
RPS: A Generic Reservoir Patterns Sampler
Lamine Diop∗, Marc Plantevit∗, Arnaud Soulet†

∗EPITA Research Laboratory (LRE), Le Kremlin-Bicetre, Paris FR-94276, France, firstname.lastname@epita.fr
†University of Tours, LIFAT, 3 Place Jean Jaurès, Blois 41029, France, arnaud.soulet@univ-tours.fr

Abstract—Efficient learning from streaming data is important
for modern data analysis due to the continuous and rapid
evolution of data streams. Despite significant advancements in
stream pattern mining, challenges persist, particularly in manag-
ing complex data streams like sequential and weighted itemsets.
While reservoir sampling serves as a fundamental method for
randomly selecting fixed-size samples from data streams, its
application to such complex patterns remains largely unexplored.
In this study, we introduce an approach that harnesses a weighted
reservoir to facilitate direct pattern sampling from streaming
batch data, thus ensuring scalability and efficiency. We present
a generic algorithm capable of addressing temporal biases and
handling various pattern types, including sequential, weighted,
and unweighted itemsets. Through comprehensive experiments
conducted on real-world datasets, we evaluate the effectiveness
of our method, showcasing its ability to construct accurate
incremental online classifiers for sequential data.

Index Terms—Reservoir sampling, Output pattern sampling

I. INTRODUCTION

Stream data mining is a subset of data mining, aiming
to extract valuable knowledge, patterns, and insights from
continuously flowing data streams [1]. Unlike static data, data
streams consist of an unbounded, constant flow of information
from diverse sources such as sensors, social media, etc.
Efficient algorithms have facilitated real-time analytics such
as anomaly detection, retail analysis [2], and drift detection
[3].

Despite these successes, stream data mining, characterized
by its continuous and rapidly changing nature, poses unique
challenges for traditional data processing techniques. Reser-
voir sampling has emerged as a fundamental method for
randomly selecting a fixed-size sample from data streams.
Reservoir pattern sampling has been recently proposed [4] by
adapting the reservoir sampling approach [5] for itemset only.
However, these techniques may face limitations when handling
large and complex structured data such as sequential itemsets
[6] or weighted itemsets [7]. These limitations underscore
the ongoing need for innovative approaches to address the
evolving complexities of stream data mining.

To overcome these challenges, we introduce an extension
of the multi-step pattern sampling technique [8]–[10] tailored
for stream data. Unfortunately, applying multi-step pattern
sampling in complex and structured data streams remains
unexplored. By leveraging a weighted reservoir, our approach
enables the direct sampling and maintenance of patterns from
streaming batch data, offering scalability and efficiency. We
present a generic algorithm capable of handling temporal
biases and various pattern types, such as sequential, weighted

and unweighted itemsets. We also show the usefulness of the
sampled patterns by proposing online classifiers on stream
sequential itemsets with many models that were not able to
run with sequential data.

The structure of this paper is organized as follows: In
Section II, we provide a review of related work concerning
reservoir sampling techniques and multi-step pattern sampling
methods. Section III presents the fundamental definitions and
formal problem statement. Our proposed generic solution is
detailed in Section IV. In Section V, we conduct an evaluation
of our approach using real-world and benchmark datasets,
comparing the accuracy of a sample-based online sequential
data classifier with state-of-the-art methods. Finally, we con-
clude the paper and discuss future directions in Section VI.

II. RELATED WORK

This section presents the reservoir sampling in stream data
and the local multi-step pattern sampling literature.

A. Reservoir sampling

Reservoir sampling is a fundamental technique in computer
science and statistics. It is used to address the problem of
randomly selecting a fixed-size sample from a stream of data
without knowing the total number of elements in advance
[11] without lost of soundness, where traditional methods
like sorting or storing all the data are impractical due to
memory constraints [12]. Recently, it has been extended to
output pattern sampling (sample of patterns from the pattern
language) in stream itemsets [4] where each transaction or
itemset γ is spread into a set of patterns, 2γ \ ∅, without
materialize it. After that, the set of patterns is scanned using
a binary index operator to draw a pattern directly. However,
the reservoir sampling technique proposed in [4] is not generic
because the key idea which based on the binary index operator
is not applicable with complex structure such as sequence [6]
and quantitative data (weighted itemsets) [7].

B. Local multi-step output pattern sampling

Multi-step pattern sampling [8] is the fastest among the
techniques used in output space pattern sampling [13] to
draw representative patterns directly from the database. Par-
ticularly efficient for sampling in local data, multi-step is
widely regarded as the most efficient approach, especially
following the preprocessing phase, which involves computing
the normalization constant. This method has been successfully
applied across different pattern languages, including itemset
[8], numerical data [14], sequential data [9], and quantitative

data [10]. The primary concept behind this technique is to
draw a pattern directly from the database with a probability
proportional to a given interestingness measure m. However,
one of its most intricate limitations is the requirement to know
the normalization constant, which can be time-consuming with
very large databases or unfeasible with stream data [1].

