
Derived-Term Automata of
Multitape Rational Expressions

(Long version?)

Akim Demaille akim@lrde.epita.fr

EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire, 94276 Le Kremlin-Bicêtre, France

Abstract. We consider (weighted) rational expressions to denote series
over Cartesian products of monoids. We define an operator | to build
multitape expressions such as (a+ | x+ b+ | y)∗. We introduce expansions,
which generalize the concept of derivative of a rational expression, but
relieved from the need of a free monoid. We propose an algorithm based
on expansions to build multitape automata from multitape expressions.

1 Introduction

Automata and rational (or regular) expressions share the same expressive power,
with algorithms going from one to the other. This fact made rational expressions
an extremely handy practical tool to specify some rational languages in a concise
way, from which acceptors (automata) are built. There are many largely used
implementations, probably starting with Ken Thompson [15], the creator of Unix,
grep, etc.

There are numerous algorithms to build an automaton from an expression. We
are particularly interested in the derivative-based family of algorithms [3–5, 7, 10],
because they offer a very natural interpretation to states (they are labeled by
an expression that denotes the future of the states, i.e., the language/series
accepted from this state). This allowed to support several extensions: extended
operators (intersection, complement) [4, 5], weights [10], additional products
(shuffle, infiltration), etc.

Multitape automata, including transducers, share many properties with
“single-tape” automata, in particular the Fundamental Theorem [14, Theorem 2.1,
p. 409]: under appropriate conditions, multitape automata and rational (multi-
tape) series share the same expressive power. However, as far as the author knows,
there is no definition of multitape rational expressions that allows expressions
such as E2 := (a+ | x + b+ | y)∗ (Example 5). To denote such a binary relation
between words, one had to build a (usual) rational expression in “normal form”,
without tupling of expressions but only tuples of letters such as a set of generators.

? This report is an extended version of the paper published in CIAA 2016 under the
same name.
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So for instance instead of E2, one must use E′2 :=
(
(a | ε)+(ε | x) + (b | ε)+(ε | y)

)∗
,

which is larger, as is its derived-term automaton.

The contributions of this paper are twofold: we define (weighted) multitape
rational expressions featuring a | operator, and we provide an algorithm to build
an equivalent automaton. This algorithm is a generalization of the derived-term
based algorithms, freed from the requirement that the monoid is free.

We first settle the notations in Sect. 2, provide an algorithm to compute the
expansion of an expression in Sect. 3, which is used in Sect. 4 to propose an
alternative construction of the derived-term automaton.

The constructs exposed in this paper are implemented in Vcsn1. Vcsn is a
free-software platform dedicated to weighted automata and rational expressions
[8]; its lowest layer is a C++ library, on top of which Python/IPython bindings
provide an interactive graphical environment.

2 Notations

Our purpose is to define (weighted) multitape rational expressions, such as
E1 := 〈5〉1|1 + 〈4〉a d e∗|x + 〈3〉b d e∗|x + 〈2〉a c e∗|x y + 〈6〉b c e∗|x y (weights are
written in angle brackets). It relates ade with x, with weight 4. We introduce
an algorithm to build a multitape automaton (aka transducer) from such an
expression, e.g., Fig. 1. This algorithm relies on rational expansions. They are to
the derivatives of rational expressions what differential forms are to the derivatives
of functions. Defining expansions requires several concepts, defined bottom-up in
this section. The following figure presents these different entities, how they relate
to each other, and where we are heading to: given a weighted multitape rational
expression such as E1, compute its expansion:

Weight︷︸︸︷
〈5〉

︸︷︷︸
Constant term

⊕
Label︷︸︸︷
a|x
︸︷︷︸
First

�
[
〈2〉 �

Expression

(Sect. 2.2)
︷ ︸︸ ︷
ce∗|y
︸ ︷︷ ︸

Derived term

⊕
Monomial︷ ︸︸ ︷
〈4〉 � de∗|1

]
⊕ b|x�

[
Polynomial (Sect. 2.3)︷ ︸︸ ︷

〈6〉 � ce∗|y ⊕ 〈3〉 � de∗|1
]

︸ ︷︷ ︸
Proper part of the expansion︸ ︷︷ ︸

Expansion (Sect. 2.4)

from which we build its derived-term automaton (Fig. 1).

It is helpful to think of expansions as a normal form for expressions.

1 See the interactive environment, http://vcsn-sandbox.lrde.epita.fr, or its
documentation, http://vcsn.lrde.epita.fr/dload/2.3/notebooks/expression.

derived_term.html, or this paper’s companion notebook, http://vcsn.lrde.epita.
fr/dload/2.3/notebooks/CIAA-2016.html.

http://vcsn-sandbox.lrde.epita.fr
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/expression.derived_term.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/expression.derived_term.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/CIAA-2016.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/CIAA-2016.html
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E1 = 〈5〉1|1+ 〈4〉a d e∗|x+ 〈3〉b d e∗|x+ 〈2〉a c e∗|x y + 〈6〉b c e∗|x y
〈5〉

c e∗|y

d e∗|1

e∗|1

〈2〉a|x, 〈6〉b|x

〈4〉a|x, 〈3〉b|x

c|y

d|ε

e|ε

Fig. 1. The derived-term automaton of E1 (see Examples 1 to 3) with
E1 := 〈5〉1|1 + 〈4〉a d e∗|x + 〈3〉b d e∗|x + 〈2〉a c e∗|x y + 〈6〉b c e∗|x y.

