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Abstract—Discovering valuable insights from data through
meaningful associations is a crucial task. However, it becomes
challenging when trying to identify representative patterns
in quantitative databases, especially with large datasets, as
enumeration-based strategies struggle due to the vast search
space involved. To tackle this challenge, output space sampling
methods have emerged as a promising solution thanks to its
ability to discover valuable patterns with reduced computational
overhead. However, existing sampling methods often encounter
limitations when dealing with large quantitative database, result-
ing in scalability-related challenges. In this work, we propose
a novel high utility pattern sampling algorithm and its on-
disk version both designed for large quantitative databases
based on two original theorems. Our approach ensures both
the interactivity required for user-centered methods and strong
statistical guarantees through random sampling. To demonstrate
the interest of our approach, we present a compelling use case
involving archaeological knowledge graph sub-profiles discov-
ery. Experiments on semantic and none-semantic quantitative
databases show that our approach outperforms the state-of-the
art methods.

Index Terms—Knowledge discovery, Output pattern sampling,
High utility itemset

I. INTRODUCTION

Exploratory Data Analysis (EDA) faces growing challenges
due to the increasing complexity and scale of datasets. Re-
cently, methods for constructing and exploring database pro-
files for knowledge graphs have been developed to support
interactive mining and visualization [1], [2]. These profiles
capture crucial information by assigning weights to predicates
linking two classes, making the graph more interpretable and
user-friendly. Presented as a network, the profile becomes
easier to understand and interact with, offering zoom, pan,
and filter capabilities. However, visualizing profiles derived
from large knowledge graphs remains difficult with existing
online tools due to the complexity of interactivity, which
allows users to explore patterns at various levels of granularity,
incorporating predicate utilities and external weights. In EDA,
the discovery of useful weighted patterns in databases with
weighted items—known as High Utility Pattern (HUP) and
high average-utility (HAUP) mining [3], [4]—enhances data
interpretability. Visualization techniques, like networks, effec-
tively convey the essence of these patterns, as shown in Figure
1, but they require fast, iterative exchanges of information
between the system and the user to be effective [5].

To overcome these obstacles, researchers have proposed
new approaches such as sampling-based approximate mining
methods [6] and output sampling methods [7], [8], [9]. These
innovative techniques enable the extraction of meaningful
patterns based on a probability distribution, ensuring both
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Fig. 1: Discovery of sub-profiles in knowledge graphs

representativeness and control over the output space. Despite
their widespread application in frequent pattern mining tasks,
they have seen limited utilization within the domain of qDB
[10], [11]. This discrepancy can be attributed to the intricate
and memory-intensive nature of the weighting phase involved
in handling transactions within qDB. Consequently, the com-
plexity of these methods hinders their scalability for large
databases. This limitation becomes particularly problematic
when exploring very large databases and motivate this paper.

Our work introduces QPLUS, a high-performance algorithm
for exact sampling of high utility patterns (HUP/HAUP) with
optional length constraints, complemented by an on-disk ver-
sion, QPLUSDISK, for handling large databases efficiently. We
propose two original theorems alongside the Upper Triangle
Utility (UTU) concept, which allows efficient utility pattern
computation without materializing storage, facilitating large
qDB exploration. Additionally, we demonstrate the application
of our methods in weighted knowledge graphs, using sam-
pled high utility patterns to extract representative sub-profiles
through transformation into quantitative databases.

The outline of this paper is as follows. Section II reviews
related works about HUP/HAUP mining approaches and pat-
tern sampling methods. Section III introduces basic definitions
and the formal problem statement. We present in Section IV
our contribution for pattern sampling in qDB. We evaluate our
approach in Section V and conclude in Section VI.

II. RELATED WORK

This section presents the HUP/HAUP mining in qDBs
literature and output space pattern sampling.

A. HUP and HAUP mining

Mining HUP/HAUP from qDB faces challenges such as
candidate pattern restriction and high computational cost,
with various methods proposed to address these issues [12].
However, scalability remains hindered for large-scale, diverse
databases, and the long-tail problem complicates exact HUP



mining. Approaches like average utility measures [13] aim to
mitigate this but may introduce bias. Despite these challenges,
HUP mining is vital for extracting insights from qDBs, with
novel sampling techniques [10], [11] offering solutions to
enhance efficiency and decision-making.