In this paper, we demonstrate how to extend the multi-
step pattern sampling technique to sample and maintain a set
of patterns directly from stream data based on a weighted
reservoir. We propose a generic algorithm capable of handling
itemsets, sequential patterns, and high utility itemsets while
incorporating norm-based utility to address the long-tail issue.

III. PROBLEM STATEMENT

This section formalizes the problem of reservoir-based
multi-step pattern sampling under norm-based utility measure.
We first recall some preliminary definitions about structured
patterns and stream data.

A. Definitions and preliminaries

Let I = {e1, . . . , eN} be a set of finite literals called items.
An itemset X is a non-empty subset of I, i.e., X ∈ 2I \ ∅.
The set of all itemsets in I is called the pattern language for
itemset mining, denoted by LI. An instance γ = ⟨X1, . . . , Xn⟩
defined over I is an ordered list of itemsets Xi ∈ LI (1 ≤
i ≤ n, n ∈ N). n is the size of the instance γ denoted by |γ|.
If |γ| > 1 then γ is a sequence of itemsets and LS denote
the universal set of all sequences defined over I, otherwise
γ is an itemset also called a transaction denote by γ = X1

for simplicity. A transaction can be weighted and the patterns
mined from it are called high utility itemset (HUI) in general.
The norm of an instance γ, denoted by ∥γ∥, is the sum of the
cardinality of all its itemsets, i.e., ∥γ∥ =

∑n
i=1 |Xi|. Finally,

given a pattern language L ∈ {LI,LS}, pattern φ ∈ L can be
generally defined as follows:

Definition 1 (Pattern). φ = ⟨X ′
1, . . . , X

′
n′⟩ is a pattern or an

generalization of an instance γ = ⟨X1, . . . , Xn⟩, denoted by
φ ⪯ γ, if there exists an index sequence 1 ≤ i1 < i2 < . . . <
in′ ≤ n such that for all j ∈ [1..n′], one has X ′

j ⊆ Xij .

This definition is usually used in the context of sequential
pattern mining, but we recall that an itemset is nothing else
that a sequential pattern of length 1.
Data stream and interestingness utility measures: In gen-
eral, we denote L ∈ {LI,LS} as a pattern language. A data
stream is a sequence of batches with timestamps denoted as
follows: D = ⟨(t1,B1), . . . , (tn,Bn)⟩, such that Bj ⊆ L for
all j ∈ [1..n] and tj < tj+1 for all j ∈ [1..n − 1], where a
batch is a set of finite instances send at the same time, i.e.,

Bj = {γj1 , · · · , γjj′ : (γjk ∈ L)(∀ k ∈ [1..j′])}.

In other words, a batch contains a set of instances that have
equal temporal relevance. L(D) is the set of all patterns that
can be mined from D. In this paper, we consider the Landmark
window time constraint, which provides a structured way to di-
vide the data stream into manageable chunks called instances,

and damped window which favors the recent instances. We also
use other constraints and utility measures that can combine
frequency and norm-based utility measures.

Definition 2 (Frequency). Given a database D defined over a
pattern language L, the frequency of a pattern φ ∈ L denoted
freq(φ,D), is the number of instances that support. Formally,
it is defined as follows:

freq(φ,D) = |{γ ∈ B : ((t,B) ∈ D) ∧ (φ ⪯ γ)}|.

In pattern mining, frequency is often associated with other
interestingness measures to reveal meaningful insights. In this
paper, we combine it with other measures, specifically norm-
based utility measures [15], to identify truly interesting and
actionable patterns. It is also possible and helpful to use norm-
based utility measures in high utility itemset discovery.

Definition 3 (Norm-based utility [15]). A utility function Fm

is a norm-based utility if there exists a function fm : N→ R
such that for every pattern φ ∈ L, one has Fm(φ) = fm(∥φ∥).

Important remarks: With weighted items, the utility is not
norm-based because the weights ω(e, γ) of each item e depend
on the transaction γ of the database in which it appears.
In this case, each pattern φ ⊆ γ has a utility within the
transaction γ defined by U(φ, γ) =

∑
e∈φ ω(e, γ). Therefore,

with the language LI, if the items are not weighted, we
consider U(φ, γ) = 1 if φ ⊆ γ. It is also essential to note that,
with sequential data defined over LS, we have U(φ, γ) = 1 if
φ ⊆ γ since we do not deal with high utility sequential patterns
mining. Obviously, for any pattern language L ∈ {LI,LS}, we
consider U(φ, γ) = 0 if φ ̸⊆ γ. Based on these remarks, we
introduce the following definition:

Definition 4 (Norm-based utility measure). Let γ be an
instance and φ a pattern defined over L. The norm-based
utility measure, also said the interestingness utility measure
of φ within γ, denoted by m(φ, γ), is defined as follows:

m(φ, γ) = U(φ, γ)× Fm(φ).