2.1 Rational Series

Series will be used to define the semantics of the forthcoming structures: they are
to weighted automata what languages are to Boolean automata. Not all languages
are rational (denoted by an expression), and similarly, not all series are rational
(denoted by a weighted expression). We follow Sakarovitch [14, Chap. III].

In order to cope with (possibly) several tapes, we cannot rely on the traditional
definitions based on the free monoid A∗ for some alphabet A.

Labels Let M be a monoid (e.g., A∗ or A∗ × B∗), whose neutral element is
denoted εM , or ε when clear from the context. For consistency with the way
transducers are usually represented, we use m | n rather than (m,n) to denote
the pair of m and n. For instance εA∗×B∗ = εA∗ | εB∗ , and εM | a ∈M × {a}∗. A
set of generators G of M is a subset of M such that G∗ = M . A monoid M is of
finite type (or finitely generated) if it admits a finite set of generators. A monoid
M is graded if it admits a gradation function |·| ∈M → N such that ∀m,n ∈M ,
|m| = 0 iff m = ε, and |mn| = |m|+ |n|. Cartesian products of graded monoids
are graded, and Cartesian products of finitely generated monoids are finitely
generated. Free monoids and Cartesian products of free monoids are graded and
finitely generated.

Weights Let 〈K,+, ·, 0K, 1K〉 (or K for short) be a semiring whose (possibly non
commutative) multiplication will be denoted by juxtaposition. K is commutative
if its multiplication is. K is a topological semiring if it is equipped with a topology,
and both addition and multiplication are continuous. It is strong if the product
of two summable families is summable.

Series A (formal power) series over M with weights (or multiplicities) in K is
a map from M to K. The weight of m ∈ M in a series s is denoted s(m). The
null series, m 7→ 0K, is denoted 0; for any m ∈M (including εM ), m denotes the
series u 7→ 1K if u = m, 0K otherwise. If M is of finite type, then we can define
the Cauchy product of series. s · t := m 7→ ∑

u,v∈M |uv=m s(u) · t(v). Equipped

with the pointwise addition (s + t := m 7→ s(m) + t(m)) and · as multiplication,
the set of these series forms a semiring denoted

〈
K〈〈M〉〉,+, ·, 0, ε

〉
.

The constant term of a series s, denoted sε, is s(ε), the weight of the empty
word. A series s is proper if sε = 0K. The proper part of s is the proper series sp
such that s = sε + sp.
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Star The star of a series is an infinite sum: s∗ :=
∑

n∈N sn. To ensure semantic
soundness, we need M to be graded monoid and K to be a strong topological
semiring.

Proposition 1. Let M be a graded monoid and K a strong topological semiring.
Let s ∈ K〈〈M〉〉, s∗ is defined iff s∗ε is defined and then s∗ = s∗ε + s∗εsps

∗.

Proof. By [14, Prop. 2.6, p. 396] s∗ is defined iff s∗ε is defined and then s∗ =
(s∗εsp)∗s∗ε = s∗ε(sps

∗
ε)∗. The result then follows directly from s∗ = ε + ss∗: s∗ =

s∗ε(sps
∗
ε)∗ = s∗ε(ε + (sps

∗
ε)(sps

∗
ε)∗) = s∗ε + s∗εsp(s∗ε(sps

∗
ε)∗) = s∗ε + s∗εsps

∗. ut

Tuple We suppose K is commutative. The tupling of two series s ∈ K〈〈M〉〉, t ∈
K〈〈N〉〉, is the series s | t := m | n ∈ M × N 7→ s(m)t(n). It is a member of
K〈〈M ×N〉〉.

Proposition 2. For all series s, s′ ∈ K〈〈M〉〉 and t, t′ ∈ K〈〈N〉〉, (s + s′) | t =
s | t + s′ | t and s | (t + t′) = s | t + s | t′.

Proof. Let m |n ∈M×N . ((s+s′) |t)(m |n) = (s+s′)(m) ·t(n) = (s(m)+s′(m)) ·
t(n) = s(m) · t(n) + s′(m) · t(n) = (s | t)(m |n) · (s′ | t)(m |n) = (s | t+ s′ | t)(m |n).
Likewise for right distributivity. ut

From now on, M is a graded monoid of finite type, and K a commutative
strong topological semiring.

2.2 Weighted Rational Expressions

Contrary to the usual definition, we do not require a finite alphabet: any set of
generators G ⊆M will do. For expressions with more than one tape, we required
K to be commutative; however, for single tape expressions, our results apply to
non-commutative semirings, hence there are two exterior products.

Definition 1 (Expression). A rational expression E over G is a term built
from the following grammar, where a ∈ G denotes any non empty label, and
k ∈ K any weight: E ::= 0 | 1 | a | E + E | 〈k〉E | E〈k〉 | E · E | E∗ | E | E.

Expressions are syntactic; they are finite notations for (some) series.

