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Spot is a library of model-checking algorithms. This paper focuses on the module translating LTL formulæ
into automata. We discuss improvements that have been implemented in the last four years, we show how
Spot’s translation competes on various benchmarks, and we give some insight into its implementation.
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1. INTRODUCTION

One of the first steps of the automata-theoretic
approach to model checking of linear-time proper-
ties (Vardi 1996, 2007) is to translate the property
to verify into an automaton. This automaton is then
synchronized with a model of the system in order to
find executions that invalidate the property.

The Spot library (Duret-Lutz and Poitrenaud 2004)
offers algorithms to realize the above automata-
theoretic approach. A salient feature of Spot is its
preference for using Transition-based Generalized
Büchi Automata instead of the more commonly used
Büchi Automata. Section 2 explains the difference.

This paper contains experience feedback on the
implementation of a translator of linear-time temporal
logic (LTL) formulæ into Büchi automata. Spot
actually offers four translation procedures, and we
shall only discuss the most efficient one, based
on an algorithm by Couvreur (1999). We will often
delve into technical details, because it is the various
adjustments done before, inside, and after the
translation algorithm that contribute to the quality of
its output and to its efficiency. This paper accounts
for 4 years of such development. Along the way, we
report some errors that we have made and point
some steps (like the degeneralization) that could
probably be improved. We believe the insight we
provide into the implementation of Spot should be
helpful to anyone devising a translator.

We assume the reader is familiar with LTL (Clarke
et al. 2000) and Binary Decision Diagrams (Bryant
1986), abbreviated as BDDs in the sequel.

This paper is organized as follows. Section 2 defines
Transition-based Generalized Büchi Automata as
opposed to Büchi Automata. Section 3 presents the
core of the translation algorithm, with an emphasis
on the optimizations that are enabled by the use
of BDDs. Finally section 4 starts by explaining how
bad the version of Spot praised by Rozier and
Vardi (2007) was, and continues with a potpourri of
improvements that have been achieved since.

Throughout the paper, the reader is invited to play
with the on-line version of the translator available
at http://spot.lip6.fr/ltl2tgba.html. It has
options for many optimizations discussed herein.

2. TWO KINDS OF BÜCHI AUTOMATA

AP is a set of atomic propositions, i.e., propositional
variables that may be true or false in the system.
2AP denotes the set of minterms (or assignments)
over AP , and 22

AP

interpreted as the set of sums of
minterms denotes the Boolean formulæ over AP .

Definition 1 A Büchi automaton is a tuple B =
〈AP ,Q, q0,F , δ〉 where AP is a set of atomic
propositions, Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is a set of acceptance states,
and δ ⊆ Q× 22

AP ×Q is a transition relation in which
each transition is labeled by a Boolean formula.
An infinite word c0c1c2 . . . ∈ (2AP )ω of assignments
is accepted by B if there exists a run of A,
say (q0, l0, q1)(q1, l1, q2)(q2, l2, q3) . . . ∈ δω, that
recognizes the word (∀i, ci ∈ li) and that visits
infinitely many acceptance states (∀i ≥ 0, ∃j ≥
i, qj ∈ F).
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Figure 1: Two automata regognizing the LTL formula
GF a∧GF b. B1: Büchi automaton with a single acceptance
state (double circle). T1: TGBA with F = { , }.

Definition 2 A Transition-based Generalized Büchi
Automaton (TGBA) is a Büchi automaton in which
multiple acceptance conditions are carried by the
transitions. It can be defined as a tuple T =
〈AP ,Q, q0,F , δ〉 where AP is a set of atomic
propositions, Q is a finite set of states, q0 ∈ Q
is the initial state, F = {f1, f2, . . . , fn} is a finite
set of elements called acceptance conditions, δ ⊆
Q × 22

AP × 2F × Q is a transition relation in which
each transition is labeled by a Boolean formula and
a set of acceptance conditions.
An infinite word c0c1c2 . . . ∈ (2AP )ω of assignments
is accepted by T if there exists a run of A, say
(q0, l0, F0, q1)(q1, l1, F1, q2)(q2, l2, F2, q3) . . . ∈ δω, that
recognizes the word (∀i, ci ∈ li) and that visits each
acceptance condition infinitely often (∀f ∈ F , ∀i ≥
0, ∃j ≥ i, f ∈ Fj).

Fig. 1 illustrates these definitions with two automata
that recognize the LTL property: GF a ∧ GF b. The
infinite sequence a: 1 0 0 1 0 0 1 0 0 ...

b: 0 0 1 0 0 1 0 0 1 ... will be accepted
by T1 because it visits the top and right loops
infinitely often, therefore all acceptance conditions
are seen infinitely often. Similarly this sequence
visits the only acceptance state of B1 infinitely often.

Spot is built around the concept of TGBA, and is
able to perform the entire model-checking approach
with these automata. However most other model-
checking tools use Büchi automata. Spot can
therefore degeneralize TGBAs into Büchi automata
using an operation discussed in Section 4.2.2.