In general, we are interested by the utility of a pattern in
the entire database that we call the pattern global utility.

Definition 5 (Pattern Global Utility). Let D be a database
defined over a pattern language L and m an interestingness
utility measure. The global utility of φ in D is given by:
Gm(φ,D) =

∑
(t,B)∈D

(∑
γ∈B m(φ, γ)

)
.

In stream data under temporal biases, the utility of a pattern
φ inserted at time tj can be different to its utility at time
tn, with n > j. It depends on what the user really needs to
favor, recent or all patterns, by weighting each pattern with
a temporal bias. Therefore, we introduce a generic damping
function defined as follows:

Definition 6 (Damping function ∇ε(tn, tj)). The temporal
bias is used when a user needs to favor the recent patterns or
not. It is based on a damping factor ε ∈ [0, 1]. At time tn, the

temporal bias of each visited instance γj at time tj ≤ tn are
formally updated as follows: ∇ε(tn, tj) = e−(tn−tj)×ε.

We can see that if ε = 0, then ∇ε(tn, tj) = 1, which
corresponds to the landmark window.

To take account these temporal biases in our approach, we
define the pattern global utility under temporal bias as follow:

Definition 7 (Pattern Global Utility under temporal bias).
Let D = ⟨(t1,B1), . . . , (tn,Bn)⟩ be a stream data defined
over a pattern language L, m be an interestingness utility
measure and ε ∈ [0, 1] a damping factor. At time tn, the
global utility of any pattern φ inserted into the reservoir at
time t and that still appears into S is given by: Gε

m(φ,D) =∑
(ti,Bi)∈D

((∑
γij

∈Bi
m(φ, γij)

)
×∇ε(tn, ti)

)
.

Example 1. Table I and Table II present two toy datasets
respectively for sequential and weighted itemsets. They also
give some measures with temporal biases and utility measures.
The damping factor is set to ε ∈ {0, 0.1}. For Table II,
{A,B,C}, {2, 1.5, 2} means that the items A, B, and C have
weights 2, 1.5 and 2 respectively in the instance γ1.

TABLE I: Stream batches of sequential itemsets

↓ time id Sequential itemsets U(⟨{A}{C}⟩, γi)

(t1,B1)
γ1 ⟨{A}{B}{A,C}{B}⟩ 1
γ2 ⟨{A,B,C}{C}{A,C}⟩ 1

(t2,B2) γ3 ⟨{B}{A,C}{A}⟩ 0

Gfreq(⟨{A}{C}⟩,D) 1 + 1 + 0 = 2
G0

area(⟨{A}{C}⟩,D) (1× 2 + 1× 2)× 1 + (0× 2)× 1 = 4

G0.1
freq(⟨{A}{C}⟩,D) (4) · e−(2−1)·0.1 + (0) · e−(2−2)·0.1 ≈ 3.6

TABLE II: Stream batches of weighted itemsets

↓ time id Weighted itemsets U({B,C}, γi)
(t1,B1) γ1 {A,B,C}, {2, 1.5, 2} 1.5 + 2 = 3.5

(t2,B2)
γ2 {A,C}, {3, 3} 0
γ3 {B,C,D,E}, {2, 1, 2, 1} 2 + 1 = 3

Ghui({B,C},D) 3.5 + 0 + 3 = 6.5
G0

haui({B,C},D) (3.5× 1
2
+ 0× 1

2
)× 1 + (3× 1

2
)× 1 = 6.5

2
G0.1

hui({B,C},D) (3.5) · e−(2−1)·0.1 + (3) · e−(2−2)·0.1 ≈ 6.2

B. Reservoir-based multi-step pattern sampling problem

A reservoir-based pattern sampling aims to randomly main-
tains a sample of patterns proportionally to a given utility
measure. For instance, in the case of area measure without
constraints, we have area(φ, γ) = ∥φ∥, and the global
utility under landmark temporal bias of φ in D is given
by G0

m(φ,D) =
∑

(t,B)∈D(
∑

γ∈B area(φ, γ)) ×∇0(tn, t) =
freq(φ,D) × ∥φ∥. This measure is applicable to both types
of pattern languages, LI and LS.

Problem Definition (Reservoir pattern sampling). Given a
stream of data D = ⟨(t1,B1), . . . , (tn,Bn)⟩ defined over a
pattern language L ∈ {LI,LS}, a damping factor ε ∈ [0, 1],
and an interestingness utility measure m, our goal is to
maintain a reservoir of size k patterns [φ1, . . . , φk] from
L. Each pattern φj should be drawn with a probability
proportional to its weighted utility in the database D, defined
as: P(φj ,D) = Gε

m(φj ,D)∑
φ∈L(D) G

ε
m(φ,D) .