Definition 2 (Series Denoted by an Expression). Let E be an expression.
The series denoted by E, noted JEK, is defined by induction on E:

J0K := 0 J1K := ε JaK := a JE + FK := JEK + JFK
q
〈k〉E

y
:= kJEK

q
E〈k〉

y
:= JEKk JE · FK := JEK · JFK JE∗K := JEK∗

q
E | F

y
:= JEK | JFK

An expression is valid if it denotes a series. More specifically, there are two
requirements. First, the expression must be well-formed, i.e., concatenation and
disjunction must be applied to expressions of appropriate number of tapes. For
instance, a + b|c and a(b|c) are ill-formed, (a | b)∗ | c + a | (b | c)∗ is well-formed.
Second, to ensure that JFK∗ is well defined for each subexpression of the form F∗,
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the constant term of JFK must be starrable in K (Proposition 1). This definition,
which involves series (semantics) to define a property of expressions (syntax),
will be made effective (syntactic) with the appropriate definition of the constant
term dε(E) of an expression E (Definition 6).

Let [n] denote {1, . . . , n}). The size (aka length) of a (valid) expression E, |E|,
is its total number of symbols, not counting parenthesis; for a given tape number
i ∈ [k] the width on tape i, ‖E‖i, is the number of occurrences of labels on the
tape i, the width of E (aka literal length), ‖E‖ :=

∑
i∈[k]‖E‖i is the total number

of occurrences of labels.

Two expressions E and F are equivalent iff JEK = JFK. Some expressions
are “trivially equivalent”; any candidate expression will be rewritten via the
following trivial identities . Any subexpression of a form listed to the left of a ‘⇒’
is rewritten as indicated on the right.

E + 0⇒ E 0 + E⇒ E

〈0K〉E⇒ 0 〈1K〉E⇒ E 〈k〉0⇒ 0 〈k〉〈h〉E⇒ 〈kh〉E
E〈0K〉 ⇒ 0 E〈1K〉 ⇒ E 0〈k〉 ⇒ 0 E〈k〉〈h〉 ⇒ E〈kh〉

(〈k〉E)〈h〉 ⇒ 〈k〉(E〈h〉) `〈k〉 ⇒ 〈k〉`
E · 0⇒ 0 0 · E⇒ 0

(〈k〉?1) · E⇒ 〈k〉?E E · (〈k〉?1)⇒ E〈k〉?

0? ⇒ 1

(〈k〉?E) | (〈h〉?F)⇒ 〈kh〉?E | F

where E is a rational expression, ` ∈ G ∪ {1} a label, k, h ∈ K weights, and 〈k〉?`
denotes either 〈k〉`, or ` in which case k = 1K in the right-hand side of ⇒. The
choice of these identities is beyond the scope of this paper (see [14]), however
note that they are limited to trivial properties; in particular linearity (“weighted
ACI”: associativity, commutativity and 〈k〉E + 〈h〉E⇒ 〈k + h〉E) is not enforced.
In practice, additional identities help reducing the automaton size [12].

2.3 Rational Polynomials

At the core of the idea of “partial derivatives” introduced by Antimirov [3], is that
of sets of rational expressions, later generalized in weighted sets by Lombardy
and Sakarovitch [10], i.e., functions (partial, with finite domain) from the set of
rational expressions into K \ {0K}. It proves useful to view such structures as
“polynomials of expressions”. In essence, they capture the linearity of addition.

Definition 3 (Rational Polynomial). A polynomial (of rational expressions)
is a finite (left) linear combination of expressions. Syntactically it is a term built
from the grammar P ::= 0 | 〈k1〉 � E1 ⊕ · · · ⊕ 〈kn〉 � En where ki ∈ K \ {0K}
denote non-null weights, and Ei denote non-null expressions. Expressions may
not appear more than once in a polynomial. A monomial is a pair 〈ki〉 � Ei.
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We use specific symbols (� and ⊕) to clearly separate the outer polynomial
layer from the inner expression layer. Let P =

⊕
i∈[n]〈ki〉 � Ei be a polynomial

of expressions. The “projection” of P is the expression expr(P) := 〈k1〉E1 + · · ·+
〈kn〉En (or 0 if P is null); this operation is performed on a canonical form of the
polynomial (expressions are sorted in a well defined order). Polynomials denote
series: JPK :=

q
expr(P)

y
. The terms of P is the set exprs(P) := {E1, . . . ,En}.

Example 1. Let E1 := 〈5〉1|1+〈4〉a d e∗|x+〈3〉b d e∗|x+〈2〉a c e∗|x y+〈6〉b c e∗|x y.
Polynomial ‘P1,a|x := 〈2〉�ce∗ | y⊕〈4〉�de∗ | 1’ has two monomials: ‘〈2〉�ce∗ | y’
and ‘〈4〉 � de∗ | 1’. It denotes the (left) quotient of JE1K by a | x, and ‘P1,b|x :=
〈6〉 � ce∗ | y ⊕ 〈3〉 � de∗ | 1’ the quotient by b | x.

Let P =
⊕

i∈[n]〈ki〉�Ei,Q =
⊕

j∈[m]〈hi〉�Fi be polynomials, k a weight and
F an expression, all possibly null, we introduce the following operations:

P · F :=
⊕

i∈[n]
〈ki〉 � (Ei · F) 〈k〉P :=

⊕

i∈[n]
〈kki〉 � Ei P〈k〉 :=

⊕

i∈[n]
〈ki〉 � (Ei〈k〉)

P | 1 :=
⊕

i∈[n]
〈ki〉 � Ei | 1 1 | P :=

⊕

i∈[n]
〈ki〉 � 1 | Ei

P | Q :=
⊕

(i,j)∈[n]×[m]

〈ki · hj〉 � Ei | Fj

Trivial identities might simplify the result. Note the asymmetry between left and
right exterior products. The addition of polynomials is commutative, multiplica-
tion by zero (be it an expression or a weight) evaluates to the null polynomial,
and the left-multiplication by a weight is distributive.