In the rest of the paper, we will often name the states
of automata with the LTL formula they recognize.
These extra annotations have no influence on the
behavior of the automata.

3. OVERVIEW OF THE TRANSLATION

The algorithm of Couvreur (1999) for the translation
of LTL automata into TGBA is based on a tableau
method. Although the following explanations are self-
contained, we refer the reader to Duret-Lutz and
Poitrenaud (2004) for an illustration of this algorithm
as a tableau that can be used to build generalized

Büchi automata with state-based or transition-based
acceptance conditions. Here we shall present the
algorithm at a lower level to explain how the use of
BDDs helps the translation.

To put this algorithm in context, the complete
translation procedure to go from LTL to a Büchi
Automaton can be presented as four steps:

1. Simplify the LTL formula syntactically (we shall
discuss this Section 4.2). E.g., rewrite FF a (a
3-state automaton) into F a (2 states).

2. Translate the simplified formula into a TGBA
using the algorithm presented in this section.

3. Simplify the TGBA, e.g., by removing re-
dundant acceptance conditions and terminal
strongly connected components that are not
accepting.

4. Degeneralize the TGBA into a Büchi automa-
ton, if desired, as discussed in section 4.2.2.

An final step could be to simplify the Büchi automa-
ton, e.g., with simulation-based reductions (Etessami
et al. 2001). We do not discuss this option because
its implementation in Spot is a work in progress and
the results are already good without it.

3.1. Basic Translation

If you omit BDDs, the procedure is simple enough
to be performed by hand on a paper or blackboard1.
The algorithm generates an automaton whose states
corresponds to LTL formulæ. The initial state is the
formula to translate. This formula is then rewritten as
a sum of products where the only temporal operator
allowed at the top level is X.

For instance if we were to translate Ψ1 = (X a) ∧
(bU¬a) we would use the fact that ϕUψ = ψ ∨
(ϕ ∧ X(ϕUψ)) to rewrite Ψ1 as (¬a ∧ X a) ∨ (b ∧
X a ∧ X(bU¬a)). Reading this formula, it is clear
that if your are in a state that must recognize
Ψ1, then you should either accept an assignment
compatible with ¬a and verify a at the next
step, or accept an assignment compatible with
b and then verify a ∧ (bU¬a) at the next step.
The start of the automaton is thus as follows:

(X a) ∧ (bU¬a)

a

a ∧ (bU¬a)

¬a
b

The procedure should then be applied similarly on
the new states. There is little subtlety that has to
be taken into account when translating the ϕUψ
operator: the formula ψ must occur eventually, it
cannot be postponed infinitely. This is solved in the
translation by expliciting a promise to fulfil ψ while
rewriting the formula. The actual rewriting rule used

1Couvreur devised it while preparing a model-checking lecture.
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r(>) = >
r(⊥) = ⊥
r(p) = Var[p]

r(¬p) = ¬Var[p]
r(f ∨ g) = r(f)∨ r(g)

r(f ∧ g) = r(f)∧ r(g)

r(¬(f ∨ g)) = r(¬f)∧ r(¬g)

r(¬(f ∧ g)) = r(¬f)∨ r(¬g)

r(X f) = Nxt[f ]

r(¬X f) = Nxt[¬f ]

r(f U g) = r(g)∨ (r(f)∧Nxt[f U g] ∧ P[g])

r(¬(f U g)) = r(¬g)∧ (r(¬f)∨Nxt[¬(f U g)])
Figure 2: Rewriting rules to translate an LTL formula
into a BDD. LTL patterns are in blue, BDD variables and
operations in red.

(X a) ∧ (bU¬a) a

a ∧ (bU¬a) bU¬a

>
¬a

b;P[¬a]

a
>

a ∧ b;P[¬a]
b;P[¬a]

¬a

Figure 3: Translation of (X a) ∧ (bU¬a) using promises.

for U is: ϕUψ = ψ ∨ (ϕ ∧ X(ϕUψ) ∧ Pψ), with the
operator P denoting an explicit promise.

All these formulæ can be simplified using classical
Boolean rules like (α ∧ β) ∨ α = α to kill some terms
(even Xϕ or Pϕ). This is where using BDD really
helps. The core of the translation is the rewriting
function r(f) defined recursively as in Fig. 2. Var[p],
Nxt[f ], P[f ], are BDD variables created as needed
to represent respectively atomic propositions, X f
formulæ, and promises.

Applying r on our example, we obtain:
r((X a) ∧ (bU¬a)) = r(X a)∧ r(bU¬a)

= Nxt[a]∧ (r(¬a)∨ (P[¬a]∧ r(b)∧Nxt[bU¬a]))

= Nxt[a] ∧ (¬Var[a] ∨ (P[¬a] ∧ Var[b] ∧ Nxt[bU¬a]))

This BDD is then massaged into a sum of products:
= (¬Var[a] ∧ Nxt[a])

∨ (P[¬a] ∧ Var[b] ∧ Nxt[a] ∧ Nxt[bU¬a])
Which corresponds to:

(X a) ∧ (bU¬a)

a

a ∧ (bU¬a)

¬a

b;P[¬a]

There are several ways to turn a BDD into a
sum of products, but because each term of the
sum corresponds to a transition in the automaton,
redundant terms should be avoided. We use an
algorithm from Minato (1992) to that effect.