B. Output space HUP/HAUP sampling

Recently, the HAISAMPLER algorithm [10] extends output
pattern sampling to qDB. Despite its success, scalability in
large databases is hindered by intensive weight calculations,
making it computationally demanding and memory-intensive.
More recently, HUPSAMPLER [11], a hybrid approach, ex-
tracts High Utility Patterns (HUP) from qDBs, introducing in-
terval constraints and a random tree-based pattern growth tech-
nique. While similar to HAISAMPLER [10], HUPSAMPLER
uniform pattern drawing during sampling can compromise
representativeness while the phase of building a tree remains
time consuming with large databases.

We propose a novel pattern sampling method for large qDBs
that ensures efficient, exact sampling with or without length
constraints, drawing patterns based on utility without intensive
item weighting, making it scalable and memory-efficient.

III. PROBLEM STATEMENT

This section introduces fundamental concepts and notations,
providing the necessary definitions to help readers.

A. Basic definitions and notations

A knowledge graph is a semantic graph combining a TBox
(Terminological Box) and an ABox (Assertional Box). The
TBox defines the schema, including classes, properties, and
constraints. The ABox contains the actual data, comprising
instances of classes and the relationships between them.

a) From knowledge graph profile to qDB: Given a
knowledge graph K built upon a TBox T and an ABox A, i.e.,
K = (T ,A), a profile is defined as a set of pairs ((S, P,O), w)
such that: S is a set of subjects that share a same number of
w instances of the set of objects O via the predicate P . In
other words, a profile encodes the types (elements of T ) and
the terms (instances of thesauri) of a knowledge graph into
a compact structure while aggregating their statistics like the
number of triples.

Example 1. Let P1=“r:represent”, P2=“r:encompass”,
P3=“r:involve” be predicates, C1=“r:Encounter_Event”,
C2=“r:Man-Made”, C3=“r:Document”, C4=“r:Site”
concepts, and e1=“anastylosis”, e2=“geoarchaeology”,
e3=“excavation” terms. We build in Figure 2 a toy profile.

MCMC-based methods [7] have been used to address output
sampling in unweighted graph data, but they often suffer from
time-consuming convergence. An alternative, Random Sam-
pling, lacks guarantees on representativeness, as our baseline
BOOTSTRAP. To overcome these problems, our transformation
approach effectively captures the semantic relations within the
entire knowledge graph.

To apply our approach, we need first to convert the knowl-
edge graph profile into a qDB D. Therefore, we consider the
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Fig. 2: Toy knowledge graph profile

weighted items of each quantitative transaction as the set of
pairs ((S, P,O), w) having a same node source (or target)
in K. Let I = {X1, · · · , XN} be a finite set of items with
an arbitrary total order ≺ between them: X1 ≺ · · · ≺ XN .
A pattern, denoted as φ = Xj1 · · ·Xjn , where n ≤ N ,
refers to a non-empty subset of I, i.e., φ ⊆ I. The pattern
language corresponds to L = 2I\∅, and the length of a pattern
φ = Xj1 · · ·Xjn , φ ∈ L, denoted as |φ| = n.

Definition 1 (Semantic quantitative transaction and qDB). A
semantic quantitative transaction is a set of weighted items
t = {Xj1 : ωj1 · · ·Xjn : ωjn} sharing either the same node
source or the same node target in the knowledge graph profile,
with ωjk the quantity of Xjk in t denoted by q(X, t). A qDB
D corresponds to a multi-set of quantitative transactions.

We denote ti = Xj1 · · ·Xji as an itemset formed by the i
first items of t. Thus, we have |ti| = i. The ith item of the
transaction t is denoted by t[i].