Lemma 1. JP · FK = JPK · JFK
q
〈k〉P

y
= 〈k〉JPK

q
P〈k〉

y
= JPK〈k〉q

P | Q
y

= JPK | JQK.

Proof. See Appendix A.1.

2.4 Rational Expansions

Definition 4 (Rational Expansion). A rational expansion X is a term X ::=
〈Xε〉⊕ a1� [Xa1

]⊕ · · · ⊕ an� [Xan
] where Xε ∈ K is a weight (possibly null), ai ∈

G \ {ε} non-empty labels (occurring at most once), and Xai
non-null polynomials.

The constant term is Xε, the proper part is Xp := a1 � [Xa1
]⊕ · · · ⊕ an � [Xan

],
the firsts is f(X) := {a1, . . . , an} (possibly empty) and the terms exprs(X) :=⋃

i∈[n] exprs(Xai
).

To ease reading, polynomials are written in square brackets. Contrary to ex-
pressions and polynomials, there is no specific term for the null expansion: it is
represented by 〈0K〉, the null weight. Except for this case, null constant terms
are left implicit. Expansions will be written: X = 〈Xε〉 ⊕

⊕
a∈f(X) a� [Xa]. When

more convenient, we write X(`) instead of X` for ` ∈ f(X) ∪ {ε}.
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An expansion X can be “projected” as a rational expression expr(X) by map-
ping weights, labels and polynomials to their corresponding rational expressions,
and ⊕/� to the sum/concatenation of expressions. Again, this is performed on a
canonical form of the expansion: labels are sorted. Expansions also denote series:
JXK :=

q
expr(X)

y
. An expansion X is equivalent to an expression E iff JXK = JEK.

Example 2 (Example 1 continued). Expansion X1 := 〈5〉 ⊕ a|x� [P1,a|x]⊕ b|x�
[P1,b|x] has X1(ε) = 〈5〉 as constant term, and maps the generator a|x (resp. b|x)
to the polynomial X1(a|x) = P1,a|x (resp. X1(b|x) = P1,b|x). X1 can be proved to
be equivalent to E1.

Let X,Y be expansions, k a weight, and E an expression (all possibly null):

X⊕ Y := 〈Xε + Yε〉 ⊕
⊕

a∈f(X)∪f(Y)
a� [Xa ⊕ Ya] (1)

〈k〉X := 〈kXε〉 ⊕
⊕

a∈f(X)
a� [〈k〉Xa] X〈k〉 := 〈Xεk〉 ⊕

⊕

a∈f(X)
a� [Xa〈k〉] (2)

X · E :=
⊕

a∈f(X)
a� [Xa · E] with X proper: Xε = 0K (3)

X | Y := 〈XεYε〉 ⊕ 〈Xε〉
⊕

b∈f(Y)
(ε|b)� (1 | Yb)⊕ 〈Yε〉

⊕

a∈f(X)
(a|ε)� (Xa | 1)

⊕
⊕

a|b∈f(X)×f(Y)
(a|b)� (Xa | Yb)

(4)

Since by definition expansions never map to null polynomials, some firsts might
be smaller that suggested by these equations. For instance in Z the sum of
〈1〉 ⊕ a� [〈1〉 � b] and 〈1〉 ⊕ a� [〈−1〉 � b] is 〈2〉.

The following lemma is simple to establish: lift semantic equivalences, such
as Proposition 2, to syntax, using Lemma 1.

Lemma 2. JX⊕ YK = JXK + JYK
q
〈k〉X

y
= 〈k〉JXK

q
X〈k〉

y
= JXK〈k〉

JX · EK = JXK · JEK
q
X | Y

y
= JXK | JYK

2.5 Finite Weighted Automata

Definition 5 (Weighted Automaton). A weighted automaton A is a tuple
〈M,G,K, Q,E, I, T 〉 where:
– M is a monoid,
– G (the labels) is a set of generators of M ,
– K (the set of weights) is a semiring,
– Q is a finite set of states,
– I and T are the initial and final functions from Q into K,
– E is a (partial) function from Q×G×Q into K \ {0K};

its domain represents the transitions: (source, label , destination).
An automaton is proper if no label is εM .
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A computation p = (q0, a0, q1)(q1, a1, q2) · · · (qn, an, qn+1) in an automaton
is a sequence of transitions where the source of each is the destination of the
previous one; its label is a0a1 · · · an ∈M , its weight is I(q0)⊗E(q0, a0, q1)⊗· · ·⊗
E(qn, an, qn+1)⊗ T (qn+1) ∈ K. The evaluation of word u by A, A(u), is the sum
of the weights of all the computations labeled by u, or 0K if there are none. The
behavior of an automaton A is the series JAK := m 7→ A(m). A state q is initial
if I(q) 6= 0K. A state q is accessible if there is a computation from an initial state
to q. The accessible part of an automaton A is the subautomaton whose states
are the accessible states of A. The size of an automaton, |A|, is its number of
states.

We are interested, given an expression E, in an algorithm to compute an
automaton AE such that JAEK = JEK (Definition 7). To this end, we first introduce
a simple recursive procedure to compute the expansion of an expression.