(X a) ∧ (bU¬a) a

a ∧ (bU¬a) bU¬a

>
¬a

b

a
>

a ∧ b b
¬a

Figure 4: Translation of (X a) ∧ (bU¬a) as a TGBA.

ltl_to_tgba_fm(f )
todo← {f}; all_acc← ∅
a←new automaton; a.set_initial_state(f )
while (todo 6= ∅)
here← todo.remove_one()
forall i in prime_implicants_of(r(here))

Put i as
∧
v∈V

Var[v]∧
∧
v∈V ′

¬Var[v]∧
∧
a∈A

P[a]∧
∧
n∈N

Nxt[n]

dest←
∧
n∈N n

if ¬a.has_state(dest)
todo.insert(dest)
a.add_transition(src: here, dst: dest,

cond:
∧
v∈V v ∧

∧
v∈V ′ ¬v, promises: A)

all_acc← all_acc ∪A
forall t in a.transitions()
t.acceptance_conditions← all_acc \ t.promises

return a
Figure 5: Pseudo-code of the algorithm of Couvreur
(1999) to translate an LTL formula f into a TGBA. The
function r(here) is defined on Fig. 2.

The complete translation is shown on Fig. 3. This
automaton is still not a TGBA because it uses
promises instead of Büchi acceptance conditions.
To guarantee that a promise holds, the accepted
runs of the automaton should never make promises
continuously: in other words for each promise Pϕ,
accepted runs should visit infinitely many transitions
that do not make such a promise.2 This can be
encoded as a TGBA by labelling all transitions that
do not make promise Pϕ by an acceptance condition
associated to ϕ.3 There will be as many acceptance
conditions as promises. Fig. 4 shows the final TGBA.

The pseudo-code for the complete translation
algorithm is shown on Fig. 5.

At this point it should be clear that the use of BDDs
simplifies every Boolean formulæ that label transi-
tions. For instance we cannot have a transition la-
belled by b∧a∧¬b because such a conjunction would
be simplified by the BDD representation.4 Similarly
the conversion of the BDD into an irredundant sum
2Promises should not be mistaken for co-Büchi acceptance
conditions. A co-Büchi acceptance condition F accepts runs that
stay in F continuously; conversely a promise accepts runs that do
not make the promise continuously.
3Spot use the syntax Acc[f] to display an acceptance conditions
associated to the formula f . This syntax can be seen when using
our on-line LTL translator. In this paper we simply display these
acceptance conditions as dots of various colors ( , , . . . ).
4Some translators will output similar labels: see footnote 7.
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GF a (F a) ∧ GF a

a

a

>
>

GF a a

>
Figure 6: Two translations of GF a. Since r(GF a) =
r((F a) ∧ GF a) the two states of the first automaton can
be merged, yielding the second automaton.

of products helps to reduce the number of outgoing
arcs of each node. As an illustration, consider the for-
mula ¬((aU b) ∨ (bU c)). Blindly applying the tableau
rules listed by Duret-Lutz and Poitrenaud (2004) will
produce 4 successors corresponding to (¬a)∧(¬b)∧
(¬c), (¬a) ∧ (¬b) ∧ (¬c) ∧ X¬(bU c), (¬b) ∧ (¬c) ∧
(X¬(aU b)), and (¬b)∧(¬c)∧(X¬(aU b))∧X¬(bU c)
with some obvious redundancy. On the other hand
the corresponding BDD rewriting will be simplified
to ¬Var[b] ∧ ¬Var[c] ∧ (¬Var[a] ∨ Nxt[¬(aU b)]), giv-
ing only the two successors (¬a) ∧ (¬b) ∧ (¬c) and
(¬b) ∧ (¬c) ∧ (X¬(aU b)).

3.2. Using r to Identify States

A powerful BDD-based optimization is to use the
r function to identify some equivalent formulæ.
Because BDDs have a unique representation, we
have that r(ϕ) = r(ψ) =⇒ ϕ = ψ. The
converse does not hold because two equivalent
subformulæ prefixed with X might be represented by
different Nxt[] variables. Graphically, r(ϕ) encodes
the outgoing transitions (labels, promises, and
destinations) of the state ψ, so r(ϕ) = r(ψ) means
that the states ϕ and ψ have the same successors
and can be merged.

Such a reduction occurs when translating GF a:
r(GF a) =((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[GF a]

r((F a) ∧ GF a) =((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[GF a]
The result of r(GF a) implies that GF a should have
two successors GF a and (F a)∧GF a as shown in the
first automaton of Fig. 6. However r((F a) ∧ GF a) =
r(GF a) so these states can be merged.

One way to implement this reduction automatically is
to index the states of the automata by the BDD r(ϕ)
instead of by the LTL formula ϕ (the pseudo-code
from Fig. 5 does not perform this reduction).