Example 2. Here are two quantitative transactions that can
be generated from the toy profile in Figure 2: t1 = {X1 :
22, X2 : 12, X3 : 25, X4 : 34} with outgoing predicates, and
t2 = {X1 : 22} with incoming predicates, with X1 =
({C1, C2}, P1, {C3}), X2 = ({C1, C3}, P2, {C4}), X3 =
({C3}, P3, {e1, e3}), X4 = ({C1}, P3, {e1, e2}). The remain-
ing transactions are t3 = {X2:12} and t4 = {X3:25, X4:34},
then our toy qDB is D = {t1, t2, t3, t4}.

b) User-defined Weights: In refining subprofile discovery
through pattern sampling, we incorporate user-defined strict
positive weights for each predicate P of a given item X de-
noted by p(X), allowing users to tailor and bias the subprofile
view based on individual priorities. This addition provides
flexibility to our profile visualization tool, enabling users to
customize displayed patterns for a personalized and adaptable
exploration experience. Let us consider, in our example, that
p(X1) = 2, p(X2) = 1, and p(X3) = p(X4) = 3.

Definition 2 (Pattern utility in a transaction). Given a trans-
action t of a qDB D, the weight of the item X in t, denoted
as ω(X, t), is given by: ω(X, t) = q(X, t)×p(X). The utility
of a pattern φ of L(D) in t is defined as follows:

uD(φ, t) =
∑

X∈φ ω(X, t) if φ ⊆ t and 0 otherwise.

c) From utility patterns to knowledge graph sub-profile:
After that, each sampled pattern is converted into a sub-



profile graph where the nodes sharing at least one type or
term are merged to form a maximal profile as defined in
[2]. For instance, if the pattern φ = X2X4 is drawn, then
it corresponds to the knowledge graph sub-profile in Figure 3.

{C1, C3}
{C4}

{e1, e2} (({C1}, P3, {e1, e2}), 34)

(({C1, C3}, P2, {C4}), 12)

Fig. 3: Sub-profile from the pattern X2X4

Based on the previous basic notions, we can formalize the
problem of output space pattern sampling in qDBs.

B. HUP/HAUP sampling problem
By definition, a pattern sampling method aims to randomly

select a pattern φ from a language L based on an interest-
ingness measure m. The notation φ ∼ P(L) represents the
selection such a pattern, where P(·) = m(·)/Z is a probability
distribution over L, and Z is the normalization constant. In
our case, we specifically focus on high utility as an intuitive
measure of interestingness, which allows experts to capture
the most representative subsets in the qDB.

Definition 3 (Utility of a pattern). Given a qDB D and a
pattern φ defined in L(D), the utility of φ in D, denoted as
UL(φ,D), is defined as follows: UL(φ,D) =

∑
t∈D uD(φ, t).

For generality, we additionally consider utilities that are in-
dependent of any specific database, referred to as the length-
based utility [10]. We use L[µ..M ](·) : N∗ → R+, where µ and
M are two positive integers with µ ≤ M , to define the length-
based utility function. In any case, when this function is used,
L[µ..M ](ℓ) = 0 if ℓ ̸∈ [µ..M ]. Consequently, if L[µ..M ](ℓ) =

1
ℓ ,

then we are dealing with the sub-problem of HAUP under
length constraint [10], where the utility of a pattern φ is
defined as its average utility UL(φ,D)

|φ| if |φ| ∈ [µ..M ], and
0 otherwise. With HUP sampling, we set the length-based
utility function to 1 for any pattern in L(D). The maximum
length constraint can be set to infinity (+∞) to avoid length
constraints. Let L[µ..M ](D) denote the set of all patterns in
L(D) with a length greater than µ and lower than M , i.e.,
L[µ..M ](D) = {φ ∈ L(D) : |φ| ∈ [µ..M ]}.

Finally, given a qDB D, two positive integers µ and M , our
objective is to draw a pattern φ ∈ L[µ..M ] with a probability
proportional to its weighted utility in the database D, i.e.,

P(φ) =
UL(φ,D)× L[µ..M ](|φ|)∑

φ′∈L[µ..M]
UL(φ′,D)× L[µ..M ](|φ′|)

.

IV. GENERIC UTILITY PATTERN SAMPLING

We adopt in this paper the multi-step pattern sampling [8]
technique. Therefore, we first need to perform a preprocessing
phase, which involves weighting each transaction.