3 Expansion of a Rational Expression

Definition 6 (Expansion of a Rational Expression). The expansion of a
rational expression E, written d(E), is defined inductively as follows:

d(0) := 〈0K〉 d(1) := 〈1K〉 d(a) := a� [〈1K〉 � 1] (5)

d(E + F) := d(E)⊕ d(F) (6)

d(〈k〉E) := 〈k〉d(E) d(E〈k〉) := d(E)〈k〉 (7)

d(E · F) := dp(E) · F⊕
〈
dε(E)

〉
d(F) (8)

d(E∗) :=
〈
dε(E)∗

〉
⊕
〈
dε(E)∗

〉
dp(E) · E∗ (9)

d(E | F) := d(E) | d(F) (10)

where dε(E) := d(E)ε, dp(E) := d(E)p are the constant term/proper part of d(E).

The right-hand sides are indeed expansions. The computation trivially termi-
nates: induction is performed on strictly smaller subexpressions. These formulas
are enough to compute the expansion of an expression; there is no secondary
process to compute the firsts — indeed d(a) := a� [〈1K〉 � 1] suffices and every
other case simply propagates or assembles the firsts — or the constant terms.

Of course, in an implementation, a single recursive call to d(E) is performed for
(8) and (9), from which dε(E) and dp(E) are obtained, and additional expansions
are computed only when needed. So they should rather be written:

d(E · F) := let X = d(E) in if 〈Xε〉 6= 0K then Xp · F⊕ 〈Xε〉d(F) else Xp · F
d(E∗) := let X = d(E) in 〈X∗ε〉 ⊕ 〈X∗ε〉Xp · E∗

Besides, existing expressions should be referenced to, not duplicated. In the
previous piece of code, E∗ is not built again, the input argument is reused.

Note that the firsts are a subset of the labels of the expression, hence of
G \ {ε}. In particular, no first includes ε.
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Proposition 3. The expansion of a rational expression is equivalent to the
expression.

Proof. We prove that
q
d(E)

y
= JEK by induction on the expression. The equiva-

lence is straightforward for (5) to (7) and (10), viz.,
q
d(E | F)

y
=

q
d(E) | d(F)

y

(by (10)) =
q
d(E)

y
|
q
d(F)

y
(by Lemma 2) = JEK | JFK (by induction hypothesis)

=
q
E | F

y
(by Lemma 2) . The case of multiplication, (8), follows from:

q
d(E · F)

y
=

r
dp(E) · F⊕

〈
dε(E)

〉
· d(F)

z
=

q
dp(E)

y
· JFK +

〈
dε(E)

〉
·
q
d(F)

y

=
q
dp(E)

y
· JFK +

〈
dε(E)

〉
· JFK =

(q
〈dε(E)〉

y
+

q
dp(E)

y)
· JFK

=
r〈

dε(E)
〉

+ dp(E)
z
· JFK =

q
d(E)

y
· JFK

= JEK · JFK = JE · FK

It might seem more natural to exchange the two terms (i.e.,
〈
dε(E)

〉
· d(F) ⊕

dp(E) · F), but an implementation first computes d(E) and then computes d(F)
only if dε(E) 6= 0K. The case of Kleene star, (9), follows from Proposition 1. ut

4 Expansion-Based Derived-Term Automaton

Definition 7 (Expansion-Based Derived-Term Automaton). The derived-
term automaton of an expression E over G is the accessible part of the automaton
AE := 〈M,G,K, Q,E, I, T 〉 defined as follows:
– Q is the set of rational expressions on alphabet A with weights in K,
– I = E 7→ 1K,
– E(F, a,F′) = k iff a ∈ f(d(F)) and 〈k〉F′ ∈ d(F)(a),
– T (F) = k iff 〈k〉 = d(F)(ε).

Since the firsts exclude ε, this automaton is proper. It is straightforward to
extract an algorithm from Definition 7, using a work-list of states whose outgoing
transitions to compute (see Appendix A.2). The Fig. 2 illustrates the process.
This approach admits a natural lazy implementation: the whole automaton is
not computed at once, but rather, states and transitions are computed on-the-fly,
on demand, for instance when evaluating a word [7]. However, we must justify
Definition 7 by proving that this automaton is finite (Theorem 1).

Example 3 (Examples 1 and 2 continued). With E1 := 〈5〉1|1 + 〈4〉a d e∗|x +
〈3〉b d e∗|x + 〈2〉a c e∗|x y + 〈6〉b c e∗|x y, one has:

d(E1) = 〈5〉 ⊕ a|x� [〈2〉 � ce∗ | y ⊕ 〈4〉 � de∗ | ε]⊕ b|x� [〈6〉 � ce∗ | y ⊕ 〈3〉 � de∗ | ε]
= X1 (from Example 2)

Fig. 1 shows the resulting derived-term automaton.

Theorem 1. For any k-tape expression E, |AE| ≤
∏

i∈[k](‖E‖i + 1) + 1.
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E

〈Eε〉〈Eε〉

Ea,1

Ea,n

Ez,1

Ez,m

〈ka,1〉a
〈ka,n〉a

〈kz,1〉z

〈kz,m〉z

. . .

. . .