3.3. Better Determinism

The determinism of the automata from Fig. 6 can be
improved using a trick based on the BDD represen-
tation of states. Instead of converting the equation
r(GF a) = ((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[GF a]
into a sum of products to discover the labels and
destination, we can instead fix one label to discover
its destination(s).

Where shall we go if we read a?
r(GF a)∧Var[a] = Var[a] ∧ Nxt[GF a]

Where shall we go if we read ¬a?
r(GF a)∧¬Var[a] = ¬Var[a] ∧ Nxt[F a] ∧ P[a] ∧ Nxt[GF a]
These equations show that all instances of >
in Fig. 6 can be replaced by ¬a, yielding two
deterministic automata.

In an automaton over n atomic propositions (Var[a],
Var[b],. . . ), there are 2n labels to consider. However
the structure of the BDD encoding the formula helps
to ignore useless labels; and in real-world formulæ
n is usually small enough so that the slowdown
incurred by this enumeration is not perceptible.

An automaton constructed this way is usually more
deterministic, but it is not necessarily a deterministic
automaton. The result of r(ϕ)∧A for some A could
have a disjunction, i.e., multiple destinations.

In an experiment we translated 96 LTL formulæ taken
from the literature with and without this optimization.
The resulting automata were then synchronized
with random state spaces to measure the effect of
the improved determinism. With this technique the
number of transitions in the product was reduced by
40%, and the number of states by only 0.33%.

4. FROM SPOT-0.4 TO SPOT-0.7.1

We now review how this translation has been
improved over the last four years.

4.1. Better Data Structures

Rozier and Vardi (2007) compared 9 LTL translators,
on various families of LTL formulæ.

The first family of formulæ they experimented is
scalable. For a given n they generated5 an LTL
formula Cn that matches an infinite sequence of bits
in which all the values of a n-bit counter have been
concatenated. E.g., C3 = ((a ∧ (G(a → (X(¬a ∧
X(¬a ∧ X a)))))) ∧ ((¬b) ∧ X(¬b ∧ X¬b)) ∧ (G((a ∧
¬b) → (X((XX b) ∧ (((¬a) ∧ (b → XXX b) ∧ ((¬b) →
(XXX¬b)))U a)))))∧(G((a∧b)→ (X((XX¬b)∧((b∧
(¬a)∧XXX¬b)U(a∨((¬a)∧(¬b)∧(X((XX b)∧(((¬a)∧
(b → XXX b) ∧ ((¬b) → XXX¬b))U a))))))))))).
Such a formula will match a sequence consisting of
a: 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 ...
b: 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 ... repeated
infinitely. Variable a beats the start of each value,
while variable b iterates over the 3 bits of each value
from least to most significant bit (000, 100, 010, . . . ).

From this description it should be clear that the
smallest automaton that can recognize Cn is a
5Scripts to generate these formulæ can be found at http:

//ti.arc.nasa.gov/m/profile/kyrozier/benchmarking_

scripts/benchmarking_scripts.html

4

http://ti.arc.nasa.gov/m/profile/kyrozier/benchmarking_scripts/benchmarking_scripts.html
http://ti.arc.nasa.gov/m/profile/kyrozier/benchmarking_scripts/benchmarking_scripts.html
http://ti.arc.nasa.gov/m/profile/kyrozier/benchmarking_scripts/benchmarking_scripts.html


LTL Translation Improvements in Spot
Duret-Lutz
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Figure 7: A Büchi automaton that recognizes C3.
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Figure 8: Runtime of two Spot versions on LTL counter
formulæ. ltl2ba is shown for comparison.

deterministic loop with n2n states and as many
transitions. Fig. 7 shows this automaton for C3.
Any translator that constructs such an automaton
explicitly will have a runtime that is worse than
exponential in n.

Rozier and Vardi (2007) show graphs comparing
how fast the runtime of each translator grows: few
tools passed n = 8. Although the Spot runtime was
low compared to other tools (even symbolic) they
stopped using Spot after n = 9 because it generated
an incorrect automaton for C10.

Investigating this bug6 and playing with Cn revealed
that Spot’s implementation of LTL formulæ and
its implementation of automata were suboptimal.
The effect of the subsequent fixes can been
seen on figure 8: spot-0.4 is the version used by
Rozier and Vardi, while spot-0.5 is an improved
version that is 5 times faster: only the formulæ
and automata implementation were changed, the
translation algorithm is the same. ltl2ba-1.1 (Gastin
and Oddoux 2001) is shown for comparison, and
other tools are usually off the scale: for instance spin-
6.1.0 will take more that 11 hours to translate the
formula C1 describing a 2-state automaton7.

6It was a typo in the comparison function used to distinguish two
LTL formulæ that have the same hash value: a constant ‘1’ (one)
was used instead of the variable ‘l’ (lowercase L), but the two
characters were indistinguishable on screen! C10 was the first
formula with enough sub-formulæ to trigger a hash conflict.
7The automaton built by spin-6.1.0 for C1 actually has 33 states
and 447 transitions, many of them using unsatisfiable guards such
as “((!b) && (a) && (b))”.