A. Weighting of a qDB
Before introducing our weighting approach, let us first

briefly explain our baseline weighting approach.

a) HAISAMPLER [10] weighting approach: The trans-
action weighting phase is crucial in multi-step pattern sam-
pling, as it computes the sum of the utility of all patterns
in a transaction. HAISAMPLER uses a weighting matrix to
calculate the weight of patterns of a specific length, denoted
ℓ, by aggregating the weights of patterns of length ℓ that appear
in the transaction. This weighting is based on an arbitrary total
order relation ≺. For each transaction t, every item t[i] has
an associated local matrix of 2 rows and L columns, where
L is the maximum length of patterns that can be generated
with the first ith items (ti) under the given order and length
constraint. The first row in the local matrix holds the weight
of patterns containing item t[i], while the second row contains
those patterns that do not include t[i]. For example, in Table
I, for transaction t31 = {X1 : 22, X2 : 12, X3 : 25}, the
sum of utilities of patterns of length 2 that contain item
t1[3] = X3 is 206, whereas for patterns that do not contain
X3, it is 56. The sum of utilities of patterns of length 3
that include X3 is 131, with no patterns of length 3 that
exclude it. The total weight of the transaction is computed as
(34+ 131)+ (233+ 262)+ (364+ 131)+ (165+ 0) = 1320.

TABLE I: Weighting matrix of t1 by HAISAMPLER [10]
t1 : { X1 , X2 , X3 , X4 }

44 12 56 75 206 131 34 233 364 165
0 44 0 56 56 0 131 262 131 0

However, in large databases with limited available memory,
the storage cost can become prohibitive. Therefore, we propose
a new, efficient, and original weighting approach for qDB.

b) Our weighting approach: The solution in this paper
removes the need for a local matrix for each item. We aim to
create a formula to compute the weight of any transaction in
a qDB based on the sum of its item utilities. To achieve this,
we propose the Upper Triangle Utility weighting approach,
which uses an upper triangle matrix. This matrix contains the
weights of each item and allows for the efficient computation
of the transaction weight and exact pattern drawing. At the
intersection of line ℓ and column i, the matrix provides the
sum of utilities for the patterns of length ℓ in the transaction
portion ti.

Definition 4 (Upper Triangle Utility). Given a quantitative
transaction t, ℓ and i two integers, with 0 < ℓ, i ≤ |t|. The
upper triangle utility of t denoted by Vt is defined as follows:
Vt(ℓ, i) = 0 if ℓ > i, Vt(1, i) =

∑i
j=1 ω(t[j], t)

Vt(ℓ, i) =
(
i−1
ℓ−1

)
× ω(t[i], t) + Vt(ℓ− 1, i− 1) + Vt(ℓ, i− 1).

The recursive formula can be interpreted easily as follows: on
one hand,

(
i−1
ℓ−1

)
×ω(t[i], t)+Vt(ℓ−1, i−1) gives the aggregate

weights of the set of patterns of length ℓ appearing in t and
containing the item t[i]. On the other hand, Vt(ℓ, i− 1) gives
that of the set of patterns of length ℓ in t without the item t[i].

Example 3. Let us compute the upper triangle utility of t1
in Table II with Definition 4. The weight of the corresponding
transaction t is the sum of the values in column |t| of Vt. Then



TABLE II: Upper triangle utility of transaction t1

t1 : { X1 , X2 , X3 , X4 }
44 56 131 165
0 56 262 495
0 0 131 495
0 0 0 165

we have 165 + 495 + 495 + 165 = 1320. Hence we get the
same result as HAISAMPLER.

In reality, the upper triangle utility hides wonderful prop-
erties. For example, we have the intuition that Vt(ℓ, i) =
Vt(i − ℓ + 1, i). Furthermore, for any couple of values (ℓ, i)

such that ℓ ≤ i ≤ |t|, we get the result Vt(ℓ,i)
Vt(1,i)

=
(
i−1
ℓ−1

)
. Hence,

we state Theorem 1.