. . .

d(E)(a)

d(E)(z)

dp(E)

d(E) = 〈Eε〉 ⊕ a� [

d(E)(a)︷ ︸︸ ︷
〈ka,1〉 � Ea,1 ⊕ · · · ⊕ 〈ka,n〉 � Ea,n]⊕ · · ·

︸︷︷︸
dε(E)

⊕ z � [〈kz,1〉 � Ez,1 ⊕ · · · ⊕ 〈kz,m〉 � Ez,m]︸ ︷︷ ︸
dp(E)

Fig. 2. Initial part of AE, the derived-term automaton of E. This figure is somewhat
misleading in that some Ea,i might be equal to an Ez,j , or E (but never another Ea,j).

Proof. The detailed proof is available in Appendix A.3. The proof goes in
several steps. First introduce the true derived terms of E, a set of expressions
noted TD(E), and the derived terms of E, D(E) := TD(E) ∪ {E}. TD(E) admits
a simple inductive definition similar to [2, Def. 3], to which we add TD(E |
F) := (TD(E) | TD(F)) ∪ ({1} | TD(F)) ∪ (TD(E) | {1}), where for two sets of
expressions E,F we introduce E | F := {E | F}(E,F)∈E×F . Second, verify that
|TD(E)| ≤ ∏i∈[k](‖E‖i + 1) (hence finite). Third, prove that D(E) is “stable

by expansion”, i.e., ∀F ∈ D(E), exprs
(
d(F)

)
⊆ D(E). Finally, observe that the

states of AE are therefore members of D(E), whose size is less than or equal to
1 + |TD(E)|. ut

Theorem 2. Any expression E and its expansion-based derived-term automaton
AE denote the same series, i.e., JAEK = JEK.

Example 4. Let Ak be the derived-
term automaton of the k-tape ex-
pression a∗1 | · · · |a∗k. The states of Ak

are all the possible expressions where
the tape i features 1 or a∗i , except
1 | · · · | 1. Therefore |Ak| = 2k − 1,
and

∏
i∈[k](‖E‖i + 1) = 2k.

A3, the derived-term automaton of
a∗ | b∗ | c∗, is depicted on the right.

a∗ | b∗ | c∗ a∗ | 1 | 1

a∗ | b∗ | 11 | b∗ | 1

1 | b∗ | c∗

1 | 1 | c∗ a∗ | 1 | c∗

A3

a|b|c

ε|ε|c

ε|b|ε

ε|b|c a|ε|ε

a|ε|c

a|b|ε

ε|ε|c

ε|b|ε

ε|ε|c

ε|b|ε
ε|b|c a|ε|ε

ε|ε|c

a|ε|ε

a|ε|c

ε|b|ε

a|ε|ε

a|b|ε

Proof (Theorem 2). We will prove JAEK(m) = JEK(m) by induction on m ∈M .
If m = ε, then JAEK(m) = Eε = d(E)(ε) =

q
d(E)

y
(ε) = JEK(ε).

If m is not ε, then it can be generated in a (finite) number of ways: let
F (E,m) := {(a,ma) ∈ f(d(E)) ×M | m = ama}. F (E,m) is a function: for a
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given a, there is at most one ma such that (a,ma) ∈ F (E,m). Fig. 2 is helpful.

JAEK(m) =
∑

(a,ma)∈F (E,m)

∑

i∈[na]

〈ka,i〉JAEa,iK(ma) by definition of AE

=
∑

(a,ma)∈F (E,m)

∑

i∈[na]

〈ka,i〉JEa,iK(ma) by induction hypothesis

=
∑

(a,ma)∈F (E,m)

r ∑

i∈[na]

〈ka,i〉Ea,i

z
(ma) by Lemma 1

=
∑

(a,ma)∈F (E,m)

q
d(E)(a)

y
(ma) =

∑

(a,ma)∈F (E,m)

q
a� d(E)(a)

y
(ama)

=
∑

a∈f(d(E))

q
a� d(E)(a)

y
(m) F (E,m) is a function

=
r ∑

a∈f(d(E))
a� d(E)(a)

z
(m) by Lemma 2

=
q
dε(E)

y
(m) by definition

=
q
d(E)

y
(m) since m 6= ε

= JEK(m) by Proposition 3 ut

Example 5. Let E2 := (a+ | x + b+ | y)∗, where E+ := EE∗. Its expansion is

d(E2) = 〈1〉 ⊕ a|x�
[
(a∗ | 1)(a+ | x + b+ | y)∗

]
⊕ b|y �

[
(b∗ | 1)(a+ | x + b+ | y)∗

]

= 〈1〉 ⊕ a|x�
[
(a∗ | 1)E2

]
⊕ b|y �

[
(b∗ | 1)E2

]

Its derived-term automaton is:

E2 = (a+|x+ b+|y)∗

(a∗|1)E2

(b∗|1)E2

a|x

b|y

a|ε, a|x

b|y
a|x

b|ε, b|y
5 Related Work

Multitape rational expressions have been considered early [11], but “an n-way
regular expression is simply a regular expression whose terms are n-tuples of
alphabetic symbols or ε” [9]. However, Kaplan and Kay [9] do consider the full
generality of the semantics of operations on rational languages and rational
relations, including ×, the Cartesian product of languages, and even use rational
expressions more general than their definition. They do not, however, provide
an explicit automaton construction algorithm, apparently relying on the simple
inductive construction (using the Cartesian product between automata). Our |
operator on series was defined as the tensor product , denoted ⊗, by Sakarovitch
[14, Sec. III.3.2.5], but without equivalent for expressions.