In Spot, LTL formulæ are represented as “abstract
syntax DAGs”, i.e., identical subformulæ are repre-
sented only once, as in Fig. 9. For commutative op-
erators, the operands are systematically reordered8

so that we can easily detect that a ∧ X(b) is equal to
X(b) ∧ a. Sharing of subformulæ also work across
multiple formulæ. The uniqueness of each subfor-
mula helps to speed up algorithms that may use
a cache as they traverse formulæ. However this
setup requires that each subformula in the pool be
reference counted. The first issue in spot-0.4 was
how this reference counting worked: the counter of
each node recorded the number of each subformula
using this node. This meant that every time a formula
was cloned or destroyed, we had to recurse its entire
DAG to increment or decrement the counters of each
node... “27%” of the time of the translation of C8 was
spent dealing with counters. The obvious fix was to
count only the number of direct parents of a node,
and this code ran no more than “0.01%” of the time.

The second problem was in the interface used to
construct Büchi automata as explicit graphs. The
definition of a Büchi automaton does not specify
how to represent the elements of Q, i.e., what is the
identity of a state. Is it an integer? Is it a name? When
reading an automaton from a file written by hand, we
want to allow any string. When implementing an LTL
translation such as the one described in section 3,
it is tempting to label states with the LTL formula
they represent: it helps reading the automaton. The
states of explicit graphs in spot-0.4 were referenced
by strings to accommodate all these needs. The
translation algorithm was therefore wasting a lot
of time just converting LTL formulæ into strings to
designate states. A new kind of graph with states
labeled by pointers to LTL formula objects yielded the
most part of the improvement shown on Fig. 8.

4.2. LTL Simplification Improvements and
Better Degeneralization

After the release of Spot 0.5, we were contacted
by Rüdiger Ehlers who was trying to use ltl2ba
and Spot with various options to translate an LTL
formulæ and keep only the smallest automata (in
term of states) produced by any tool. His goal was
to later minimize these automata even more using a

8Each subformula gets a serial number the first time it is created,
so this gives a handy key to order them in a way that is more
deterministic than ordering by their address.

5



LTL Translation Improvements in Spot
Duret-Lutz

∧

a

G

¬

X

G

G

b

→
L

X

R

∧

¬

X

∧

X

∧

X

→

∧

L

X

R

∧

X

U

X

R

∧

L

→ →
L

X

R L

X

R

X

→

∧

L

X

R

∧

U

∧

∨

∧

Figure 9: An abstract syntax DAG for the formula C3.
The letters L and R are used to distinguish left and right
operands of non-commutative binary operators.

technique that could easily take hours (Ehlers and
Finkbeiner 2010), so it made sense to try a few tools
to find the smallest candidate first.

The benchmark consists in 92 LTL formulæ:
• 55 formulæ from Dwyer et al. (1998),
• 25 formulæ from Somenzi and Bloem (2000)

— their paper shows 27 formulæ but two of
them were ignored because they are already the
negations of other formulæ in the list,
• 12 formulæ from Etessami and Holzmann (2000).

With their negations this makes a total of 184
formulæ. Table 1 shows how much time each
translator was better than the other on these 184
formulæ. For instance comparing “spot-0.5 (1)” with
“ltl2ba-1.1” we can see ltl2ba-1.1 produced automata
strictly smaller than spot-0.5 for 80 formulæ, while
spot-0.5 was strictly better in 23 cases.

The numbers (1) and (2) refer to different reductions
performed on the LTL formulæ before translation.

In case (1), each formula is reduced using rules
taken from Somenzi and Bloem (2000); Etessami
and Holzmann (2000) and Bloem (2001). These
rules include unconditional rewritings like “FXϕ =
XFϕ”, conditional rewriting based on syntactic

worse

be
tte

r

ltl
2b

a-
1.

1

sp
ot

-0
.5

(1
)

sp
ot

-0
.5

(2
)

sp
ot

-0
.6

(1
)

sp
ot

-0
.6

(2
)

ltl2ba-1.1 0 23 28 58 61
spot-0.5 (1) 80 0 6 104 107
spot-0.5 (2) 76 0 0 101 102
spot-0.6 (1) 2 0 4 0 4
spot-0.6 (2) 1 0 0 0 0

Table 1: Comparing ltl2ba and Spot on 184 LTL formulæ.
The value on line i and column j shows how many time
automaton produced by translator #i was strictly bigger
than the automaton produced by translator #j.

implications9 like “if ϕ ⇒ ψ then ϕUψ = ψ”, and
rewritings based on the concept pure eventualities
and purely universal formulæ like “if ψ is a pure
eventuality then ϕUψ = ψ”10. ltl2ba-1.1 includes
similar rules, except that pure eventualities and
purely universal formulæ are handled with a less
general set of rewritings.11

In case (2), a stronger set of rules based on
language containment are used to replace the
syntactic implications checks. In this setup, checking
that ϕ ⇒ ψ involves translating ϕ and ¬ψ into
automata, and checking whether their product is
empty: L (Aϕ ⊗ A¬ψ) = ∅.12 These operations
have to be performed on many subformulæ of the
formula to simplify so this is a costly simplification.
But have found that the runtime is usually acceptable
as the automata involved when translating formulæ
used in verification are usually small. The initial set
of rewriting rules based on language containment
comes from Tauriainen (2006, section 5.3), but
we extended these as in Table 2 so they would
catch more patterns to reduce. The simplification
described for (1) are still performed, but language-
containment rules are able to catch a few more
simplifications that were not detected syntactically.