Theorem 1. Let Vt be the upper triangle utility of
any given a quantitative transaction t. For any positive
integers ℓ and i such that ℓ ≤ i ≤ |t|, the following
statement holds: Vt(ℓ, i) =

(
i−1
ℓ−1

)
× Vt(1, i).

In addition, we can also state the following property.

Property 1 (Symmetry). If Vt is the upper triangle utility of
a given transaction t, and ℓ and i two positive integers such
that ℓ ≤ i ≤ |t| then we have: Vt(ℓ, i) = Vt(i− ℓ+ 1, i).

Property 1 is particularly useful in the preprocessing and the
drawing phases, especially when the maximal length constraint
is either not used or set higher than half of the transaction
length. Therefore, it is used automatically in our approach.
In the case where there is no maximal length constraint (i.e.,
M = ∞) while the minimal one is set to µ = 1, Theorem 2
can be used to compute the weigh of each transaction.

Theorem 2. Let t be a transaction from a qDB. The
cumulative utility sum of the entire set of patterns
that appear in transaction t is expressed as: W (t) =
2|t|−1 ×

∑
X∈t ω(X, t).

Based on these theorems, we no longer need to store the
UTU in memory. This is because we can easily deduce any
value Vt(ℓ, i) based on Vt(1, i) =

∑i
j=1 ω(t[j], t).

B. Drawing a high utility pattern

Sampling a pattern can be done efficiently from the upper
triangle utility. Let us first recall the definition of the proba-
bility to select an item at a given position.

Definition 5. Let t be a quantitative transaction, φ be the
already drawn k items ordered according to ≺, and ℓ be the
rest of the items to select, φ = Xjk · · ·Xj1 . The probability to
pick the item t[i], with i < jk, given φ and ℓ, is defined as the
ratio of the aggregate weights of all patterns of length ℓ+k in
the transaction ti ∪ φ, containing the pattern t[i] ∪ φ, equals
to Vt(ℓ, i) − Vt(ℓ, i − 1) +

(
i−1
ℓ−1

)
× UL(φ, t), and the total

aggregate weights of all patterns of length ℓ + k appearing

in the transaction ti ∪ φ, containing the pattern φ, equals to
Vt(ℓ, i) +

(
i
ℓ

)
× UL(φ, t). Formally, we have:

P(t[i]|φ ∧ ℓ) =
Vt(ℓ, i)− Vt(ℓ, i− 1) +

(
i−1
ℓ−1

)
× UL(φ, t)

Vt(ℓ, i) +
(
i
ℓ

)
× UL(φ, t)

.

This means that a pattern φ is drawn proportionally to its
utility in a given transaction t.

However, we can see that this approach needs to generate a
random variable at each visited item, and it is possible to visit
all items of the transaction during the drawing of a pattern.
For instance, if in t5 the drawn pattern contains the first item
t5[1] = A, we need a more efficient approach that does not
require generating more than |φ| random variables. Therefore,
we propose an approach based on dichotomous random search.

Property 2 (Dichotomous random search). Let t be a quan-
titative transaction, and t[j] be the last picked item during
the drawing process. Using a sequential random variable
generation to draw the next item t[i], with i < j, to add in
the sampled pattern φ is equivalent to jumping directly on
it based on dichotomous search. In other words, if a random
number αi drawn from the interval ]0,Vt(ℓ, i)+

(
i
ℓ

)
×UL(φ, t)]

allows us to pick t[i], i.e., αi

Vt(ℓ,i)+(iℓ)×UL(φ,t)
≤ P(t[i]|φ ∧ ℓ),

then from position j of t, we can directly select the item
t[i] such that Vt(ℓ, i − 1) +

(
i−1
ℓ

)
× UL(φ, t) < αi ≤

Vt(ℓ, i) +
(
i−1
ℓ−1

)
× UL(φ, t).

Property 2 significantly improves efficiency for long trans-
actions by enabling direct jumps to relevant positions, unlike
the HAISAMPLER iterative approach, which can be time-
consuming as it visits all items in the transaction.