IV. RESERVOIR-BASED MULTI-STEP PATTERN SAMPLING

A multi-step pattern sampling approach is a sampling tech-
nique with replacement. Therefore, in this paper, we focus
on weighted reservoir sampling with replacement. We detail
below the three steps that our approach should follows.

a) Step 1. Batch acceptance probability: Let us assume
that all the positions of the reservoir are already occupied by a
pattern from past batches ⟨(t1,B1), . . . , (tn,Bj−1)⟩) and that
all batch weights ωm(Bi) =

∑
γi

j′
∈Bi

∑
φ⪯γi

j′
m(φ, γij′),

with i ∈ [1..j−1] are feasible. For any batch Bj with a weight
ωm(Bj), we compute the probability acceptance that of one
of its patterns from L(Bj) be inserted into the reservoir pj .
Based on [5], we have pj =

ωm(Bj)∑j
i=1 ωm(Bi)×∇ε(tj ,ti)

. Therefore,
a pattern drawn proportionally to its weight in Bj can be
inserted at a position of the reservoir uniformly drawn. This
uniform replacement has been already used by A-Chao [16]
for weighted reservoir sampling in data stream.

However, it is evident that computing the acceptance proba-
bility by iteratively summing the weights of the visited batches
is infeasible because we do not store the past batches. There-
fore, we employ a memory-less computing technique to adapt
the normalization constant that avoids storing information for
each batch received.

Property 1. Let Zi−1 be the normalization constant for the
i−1 first batches of the data stream under the damped window
and the norm-based utility measure m, with Z0 = 0. The
probability p to draw a pattern from the next batch Bi under
the damped window can be computed as follows:
p = ωm(Bi)×eε×ti

Zi
, with Zi = Zi−1 + ωm(Bi)× eε×ti .

After the acceptance of batch Bj with a probability of pj
in Step 1, we know that at least one of its patterns should be
inserted into the reservoir. But, there is also the possibility of
other patterns from the set being inserted at various positions
within the reservoir. This drives the rationale behind the
second step of our approach.

b) Step 2. Number of patterns to draw from an accepted
batch: Let S be a reservoir of size k where we need to store
a sample from a population of finite size. In this case, each
pattern can be selected up to nr ≤ k times in the sample. To
achieve this goal, we process k copies of L(Bj) such in each
of them, a pattern is drawn proportionally to its weight in Bj .
Interestingly, using k copies of L(Bj) with a probability pj
corresponds to simulating k independents Bernoulli trials with
a probability pj . However, we note that computing a probabil-
ity acceptance for each position is time consuming. Therefore,
to skip computing an acceptance rate for each position, we
use the Cumulative Binomial Probability Distribution defined
as follows (CBPD). Interestingly, the CBPD can be more effi-
ciently computed by using the incomplete beta function (IBF),
Ix(a, b) [17]. By leveraging the IBF, we can efficiently handle
complex probability calculations without explicit summation
of individual probabilities minimizing computational load and
numerical errors.

Definition 8 (Incomplete beta function (IBF) [18]). The
incomplete beta function Ix(a, b) is defined as follows:
Ix(a, b) =

1
B(a,b)

∫ x

0
ta−1(1−t)b−1 dt where a and b are posi-

tive real numbers (parameters of the beta distribution); B(a, b)

is the beta function, defined as: B(a, b) =
∫ 1

0
ta−1(1−t)b−1 dt

and x is a real number in the range [0, 1].

Property 2 (From CBPD to IBF). Let k be the total number
of trials, nr ≤ k the minimum number of times the event must
occur, and p the probability of the event occurring in a single
trial. The Cumulative Binomial Probability Distribution can
be computed as follows:

P(nr, k) ≡
k∑

j=nr

(
k

j

)
pj(1−p)k−j = Ip(nr, k−nr+1). (1)

Definition 9 (Inverse Incomplete Beta Function). The Inverse
Incomplete Beta Function allows for the approximation of the
number of successful trials nr out of k trials that matches the
CBPD with a given probability x ∈ [0, 1] as follows:

nr = argnr
[Ip(nr, k − nr + 1) = x].

Now we are going to show how to draw a pattern propor-
tionally to its interest from an accepted batch.

c) Step 3. First pattern occurrence sampling from a
batch: The main goal of processing a copy of an acceptance
batch is finally to draw a pattern. However, the complexity
of sampling a pattern from a batch depends on the pattern
language. With sequential itemsets, a pattern can have multiple
occurrences within a sequence [9] which is not the case with
weighted/unweighted itemsets. Since we propose a generic
approach dealing with sequential itemsets, then we adapt the
first occurrence definition previously introduced in [9].