A typical formula that rules (1) are not able to simplify
is ϕ1 = ((X q) ∧ r)RX(((sU p)R r)U(sR r)). The
extended language containment rules from Table 2
reduces ϕ1 to ϕ2 = ((X q) ∧ r)RX(sR r) because
((sU p)R r)U(sR r) implies (sR r). The reduction
this entails on the automaton is welcome: ϕ1 is
translated by Spot into a Büchi automaton with 25
states, while ϕ2 needs only 5 states.
9This means that the condition ϕ ⇒ ψ is tested syntactically by a
recursion on the two abstract syntax DAGs.
10For instance F b is a pure eventuality, so aUF b = F b.
11For instance ltl2ba-1.1 can reduce aUF b to F b, but it cannot
reduce aUXF b to XF b although XF b is a pure eventuality.
12The reason why we do not simply check that L (Aϕ∧¬ψ) = ∅
is so we can cache the automata generated Aϕ and A¬ψ and
use them in when checking other conditions involving the same
subformulæ.
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pattern condition to test simplification
ϕ ∨ ψ L (Aϕ ⊗A¬ψ) = ∅ ψ

L (A¬ϕ ⊗Aψ) = ∅ ϕ
L (A¬ϕ ⊗A¬ψ) = ∅ >

ϕ ∧ ψ L (Aϕ ⊗A¬ψ) = ∅ ϕ
L (A¬ϕ ⊗Aψ) = ∅ ψ
L (Aϕ ⊗Aψ) = ∅ >

ϕUψ L (AϕUψ ⊗A¬ψ) = ∅ ψ
L (A¬ϕ ⊗A¬ψ) = ∅ Fψ

ϕRψ L (Aϕ ⊗A¬ψ) = ∅ ψ
L (Aϕ ⊗Aψ) = ∅ Gψ

Xϕ
(
L (Aϕ ⊗A¬Xϕ) = ∅
∧L (A¬ϕ ⊗AXϕ) = ∅

)
ϕ

Table 2: Simplification rules based on language contain-
ment.

After translating the simplified formula into a
generalized Büchi automaton, both Spot and ltl2ba
perform a pass of automaton simplification based
on the elimination of maximal strongly connected
components that are terminal and non-accepting.
The degeneralization of this automaton into a Büchi
automaton follows.

Looking at the formulæ for which Spot fared worse
than ltl2ba in Table 1 we were able to make three
improvements, included in spot-0.6. The first two
changes were enough to bring Spot up to the point
were only one formula was translated worse than
ltl2ba. The third change improved the number of
case where Spot was producing smaller automata.

4.2.1. A Harmful Rewriting Rule
The first correction is quite simple. In the set of
rewriting rules chosen to reduce the size of the
automaton produced by the Wring tool, Somenzi and
Bloem (2000) give this one (applied from left to right):

F(ϕ ∧ GFψ) = (Fϕ) ∧ GFψ

It might be true that Wring performs better on the
right formula, but this is generally wrong for Spot.
This rule had to be disabled. Intuitively, this rule
is dubious because F(ϕ ∧ GF(ψ)) appears less
complex to translate. Translating FΦ is just a matter
of creating an initial state that accepts any letter
for a finite number of step, and non-deterministically
jumps into a state that will recognize Φ when a letter
matching the beginning of Φ is found. Translating a
formula such as (Fϕ) ∧ GFψ is harder because in
the initial state you have four choices to consider:
either the input can be the start of ϕ, or it is the
start of ψ, or it is both, or it is none. When ϕ and
ψ are atomic propositions as in Fig. 10, these four
cases can be reduced to three. It turns out that on the
automatonA2 from Fig. 10 the states (F a)∧GF b and

A1 F(a ∧ GF b) GF b GF b

>

a

b

>

A2 (F a) ∧ GF b GF b

(F a) ∧ (F b) ∧ GF b

>

a

>

b

>
>

a>

Figure 10: Paper-and-pen translations into TGBA of F(a∧
GF b) and (F a) ∧ GF b.

(F a) ∧ (F b) ∧ GF b have exactly the same outgoing
transitions so they can be merged. Thank to the
BDD identification discussed in section 3.2, Spot will
actually output an automaton similar to A1 for both
formulæ F(a ∧ GF b) or (F a) ∧ GF b. This is not the
case when ϕ and ψ are more complex.