C. Overview of the algorithm

QPLUS takes a qDB D with a total order relation ≺, along
with positive integers µ and M . The goal is to output a pattern
φ drawn proportionally to its utility, which is weighted by
a length-based utility measure. It consists of two phases: a
preprocessing phase and a drawing phase. In the preprocessing
phase, weights are computed for each transaction based on
utility and length functions, and in the drawing phase, a trans-
action and pattern are drawn proportionally to their weights,
with items selected iteratively based on utility and length until
the pattern is formed.

D. Theoretical analysis of the method

In this section, we first demonstrate the soundness of
QPLUS before evaluating its time complexity (preprocessing
and the sampling). Finally, we give its storage complexity.

Property 3 (Soundness). Let D be a qDB with an arbitrary
total order relation ≺, and µ and M be two positive integers
such that µ ≤ M . Algorithm QPLUS directly draws a pattern
from D with a length in the range [µ..M ] according to a
distribution that is proportional to its weighted utility.

The preprocessing complexity of QPlus is O(|D|×M) when
a maximum length is specified, and O(|D|) if M = ∞, offer-
ing a more efficient approach than HAISAMPLER. Drawing



TABLE III: Statistics of none-semantic qDB benchmark

Database |D| |I| |t|min |t|max |t|avg D size in memory D size on disk Ck
n in memory (Prop. ??, M =10)

Retail 88,162 16,470 1 76 10.30 242.80 MB 7.36 MB 30.93 MB
BMS2 77,512 3,340 1 161 1.62 99.07 MB 3.55 MB 69.82 MB
Kosarak 990,002 41,270 1 2,497 8.09 2.13 GB 61.39 MB 1.17 GB
ChainstoreFIM 1,112,949 46,086 1 170 7.23 2.12 GB 74.48 MB 73.87 MB
USCensus 1,000,000 316 48 48 48.00 ≈ 10 GB 352.60 MB 18.05 MB
t17Mi20Md 20,000,000 16,957,575 14 94 52.77 Out of memory 7.83 GB 39.12 MB

Algorithm 1 QPLUS: Quantitative Pattern Sampling
Input: A qDB D with an arbitrary total order relation ≺, and
two positive integers µ and M such that µ ≤M
Output: A pattern φ ∼ UL(L[µ..M ](D))
//Preprocessing

1: W[µ..M ](t) =
∑M

ℓ=µ(Vt(ℓ, |t|)× L[µ..M ](ℓ)) for t ∈ D
//Drawing

2: Draw a transaction t : t ∼W[µ..M ](D) =
∑

t∈D W[µ..M ](t)

3: Draw an integer ℓ from µ to M with P(ℓ|t) = Vt(ℓ,|t|)×L[µ..M](ℓ)

W[µ..M](t)

4: φ← ∅, j ← |t|
5: while ℓ > 0 do ▷ Process of drawing a pattern of length ℓ
6: α← random(0, 1)× (Vt(ℓ, j) +

(
j−1
ℓ−1

)
× UL(φ, t))

7: i← arg
i
(binf (i) < α ≤ bsup(i))

with binf (i) = Vt(ℓ, i− 1) +
(
i−1
ℓ

)
× UL(φ, t)

and bsup(i) = Vt(ℓ, i) +
(
i−1
ℓ−1

)
× UL(φ, t)

8: φ← {t[i]} ∪ φ and ℓ← ℓ− 1
9: j ← i ▷ Jumping to the position indexed by i

10: return φ ▷ Drawn proportionally to its weighted utility

complexity for QPlus is O(K × (log(|D|) + M × log(|I| −
M + 1))) for K patterns, which outperforms HAISAMPLER
O(K × (log(|D|) + |I|)). Storage complexity is dominated
by O(||D||) for the database itself, with additional storage
O(|D| + G(|t|max)) for transaction weights and combination
values, significantly smaller than the total database storage.

We recall that our algorithm QPLUS depends on the avail-
able memory to perform the dedicated task, which is a problem
when we need to explore larger qDBs. To overcome this issue,
we propose an on disk approach, denoted by QPLUSDISK (see
extended version for details).