Definition 10 (First occurrence). Given an instance γ, let o1
and o2 be two occurrences of a pattern φ within γ, whose sig-
natures are ⟨i11, i12, . . . , i1N ⟩ and ⟨i21, i22, . . . , i2N ⟩ respectively.
o1 is less than o2, denoted by o1 < o2, if there exists an index
k ∈ [1..N] such that for all j ∈ [1..k − 1], one has i1j = i2j ,
and i1k < i2k. Finally, the first occurrence of φ in γ its smallest
occurrence with respect to the order defined previously.

Example 2. For instance, φ = ⟨{A}{C}⟩ has two oc-
currences o1 and o2 in γ2 = ⟨{A,B,C}{C}{A,C}⟩ with
signatures ⟨1, 2⟩ and ⟨1, 3⟩ respectively. But o1 is the first
occurrence because o1 < o2 since 2 < 3.

Based on Definition 10, we then propose a generic sam-
pler operator named Samplenr

(L,B,m). In fact, running nr

times the operator Sample1(L,B,m) in the same batch B
in order to get a first pattern occurrence for each realization
is equivalent to running Samplenr

(L,B,m) once because⋃nr

i=1{φi ∼ m(L,B)} ≡ Samplenr
(L,B,m). We are going

to present our generic algorithm using weighted reservoir
sampling with replacement.

A. A Generic Reservoir-based Three-Step Pattern Sampling
We first give a high-level description of RPS described in

Algorithm 1. It takes a data stream D, a utility measure m, the

desired reservoir size k, and a damping factor ε ∈ [0, 1]. First,
for each batch Bi appearing at timestamp ti, the acceptance
probability p that a pattern from L(Bi) replaces a pattern
inserted at ti′ , with ti′ < ti is computed (lines 3-4). If Bi

is accepted (line 5), which correspond to a success trial, then
the number of additional success trials out of the rest of the
reservoir size k−1 that a pattern of L(Bi) should be inserted
(line 6) is deduced based on the inverse IBF (Definition 9).
Lines 7 to 10 allow to draw nr patterns with replacement
where each draw corresponds to an inserted pattern. At time
tn, RPS maintains a reservoir of k patterns where each pattern
φ is selected with a probability proportional Gε

m(φ,D).

Algorithm 1 RPS: A Generic Stream pattern sampler

Input: A data stream D, a utility measure m, a damping
factor ε ∈ [0, 1], and the desired reservoir size k
Output at time tn: A sample S of k patterns drawn in
L(D = ⟨(t1,B1), . . . , (tn,Bn)⟩) based on m and ε

1: S ← ∅; Z0 = 0
2: while (ti,Bi) is from D do

//Batch acceptance probability
3: Zi = Zi−1 + ωm(Bi)× eε×ti

4: p← ωm(Bi)×eε×ti

Zi
and x← random(0, 1)

5: if p > x then
//Number of realisations

6: nr ← 1 + arg
nr

[Ip(nr, k − nr) = x] ▷ Definition 9

//Patterns selection
7: E ← getPatternsToRemove(S, nr)
8: S ← S \ {S[j] : for j ∈ E}
9: for φj ∈ Samplenr

(L,Bi,m) do
10: S ← S ∪ {(ti, φj)}

Regarding the getPatternsToRemove, it returns nr dis-
tinct indexes uniformly drawn from [1..|S|]. By relying on
[19], all patterns in the reservoir have an equal probability
of being replaced by one of the nr patterns drawn from the
current batch by the sampler Samplenr

(L,Bi,m).

B. Theoretical analysis of the method
We study now the soundness and the complexity of RPS.
The following properties state that RPS returns an exact

sample of patterns under temporal bias with norm-based utility
measure.

Property 3 (Batch acceptance probability). Given a stream
data D defined over a pattern language L, D =
⟨(t1,B1), . . . , (tn,Bn)⟩, m be a norm-based utility measure,
ε ∈ [0, 1] a damping factor, and k the size of the reservoir
S. After observing (tn,Bn), the probability that a pattern of
batch Bi, inserted at time ti at the jth position of the reservoir,
j ∈ [1..k], stays in S , denoted P(Bi ▷ S[j]|tn), is given by:
P(Bi ▷ S[j]|tn) = ωm(Bi)×∇ε(tn,ti)∑

i′≤n ωm(Bi′)×∇ε(tn,ti′)
.

Based on these properties, we can proof Property 4.

Property 4 (Soundness). Let D = ⟨(t1,B1), . . . , (tn,Bn)⟩
be a stream data defined over a pattern language L, m be a

norm-based utility measure, k the size of the reservoir S and
ε ∈ [0, 1] a damping factor. After observing (tn,Bn), RPS
returns a sample of k patterns φ1, . . . , φk where each pattern
φj = S[j] is drawn with a probability equals to: P(φj =

S[j],D) = Gε
m(φj ,D)∑

φ∈L Gε
m(φj ,D) .