This rewriting rule also prevented other useful rules
to apply. E.g., spot-0.5 would rewrite the formula
F(ϕ1 ∧ GFψ1) ∨ F(ϕ2 ∧ GFψ2) as ((Fϕ1) ∧ GFψ1) ∨
(Fϕ2) ∧ GFψ2) missing the opportunity to apply the
rule F(Ψ1) ∨ F(Ψ2) = F(Ψ1 ∨ Ψ2). Spot-0.6 rewrites
this formula as F((ϕ1 ∧GFψ1)∨ (ϕ2 ∧GFψ2)) which
is easier to translate for similar reasons.

In spot-0.6 (and also the current spot-0.7.1) this
harmful rewriting rule is simply disabled, but from the
above discussion it sounds like it would be better to
apply it in the opposite direction, trying to gather as
much terms as possible after the F. We are currently
overhauling the entire rewriting module in order to
improve it, and plan to make a more systematic
study of each rule we apply. Applying a rewriting rule
because it has been used in another tool is not a
good justification: the rule might be favorable to the
other tool but not yours.

4.2.2. Better Degeneralization
A degeneralization algorithm takes a generalized
automaton with n states and m acceptance
conditions, and produces a Büchi automaton
with a single acceptance condition and at most
n(m + 1) states. The classical algorithm used
to transform Generalized Büchi Automata into
Büchi automata (Clarke et al. 2000, section 9.2.2)
can be adapted to transform TGBA into Büchi
automata (Giannakopoulou and Lerda 2002; Gastin
and Oddoux 2001) as follows.

If T = 〈AP ,Q, q0,F , δ〉 is a TGBA withm acceptance
conditions F = {f1, f2, . . . , fm}, then an equivalent
Büchi automaton T = 〈AP ,Q′, q′0,F ′, δ′〉 can be
constructed as follows:
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• Q′ = Q × {0, . . . ,m} the original automaton is
cloned in m+ 1 levels,
• F ′ = Q × {m} states from the last level are

accepting,
• δ′ = {((s, j), l, (d, Lj(F ))) | (s, l, F, d) ∈ δ} where

Lj(F ) =


0 if j = m

j + 1 if fj+1 ∈ F
j otherwise

i.e., for each level j < m the outgoing transitions
that carry fj+1 are redirected to the next level
and all outgoing transitions from the last level are
redirected to the first one.
• q′0 = q0 × {0} the initial state is on the first level

(but any other level would also be correct).

This setup guarantees that any accepting path in
the degeneralized automaton will correspond to an
infinite path that sees all acceptance conditions
infinitely often in the original automaton. The
classical optimization is to “jump levels”, i.e., when
a transition from level i < m carries acceptance
conditions fi+1, fi+2, and fi+3, it can be redirected
to the level i + 3. This corresponds to the following
redefinition of Lj(F ) =
max{n ∈ {j, . . . ,m} | ∀k ∈ {j + 1, . . . , n}, fk ∈ F} if j < m,

max{n ∈ {0, . . . ,m} | ∀k ∈ {1, . . . , n}, fk ∈ F} if j = m

The automaton B1 from Fig. 1 was degeneralized
from T1 with this definition, in the order f1 = ,
f2 = , and setting the initial state in the last level.

This degeneralization procedure offers m! possible
ways to order the acceptance conditions, and there
arem+1 possible levels on which the initial state can
be located. Changing these parameter might make
some states from Q × {0, . . . ,m} unreachable, and
can thus reduce the automaton. For one TGBA, we
therefore have m!(m+ 1) possible degeneralizations
using only this definition.

In Spot, the acceptance conditions labeling each
transitions are stored as BDDs13 and the order
used by the degeneralization algorithm is related
to the order in which the corresponding BDD
variables were declared. This order is in turn
related to the order in which the LTL formula was
recursively traversed by the translation algorithm.
In ltl2ba, this order is that of the states of the
alternating automaton is that constructed recursively
from the LTL formula. So in both cases, the order
used is tied to the syntax tree/DAG of the LTL
formula. It so turns out that the order used in
13In some algorithms, this enables union or intersection of sets
of BDDs. But the real justification for this interface is that we
also have some symbolic representations of automata where the
transition relation is stored as a BDD from which we can extract
those acceptance conditions using BDD manipulations.

spot-0.5 was usually the reverse of the order used
in ltl2ba, and was unfavorable. Simply reversing
that order, is responsible the largest part of the
improvements observed between spot-0.5 and spot-
0.6 on Table 1. This reversed order corresponds to
expecting the acceptance conditions associated to a
formula φ before expecting the acceptance condition
associated to subformulæ of φ. For instance when
translating the formula GF(a∧GF(b∧GF c)) there will
be acceptance conditions associated to a ∧ GF(b ∧
GF c), b∧GF c and c and they should be expected in
this order during the degeneralization.

We are currently investigating how choosing different
orders may improve the degeneralization and it
seems that the above heuristic is usually better. The
choice of the level for the initial state is another
parameter that we have yet to explore.