Brzozowski [4] introduced the idea of derivatives of expressions as a means to
construct an equivalent automaton. The method applies to extended (unweighted)
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rational expressions, and constructs a deterministic automaton. Antimirov [3]
modified the computation to rely on parts of the derivatives (“partial derivatives”),
which results in nondeterministic automata.

Lombardy and Sakarovitch [10] extended this approach to support weighted
expressions; independently, and with completely different foundations, Rutten
[13] proposed a similar construction. Caron et al. [5] introduced support for
(unweighted) extended expressions. Demaille [7] provides support for weighted
extended expressions; expansions, originally mentioned by Brzozowski [4], are
placed at the center of the construct, replacing derivatives, to gain independence
with respect to the size of the alphabet, and efficiency. However, the proofs still
relied on derivatives, contrary to the present work.

Based on (10) one could attempt to define a derivative-based version, with
∂a|b(E | F) := ∂aE | ∂bF, however this is troublesome on several regards. First, it
would also require ∂a|ε and ∂ε|b, whose semantics is dubious. Second, from an
implementation point of view, that would lead to repeated computations of ∂aE
and of ∂bF, unless one would cache them, but that’s exactly what expansions do.
And finally observe that in the derived-term automaton in Example 5, the state
(a∗ | 1)(a+ | x + b+ | y)∗ accepts words starting with a on the first tape, and y
on the second, yet an outgoing transition on a|y would result in a more complex
automaton.

Alternative definitions of derivatives may exist2, but anyway they would no
longer be equivalent to taking the left-quotient of the corresponding language:
a|y is a viable prefix from this state.

Different constructions of the derived-term automaton have been discovered
[1, 6]. They do not rely on derivatives at all. It is an open question whether these
approaches can be adapted to support a tuple operator.

6 Conclusion

Our work is in the continuation of derivative-based computations of the derived-
term automaton [3–5, 10]. However, we replaced the derivatives by expansions,
which lifted the requirement for the monoid of labels to be free.

In order to support k-tape (weighted) rational expressions, we introduced a
tupling operator, which is more compact and readable than simple expressions
on k-tape letters. We demonstrated how to build the derived-term automaton
for any such expressions.

Vcsn1 implements the techniques exposed in this paper. Our future work aims
at other operators, and studying more closely the complexity of the algorithm.
The usual state-elimination method to compute an expression from an automaton
works perfectly, however we are looking for means to reduce the expression size.

2 Makarevskii and Stotskaya [11] define derivatives, but (i) in the case of expressions
over tuples of letters, and (ii) only when in so-called “standard form”, for which he
notes “no method of constructing [an] n-expression in standard form for a regular
n-expression is known.”
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15. K. Thompson. Programming techniques: Regular expression search algorithm.

Commun. ACM, 11(6):419–422, 1968.

A Appendix

A.1 Proof of Lemma 1

Proof (Lemma 1). The first three equations are straightforward to prove.

q
P | Q

y
=

r ⊕

(i,j)∈[n]×[m]

〈ki · hj〉 � Ei | Fj

z

http://arxiv.org/abs/1605.01530
http://arxiv.org/abs/1605.01530
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=
∑

(i,j)∈[n]×[m]

〈
ki · hj

〉q
Ei | Fj

y

=
∑

(i,j)∈[n]×[m]

〈
ki · hj

〉
JEiK |

q
Fj

y

=
(∑

i∈[n]
〈ki〉JEiK

)
|
( ∑

j∈[m]

〈
hj

〉q
Fj

y)

=
r⊕

i∈[n]
〈ki〉 � Ei

z
|
r⊕

j∈[m]

〈hj〉 � Fj

z

= JPK | JQK ut

A.2 Derived-Term Algorithm

Input : E, a rational expression
Output : 〈E, I, T 〉 an automaton (simplified notation)

I(E) := 1K ; // Unique initial state

Q := Queue(E) ; // A work list (queue) loaded with E
while Q is not empty do

E := pop(Q) ; // A new state/expression to complete

X := d(E) ; // The expansion of E
T (E) := X(ε) ; // Final weight: the constant term

foreach a� [Pa] ∈ X do // For each first/polynomial in X
foreach 〈k〉 � F ∈ Pa do // For each monomial of Pa = X(a)

E(E, a,F) := k ; // New transition

if F 6∈ Q then
push(Q, F) ; // F is a new state, to complete later

end

end

end

end

A.3 Derived Terms

We will prove that the states of AE are actually members of TD(E) (and E itself),
a finite set of expressions, called the derived terms of E. TD(E) admits a simple
inductive definition.

Definition 8 (Derived Terms). The true derived terms of an expression E is
TD(E), the set of expressions defined inductively below:

TD(0) := ∅
TD(1) := ∅
TD(a) := {1} ∀a ∈ A

TD(E + F) := TD(E) ∪ TD(F)
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TD(〈k〉E) := TD(E) ∀k ∈ K
TD(E〈k〉) := {Ei〈k〉 | Ei ∈ TD(E)} ∀k ∈ K
TD(E · F) := {Ei · F | Ei ∈ TD(E)} ∪ TD(F)

TD(E∗) := {Ei · E∗ | Ei ∈ TD(E)}
TD(E | F) := (TD(E) | TD(F)) ∪ ({1} | TD(F)) ∪ (TD(E) | {1})

The derived terms of an expression E is D(E) := TD(E) ∪ {E}.