V. EXPERIMENTAL STUDY

We evaluate the efficiency of RPS and the interest of the
sampled patterns. More precisely, Section V-A focuses on
the speed of RPS with different batches and reservoir sizes
as well as the maximal norm constraint. All experiments
are performed on a 2.71 GHz 2 Core CPU with 12 GB of
RAM and the prototype of our method is implemented in
Python. The minimum norm constraint is set to µ = 1 to
avoid the empty set. Due to space limitations, we focus our
experiments on sequential itemsets. In this case, we use the
exponential decay [15] with α =0.001 and maximal norm
constraint M = 10. The databases are from SPMF1 and Ana2.

A. Evaluation of RPS speed on sequential data

Table III shows the behavior of RPS on different sequential
databases as the reservoir size increases with different batch
sizes. The experiments are repeated 5 times, and we can notice
that the standard deviations are tiny. We see that the reservoir
size has a slight impact on the execution time. Naturally, the
batch size increases the execution time per batch. We also see
that the damping factor (ε) impacts the execution time; the
higher it is, the higher the execution time due to numerous
insertions. In all cases, we notice that RPS uses a reasonable
execution time even with larger database such as cade (≈
1, 000s) while others take less than 200s.

B. Accuracy of Sampling-Based Online Classification

In our framework, the learning phase precedes the prediction
one. A learning-duration defines the length of the interval of
timestamps in which our models learn based on the reservoir
content. We also have the prediction-duration, which is the
interval length for predicting only. As done in [9], we represent
each sequence γ in a batch B as a tuple of k + 1 values,
where d[j] = 1 if S[j] ⪯ γ (0 otherwise) for j ∈ [1..k], and
d[k+1] = c, where c is the class label of the sequence γ and
k is the reservoir size. For the global accuracy, we use the
average accuracy AvgAcc for an incremental online classifier
over multiple timestamps t0, . . . , tn−1, with Acc(ti) is the
accuracy at timestamp ti, as: AvgAcc = 1

n

∑n−1
i=0 Acc(ti).

For detecting deteriorating accuracy, we use the KSWIN
(alpha=0.1) [20] with default parameter settings.

a) Impact of the RPS parameters on the accuracy:
We first present the behavior of RPS-based online classifiers
with different parameter changes, such as the sample size, the
reservoir size, the learning duration, and the predict duration,
by considering the Books database. Figure 2 shows that
many RPS-based models improve their performance after
each learning interval. Additionally, the maintained reservoir

1https://www.philippe-fournier-viger.com/spmf/index.php
2https://ana.cachopo.org/datasets-for-single-label-text-categorization

patterns are representative enough to provide good accuracies
for long-term predictions, thereby avoiding accuracy drift.

b) Accuracy comparison with cheater classifiers: This
section evaluates our approach by comparing it with cheater
classifiers such as Dumb classifier (strategy=‘most_frequent’),
LogisticRegression (max_iter=1,000), KNN (k=10), Centroid
(Normalized Sum), Naive Bayes (MultinomialNB), and SVM
(Linear Kernel). These classifiers are our references since they
have access to all the training data (50%), while RPS uses
batches that appear during the learning intervals. This means
that our goal is not to outperform them but to come closer
to their performance as seen in Figure 1. However, RPS is
always better than Dumb classifier which is a naturally lower
baseline while demonstrating strong competitiveness.

VI. CONCLUSION

We introduced RPS, a novel reservoir pattern sampling
approach for complex structured data in streams, such as se-
quential and weighted itemsets. Our proposed method employs
a multi-step technique that leverages the inverse incomplete
Beta function and efficient computation of the normalization
constant, resulting in a fast and effective pattern sampling
approach. Our extensive experiments demonstrate the robust-
ness and versatility of RPS. Notably, we adapted several
classification models for online sequential data classification
with new labels, showing that sampled patterns significantly
enhance the accuracy of online classifiers, achieving perfor-
mance comparable to offline baselines.

Future work will focus on extending RPS to graph streams,
further broadening the applicability and impact of our research.
An extended version of this paper is available at https://arxiv.
org/abs/2411.00074.

REFERENCES

[1] C. C. Aggarwal, P. S. Yu, J. Han, and J. Wang, “A framework for
clustering evolving data streams,” in Proc. 2003 VLDB, 2003, pp. 81–92.

[2] T. Toliopoulos, A. Gounaris, K. Tsichlas, A. Papadopoulos, and S. Sam-
paio, “Continuous outlier mining of streaming data in flink,” Information
Systems, vol. 93, p. 101569, 2020.

[3] Z. Liu and Chaozh, “Hypercalm sketch: One-pass mining periodic
batches in data streams,” in IEEE ICDE, 2023, pp. 14–26.

[4] A. Giacometti and A. Soulet, “Reservoir pattern sampling in data
streams,” in ECMLPKDD 2021, 2021, pp. 337–352.

[5] P. S. Efraimidis and P. G. Spirakis, “Weighted random sampling with a
reservoir,” Inf. Process. Lett., vol. 97, no. 5, pp. 181–185, 2006.