V. EXPERIMENTAL STUDY

Table III outlines the characteristics of the qDBs used in
our study, sourced from SPMF1 and IBMGenerator2. The
framework3, implemented in Python 3.0 on Google Colab
with 12 GB RAM, evaluates execution times and utility for
patterns with length constraints between [2..10] and without
constraints for comparison with HAISAMPLER. We use an
average utility function for evaluation, repeating execution 10
times with negligible standard deviation.

A. Analysis of our approaches under length constraint

QPLUS outperforms HAISAMPLER in preprocessing speed
(15-45 times faster) and handles large datasets efficiently,
processing 2 million transactions in 5 minutes. For pattern
drawing, QPLUS is 4 to 16 times faster, particularly for long

1https://www.philippe-fournier-viger.com/spmf/index.php
2https://github.com/zakimjz/IBMGenerator
3https://github.com/ScalableSamplingInLargeDatabases/QPlus

transactions, and excels in sampling due to its UTU-based
acceptance probability, maintaining superior speed even with
large datasets.

B. HUP-based sub-profiles in knowledge graph

Our approach enables the discovery of diverse, represen-
tative sub-profiles within knowledge graph profiles, offering
flexibility in sub-profile size (M×K) for targeted visualization
and clearer insights, particularly for complex profiles like
DOREMUS, BENICULTURALI, and DBpedia.

TABLE IV: Semantic qDB of Knowledge graph profiles

statistics for TT profile
A nb. of TT nb. of links nb. of nodes
DOREMUS 2,399 1,785 115
BENICULTURALI 641 7,518 440
DBpedia 404 6,010 204

a) Qualitative evaluation of sampled pattern-based sub-
profile: Figure 5 shows that QPLUS outperforms BOOTSTRAP
by producing higher average utility and a richer variety of
distinct patterns (M = 5), demonstrating its effectiveness
in generating representative sub-profiles for large knowledge
graph profiles. Figure 6 shows that QPLUS offers more stable
and reliable pattern utility estimates compared to BOOTSTRAP,
which exhibits higher variance and less precision, highlighting
QPLUS advantage in generating consistent sub-profile sam-
ples. Figure 7 visualizes sub-profiles from QPLUS-sampled
patterns, showing dense ego-network structures in DOREMUS
and DBpedia around nodes like ‘prov#Entity’ and ‘Com-
pany’, while BENICULTURALI forms a more distributed
network with no isolated nodes.

C. Response time for interactive sub-profile discovery

We integrate QPLUS into a user-centric sub-profile discov-
ery framework, achieving fast processing (e.g., 0.004 to 0.023
seconds) and drawing times (e.g., 0.069 to 0.141 milliseconds)
for large qDBs, enabling sub-profile generation with hundreds
of nodes in under 1 millisecond, crucial for interactive user
experiences with large databases.

VI. CONCLUSION

This paper introduces a groundbreaking approach—the first
of its kind—for extracting sub-profiles from knowledge graph
profiles, employing high utility patterns and an output sam-
pling method. With the presentation of two original theo-
rems, we achieve an efficient computation of the total sum
of utility patterns for a given quantitative transaction. The
concept of Upper Triangle Utility (UTU), embodied by a
non-materialized upper triangle matrix, emerges as a pivotal
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Fig. 4: Comparing the evolution of execution time based on maximum length constraint (in gray = out of memory)
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Fig. 5: Representativeness of 1,000 drawn patterns by QPLUS
and Bootstrap
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Fig. 6: Violin plots with mean and 95% confidence intervals
for the plus-value of QPLUS on Bootstrap for 1,000 patterns
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Fig. 7: Visualizing sub-profiles from N = 10 patterns of
maximal length M = 5 drawn by QPLUS

practical element for deducing transaction weights. Building
upon the theorems and properties derived from UTU, we
unveil effective two-step algorithms tailored for the exploration
of vast quantitative databases. Our paper makes significant
contributions by providing a robust framework for exploratory
data analysis in weighted data, delivering innovative the-
orems and algorithms for handling large-scale quantitative
databases. An extended version of this paper is available at
https://arxiv.org/abs/2410.22964.
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