Lemma 3 (Number of Derived Terms). For any k-tape expression E,

|TD(E)| ≤
∏

i∈[k]
(‖E‖i + 1) .

Proof. It is simple to check by induction on E that for all cases, except tuple,
TD(E) ≤ ‖E‖ (which is the classical result for single-tape expressions). In the
case of |, it is clear that |TD(E | F)| ≤ (|TD(E)|+ 1) · (|TD(F)|+ 1), hence the
result.

Lemma 4 (True Derived Terms and Single Expansion). For any expres-
sion E, exprs

(
d(E)

)
⊆ TD(E).

Proof. Established by a simple verification of Definition 6. ut

The derived terms of derived terms of E are derived terms of E. In other
words, repeated expansions never “escape” the set of derived terms.

Lemma 5 (True Derived Terms and Repeated Expansions). Let E be an
expression. For all F ∈ TD(E), exprs

(
d(F)

)
⊆ TD(E).

Proof. This will be proved by induction over E.

Case E = 0 or E = 1. Impossible, as then TD(E) = ∅.
Case E = a. Then TD(E) = {1}, hence F = 1 and therefore d(F) = d(1) = 〈0K〉,

so exprs
(
d(F)

)
= ∅ ⊆ TD(E).

Case E = G + H. Then TD(E) = TD(G) ∪ TD(H). Suppose, without loss of
generality, that F ∈ TD(G). Then, by induction hypothesis, exprs

(
d(F)

)
⊆

TD(G) ⊆ TD(E).
Case E = 〈k〉G. Then if F ∈ TD(〈k〉G) = TD(G), so by induction hypothesis

exprs
(
d(F)

)
⊆ TD(G) = TD(〈k〉G) = TD(E).

Case E = G〈k〉. Then ∀F ∈ TD(G〈k〉) = {Gi〈k〉 | Gi ∈ TD(G)}, there exists an i
such that F = Gi〈k〉. Then d(F) = d(Gi〈k〉) = d(Gi)〈k〉 hence exprs

(
d(F)

)
=

exprs
(
d(Gi)〈k〉

)
.

Since Gi ∈ TD(G), by induction hypothesis exprs
(
d(Gi)

)
⊆ TD(G), so by

definition of the right exterior product of expansions (and polynomials),
exprs

(
d(Gi)〈k〉

)
⊆ TD(G〈k〉) = TD(E).

Hence exprs
(
d(F)

)
⊆ TD(E).

Case E = G · H. Then TD(E) = {Gi · H | Gi ∈ TD(G)} ∪ TD(H).
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– If F = Gi · H with Gi ∈ TD(G), then d(F) = d(Gi · H) = dp(Gi) · H ⊕〈
dε(Gi)

〉
d(H).

Since Gi ∈ TD(G) by induction hypothesis exprs
(
dp(Gi)

)
= exprs

(
d(Gi)

)
⊆

TD(G). By definition of the product of an expansion by an expression,
exprs

(
dp(Gi) · H

)
⊆ {Gj · H | Gj ∈ TD(G)} ⊆ TD(G · H) = TD(E).

– If F ∈ TD(H), then by induction hypothesis exprs
(
d(F)

)
⊆ TD(H) ⊆

TD(E).
Case E = G∗. If F ∈ TD(E) = {Gi · G∗ | Gi ∈ TD(G)}, i.e., if F = Gi · G∗

with Gi ∈ TD(G), then d(F) = d(Gi · G∗) = dp(Gi) · G∗ ⊕
〈
dε(Gi)

〉
d(G∗), so

exprs
(
d(F)

)
⊆ exprs

(
dp(Gi) · G∗

)
∪ exprs

(
d(G∗)

)
.3 We will show that both are

subsets of TD(E), which will prove the result.
Since Gi ∈ TD(G), by induction hypothesis, exprs

(
dp(Gi)

)
= exprs

(
d(Gi)

)
⊆

TD(G), so by definition of a product of an expansion by an expression,
exprs

(
dp(Gi) · G∗

)
⊆ {Gj · G∗j | Gj ∈ TD(G)} = TD(E).

By Lemma 4 exprs
(
d(G∗)

)
⊆ TD(G∗) = TD(E).

Case E = G | H. Let F ∈ TD(E) = TD(G) |TD(H), i.e., let F = Gi |Hj with Gi ∈
TD(G),Hj ∈ TD(H), then by induction hypothesis exprs

(
d(Gi)

)
⊆ TD(G)

and exprs
(
d(Hj)

)
⊆ TD(H). So, by definition of the tupling of expansions

exprs
(
d(Gi) | d(Hj)

)
⊆ TD(G) | TD(H) = TD(E).

We have d(F) = d(Gi|Hj) = d(Gi)|d(Hj), so exprs
(
d(F)

)
= exprs

(
d(Gi) | d(Hj)

)
⊆

TD(E). ut

Lemma 6 (Derived Terms and Repeated Expansions). Let E be an ex-
pression. For all F ∈ D(E), exprs

(
d(F)

)
⊆ TD(E).

Proof. Since D(E) = TD(E)∪{E}, this is an immediate consequence of Lemmas 4
and 5.

3 Given two expansions X1,X2, exprs(X1 ⊕ X2) ⊆ exprs(X1) ∪ exprs(X2), but they may
be different; consider for instance X1 = a� [〈1〉 � 1] and X2 = a� [〈−1〉 � 1] with
K = Z.
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