[6] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations
and performance improvements,” in Advances in Database Technology
- EDBT’96, vol. 1057. Springer, 1996, pp. 3–17.

[7] V. S. Tseng, C. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient algorithms
for mining top-k high utility itemsets,” IEEE TKDE, vol. 28, no. 1, pp.
54–67, Jan 2016.

[8] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner, “Direct local pattern
sampling by efficient two-step random procedures,” in KDD, 2011, p.
582–590.

[9] L. Diop, C. T. Diop, A. Giacometti, D. Li Haoyuan, and A. Soulet,
“Sequential Pattern Sampling with Norm Constraints,” in IEEE ICDM
(ICDM), Singapore, Nov. 2018.

[10] L. Diop, “High average-utility itemset sampling under length con-
straints,” in PAKDD, 2022, p. 134–148.

[11] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, p. 37–57, mar 1985.

[12] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang, “Optimal sampling
from distributed streams,” in PODS, 2010, p. 77–86.

[13] M. Al Hasan and M. J. Zaki, “Output space sampling for graph patterns,”
Proc. VLDB Endow., vol. 2, no. 1, p. 730–741, aug 2009.

TABLE III: Average execution time per batch (in seconds) with different values of the damping factor (ε ∈ {0.0, 0.1, 0.5}),
the batch size (in {1000, 1500, 2000}) and the reservoir size (k ∈ {1000, 3000})

Batch size 1000 Batch size 1500 Batch size 2000
Database ε = 0.0 ε = 0.1 ε = 0.5 ε = 0.0 ε = 0.1 ε = 0.5 ε = 0.0 ε = 0.1 ε = 0.5

Reservoir size k =1000
Books 0.36 ± 0.00 0.36 ± 0.00 0.36 ± 0.00 0.55 ± 0.01 0.56 ± 0.01 0.56 ± 0.01 0.70 ± 0.00 0.71 ± 0.00 0.72 ± 0.00
Reuters8 1.64 ± 0.01 1.65 ± 0.01 1.66 ± 0.03 2.57 ± 0.02 2.59 ± 0.02 2.60 ± 0.05 3.31 ± 0.01 3.34 ± 0.07 3.33 ± 0.06
Reuters52 1.79 ± 0.05 1.78 ± 0.01 1.79 ± 0.01 2.79 ± 0.01 2.80 ± 0.02 2.79 ± 0.02 3.52 ± 0.05 3.58 ± 0.01 3.59 ± 0.02
cade 22.14 ± 0.12 22.26 ± 0.06 22.89 ± 0.24 34.84 ± 0.09 34.82 ± 0.18 35.73 ± 0.24 44.39 ± 0.14 44.42 ± 0.25 45.24 ± 0.41
webkb 18.14 ± 1.46 17.65 ± 1.87 19.18 ± 0.15 29.51 ± 0.27 28.52 ± 2.44 29.94 ± 0.37 38.28 ± 0.17 38.18 ± 0.24 38.26 ± 0.33

Reservoir size k =3000
Books 0.35 ± 0.00 0.36 ± 0.00 0.37 ± 0.00 0.53 ± 0.00 0.54 ± 0.00 0.55 ± 0.00 0.70 ± 0.00 0.72 ± 0.00 0.78 ± 0.02
Reuters8 1.67 ± 0.01 1.68 ± 0.01 1.69 ± 0.04 2.52 ± 0.02 2.55 ± 0.06 2.52 ± 0.03 3.35 ± 0.03 3.65 ± 0.06 3.48 ± 0.10
Reuters52 1.81 ± 0.03 1.80 ± 0.04 1.83 ± 0.02 2.73 ± 0.05 2.72 ± 0.04 2.70 ± 0.03 3.61 ± 0.02 3.62 ± 0.05 3.95 ± 0.22
cade 22.56 ± 0.15 22.84 ± 0.27 25.36 ± 0.99 34.05 ± 0.29 34.05 ± 0.34 36.36 ± 0.99 45.37 ± 0.54 48.46 ± 1.08 53.91 ± 5.66
webkb 26.51 ± 0.08 22.29 ± 6.22 27.43 ± 0.11 35.88 ± 7.20 36.37 ± 7.33 40.71 ± 0.12 54.44 ± 0.59 55.92 ± 0.59 56.99 ± 2.96

Reuters8 Reuters52 cade webkb Books
0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
Ac

cu
ra
cy

0.
49

0.
42

0.
21

0.
39

0.
16

0.
79

0.
77

0.
41

0.
64

0.
92

0.
85

0.
83

0.
51

0.
73

0.
56

0.
94

0.
87

0.
51

0.
83

0.
82

0.
96

0.
87

0.
57

0.
84 0.

