2 Examples

3 Implementing TWEASTs

4 Conclusions

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 25

Implementing TWEASTs

Overview
Adding support for TWEAST in your favorite tool/language

1 Implement Tweast objects and metavariables.
2 Equip the parser and the scanner.
3 Implement transformations as visitors (or in the parser).

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 26

Implementing TWEASTs

Overview
Adding support for TWEAST in your favorite tool/language

1 Implement Tweast objects and metavariables.
2 Equip the parser and the scanner.
3 Implement transformations as visitors (or in the parser).

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 26

Implementing TWEASTs

Overview
Adding support for TWEAST in your favorite tool/language

1 Implement Tweast objects and metavariables.
2 Equip the parser and the scanner.
3 Implement transformations as visitors (or in the parser).

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 26

Implementing TWEASTs

Tweast objects

Add a class Tweast aggregating
a growing string;
several typed dictionaries for sub-ASTs — expressions, l-values,
declarations. . .

Possibly implement the overloaded ‘<<’ sugar.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 27

Implementing TWEASTs

Equip the parser and the scanner

Tweast objects create special codes like ‘ exp’ in their inner string
to materialize metavariables. These must be recognized as valid
tokens in the scanner.

if _exp(0) then _exp(1) <> 0 else 0

Metavariables (e.g. exp(0)) must be accepted by the parser as
valid right-hand sides of the corresponding non-terminal (exp).

exp:"_exp""(" INT ")" { $$= driver.tweast->_exp[$3]; }

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 28

Implementing TWEASTs

Equip the parser and the scanner

Tweast objects create special codes like ‘ exp’ in their inner string
to materialize metavariables. These must be recognized as valid
tokens in the scanner.

if _exp(0) then _exp(1) <> 0 else 0

Metavariables (e.g. exp(0)) must be accepted by the parser as
valid right-hand sides of the corresponding non-terminal (exp).

exp:"_exp""(" INT ")" { $$= driver.tweast->_exp[$3]; }

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 28

Implementing TWEASTs

Equip the parser and the scanner (cont.)

It is convenient to encapsulate the parser and the scanner as well
as the parsing context (input, produced AST, flags, etc.) in a
dedicated object.
→ The P D design pattern, as special case of F.

Supports recursive parsing.
Equally parses from an actual file or from a TWEAST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 29

Implementing TWEASTs

Transformations as Visitors

Used to match patterns to be rewritten.
Rewrite the AST by creating modified copies.
Derive from a Cloner visitor to factor the duplicating code.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 30

Implementing TWEASTs

Overall Architecture

Classes involved in transformations in run-time concrete syntax:

Ast

Exp Dec ...

Int For ... Function ...

Cloner

Desugarer BoundsChecker Inliner

ParserDriver

Tweast

Parser

<<use>>

<<use>>

<<create>>

<<use>>

1*

...

Visitor

PrettyPrinter ...

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 31

Conclusions

Conclusions

1 Concrete-Syntax Manipulation

2 Examples

3 Implementing TWEASTs

4 Conclusions

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 32

Conclusions

Conclusion

TWEASTs provide a simple program transformation framework at
a little implementation cost.
Fairly portable/adaptable to other languages and contexts.
Concrete syntax saves a lot of source lines of code.

Measure Abstract Concrete Gain
Syntax Syntax

C++ new expressions 146 1 99%
Non-whitespace characters 995 671 32%
Words 886 340 61%

Concrete syntax introduces almost no run time penalty.
≈ 1.5% of the run time of the front-end.
< 0.1% of the run time of the entire compiler pipeline.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 33

Conclusions

Extending the TWEAST concept
Static TWEAST

A great part of the run time cost of using TWEASTs comes from
systematically parsing the string they contain.

→ Factor this cost by parsing the string once, the first time the
contents of the TWEAST is used.

→ Apply memoization, using persistent (static) TWEAST objects.
exp: exp "&" exp
{

static Tweast bool_and("if %exp:1 then %exp:2 <> 0 else 0");
$$ = exp(bool_and % $1 % $3);

};

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 34

Conclusions

Extending the TWEAST concept
Full Concrete-Syntax Rewriting

Matching patterns (with a visitor) is difficult, since it involves
abstract syntax.

→ Use concrete syntax for matching as well.
→ Assemble two concrete syntax patterns (match and build) as a

rewrite rule.
// A rewrite rule translating ‘0 + e’ as ‘e’.

RewriteRule r("0 + %exp:1", "%exp:1");

Ast* ast = r("0 + 42"); // Rewritten as ‘42’.

Requires some extensions of the framework, in particular a
generic mechanism to match a tree pattern within an AST.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 35

Conclusions

TWEAST: A Simple and Effective Technique to
Implement Concrete-Syntax AST Rewriting Using
Partial Parsing

1 Concrete-Syntax Manipulation

2 Examples

3 Implementing TWEASTs

4 Conclusions

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 36

Conclusions

Bibliography I

Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

van den Brand, M. G. J., van Deursen, A., Dinesh, T. B.,
Kamperman, J. F. T., and Visser, E., editors (1995).
Proceedings of the Workshop on Generating Tools from Algebraic
Specifications (ASF+SDF’95). Technical Report P9504,
Programming Research Group, University of Amsterdam.

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser, E.
(2006).
Stratego/XT 0.16. Components for transformation systems.
In ACM SIGPLAN 2006 Workshop on Partial Evaluation and
Program Manipulation (PEPM’06), Charleston, South Carolina.
ACM SIGPLAN.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 37

Conclusions

Bibliography II

Corbett, R., Stallman, R., and Hilfinger, P. (2003).
Bison: GNU LALR(1) and GLR parser generator.
http://www.gnu.org/software/bison/bison.html.

Cordy, J. R. (2006).
The TXL source transformation language.
Science of Computer Programming, 61(3):190–210.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-Wesley
Publishing Company, New York, NY.

A. Demaille, R. Levillain, B. Sigoure (LRDE) A Simple Technique to Implement Concrete-Syntax AST Rewriting SAC’09 38

http://www.gnu.org/software/bison/bison.html

	Concrete-Syntax Manipulation
	Examples
	Implementing TWEASTs
	Conclusions