910.
97

0.
94

0.
53

0.
86 0.
92

0.
84

0.
76

0.
36

0.
65

0.
76

0.
88

0.
75

0.
33

0.
78

0.
760.
82

0.
72

0.
35

0.
81

0.
76

0.
89

0.
79

0.
32

0.
72 0.
790.

88

0.
78

0.
32

0.
74 0.
790.

87

0.
78

0.
32

0.
68 0.

78

0.
91

0.
79

0.
30

0.
81

0.
71

0.
92

0.
79

0.
29

0.
86

0.
70

0.
92

0.
79

0.
29

0.
86

0.
68

0.
85

0.
74

0.
32

0.
81

0.
68

0.
89

0.
70

0.
27

0.
85

0.
68

0.
88

0.
72

0.
28

0.
83

0.
68

0.
90

0.
76

0.
31

0.
87

0.
73

0.
90

0.
75

0.
33

0.
77

0.
72

0.
91

0.
75

0.
32

0.
84

0.
74

Dumb classifier
LogisticRegression (max_iter=1,000)
kNN (k=10)

Centroid (Normalized Sum)
Naive Bayes (MultinomialNB)
SVM (Linear Kernel)

RPS@MLP(ε=0)
RPS@MLP(ε=0.1)
RPS@MLP(ε=0.5)

RPS@MNB(ε=0)
RPS@MNB(ε=0.1)
RPS@MNB(ε=0.5)

RPS@PAC(ε=0)
RPS@PAC(ε=0.1)
RPS@PAC(ε=0.5)

RPS@PER(ε=0)
RPS@PER(ε=0.1)
RPS@PER(ε=0.5)

RPS@SGD(ε=0)
RPS@SGD(ε=0.1)
RPS@SGD(ε=0.5)

Fig. 1: Comparison between RPS-based classifiers (with reservoir size k =10,000; batch size=1,000; learning duration=2 time-
units, predict duration=52 time-units) vs cheater classifiers (with 50% train and 50% test)

TABLE IV: Parameters for our adapted models

Model Parameters
MNB [21] alpha=0.0001
PER [22] max_iter=10000, tol=1e-3
PAC [23] max_iter=1000, tol=1e-3, loss=’hinge’
MLP [24] hidden_layer_sizes=(500,100,),

activation=’identity’, solver=’adam’,
max_iter=1000, warm_start=False, random_state=42

SGD [25] loss=’hinge’, penalty=’l1’, alpha=0.0001,
max_iter=1000, tol=1e-3

[14] A. Giacometti and A. Soulet, “Dense neighborhood pattern sampling in
numerical data,” in Proc. of SDM 2018, 2018, pp. 756–764.

[15] L. Diop, C. T. Diop, A. Giacometti, D. Li, and A. Soulet, “Sequential
pattern sampling with norm-based utility,” Knowledge and Information
Systems, Oct 2019.

[16] M. T. CHAO, “A general purpose unequal probability sampling plan,”
Biometrika, vol. 69, no. 3, pp. 653–656, 12 1982.

[17] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, 1972.

[18] A. R. Didonato and M. P. Jarnagin, “The efficient calculation of the
incomplete beta-function ratio for half-integer values of the parameters
a, b,” Mathematics of Computation, vol. 21, pp. 652–662, 1967.

[19] P. S. Efraimidis, Weighted Random Sampling over Data Streams. Cham:
Springer International Publishing, 2015, pp. 183–195.

[20] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-multiflow:
A multi-output streaming framework,” Journal of Machine Learning
Research, vol. 19, no. 72, pp. 1–5, 2018.

[21] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in SIGIR ’94, B. W. Croft and C. J. van Rijsbergen, Eds.
London: Springer London, 1994, pp. 3–12.

[22] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, vol. 65 6,
pp. 386–408, 1958.

0 20 40 60 80 100
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

k=1000, N=1000, ld=2, pd=20

0 20 40 60 80 100
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

k=3000, N=1000, ld=2, pd=30

0 10 20 30 40 50
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

k=5000, N=2000, ld=5, pd=20

0 10 20 30 40 50
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

k=1000, N=2000, ld=5, pd=50

RPS@MLP(ε=0)
RPS@MLP(ε=0.1)
RPS@MLP(ε=0.5)

RPS@MNB(ε=0)
RPS@MNB(ε=0.1)
RPS@MNB(ε=0.5)

RPS@PAC(ε=0)
RPS@PAC(ε=0.1)
RPS@PAC(ε=0.5)

RPS@PER(ε=0)
RPS@PER(ε=0.1)
RPS@PER(ε=0.5)

RPS@SGD(ε=0)
RPS@SGD(ε=0.1)
RPS@SGD(ε=0.5)

Fig. 2: Evolution of the accuracy per batch with different parameters
on Books. Learning timestamps are in red. k: reservoir size, N :
batch size, ld: learning duration, pd: predict duration

[23] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” J. Mach. Learn. Res., vol. 7, p.
551–585, dec 2006.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[25] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