Oddoux (2003, section 6.1.2) mentions another kind
of degeralization in which the acceptance conditions
can be taken in any order and where each state of
degeneralized automaton has to retain the set of all
acceptance conditions that are waited for. This can
potentially multiply the size of the original automaton
with 2m ifm acceptance conditions are used. But this
might be worth a try when m is very small.

Another optimization that was included in spot-
0.6 to improve its degeneralization is the “pulling
of acceptance conditions”. When all the outgoing
transition of a state s have a set Y of acceptance
conditions in common, this set can be added to the
acceptance conditions of all the incoming transitions.
This is correct because if a run of traverses s it will
necessarily see all acceptance conditions from Y ; it
makes no difference if its sees them twice.

Finally the only formula of this benchmark for which
ltl2ba-1.1 produces an automata with less states
than spot-0.6 in Table 1 is ¬G(p → (qU(G r ∨
G s))). ltl2ba-1.1 gives a Büchi automaton with 10
states and 336 transitions, while spot-0.6 produces
11 states and 260 transitions.14 In this extraordinary
case, disabling the SCC-based simplifications will
actually help the degeneralization algorithm, and
Spot will produce an automaton with 10 states and
244 transitions.

4.2.3. More LTL Operators: W and M
The changes described in sections 4.2.1 and 4.2.2
were enough to let Spot-0.6 (2) produce automata
that were smaller that ltl2ba’s in 50 cases. 11 more
cases were won by adding support for the W and M
operators, even if they are not used in the formulæ...
14When counting transitions in an automaton over the atomic
propositions {p, q, r, s} an arc labeled by p is counted for 8
transitions because there are 8 different configurations of the
atomic propositions (pq̄r̄s̄, pqr̄s̄, pq̄rs̄, . . .) that satisfy formula p.
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aW b >

a ∧ ¬b

b

>

bR(b ∨ a) >

a ∧ ¬b

b

>

aU(b ∨ G a)

G a >

a ∧ ¬b

a ∧ ¬b b

> a

(aU b) ∨ G a G a

aU b >

a ∧ ¬b

a ∧ ¬b b

a

a ∧ ¬b
b

>

Figure 11: Four formulæ equivalent to aW b and their
corresponding automata. When theW and R operators are
not available, aU(b ∨ G a) is easier to translate.

aU b is the strong until operator: a has to hold until b
does, and b must hold eventually. aW b is the weak
until operator: a should hold until b does, and if b
never occur, then a should always be true.

Conversely, aR b is the weak release operator: b has
to hold either infinitely, or until a ∧ b hold together.
aM b is the strong release operator : a has to hold
until a ∧ b hold, and the latter is will occur eventually.

These operators do not add expressive power: when
using tools that do not support them, aW b is usually
rewritten (aU b) ∨ G a or aU(b ∨ G a). Even if it
is less intuitive, the second rewriting is actually a
better choice, because it translates into a smaller
automaton (Fig. 11). An even better choise, if the R
operator is available, is to write bR(a ∨ b). Similarly,
aM b can be rewritten in many ways: aM b = (aR b)∧
(F a) = aR(b ∧ F a) = bU(a ∧ b).

The translation rule for W is the same as that
for U except that no promise is made (hence no
acceptance condition is output), and conversely the
rule for aM b is the same as R with the promise of a.

The weak until operator can be used to express
properties such as ϕ becomes true before ψ or
at the same time: (¬ψ)Wϕ. Such pattern often
occur in the LTL formulæ presented by Dwyer et al.
(1998) and are encoded with the U operator15.
Since W can be translated without promises or
acceptance conditions, it makes sense to rewrite
heavier patterns such as aU(b ∨ G a) using W prior
to the traduction. We implemented the following
rules in Spot-0.6 to that effect:
15The aU(b ∨ G a) idiom was used. The LTL formulæ on the web
page associated to their project, at http://patterns.projects.
cis.ksu.edu/documentation/patterns/ltl.shtml, have since
been rewritten with the W operator for clarity.

aU(b ∨ G a) = aW b aR(b ∧ F a) = aM b

aW(b ∨ G a) = aW b aM(b ∧ F a) = aM b

(aU b) ∨ G a = aW b aRF a = F a

(aU b) ∨ (aW c) = aW (b ∨ c) aMF a = F a

(aW b) ∨ (aW c) = aW (b ∨ c) (aR b) ∧ F a = aM b

aUG a = G a (aR b) ∧ (aM c) = aM(b ∧ c)
aWG a = G a (aM b) ∧ (aM c) = aM(b ∧ c)

(aU b) ∧ (cW b) = (a ∧ c)U b (aR b) ∨ G b = aR b

(aW b) ∧ (cW b) = (a ∧ c)W b (aM b) ∨ G b = aR b

(aR b) ∨ (cM b) = (a ∨ c)R b (aU b) ∧ F b = aU b

(aM b) ∨ (cM b) = (a ∨ c)M b (aW b) ∧ F b = aU b

aM(bM c) = aM c if a⇒ b.

aM(bR c) = aM c if a⇒ b.

aR(bR c) = aR c if a⇒ b.

aR(bM c) = bM c if b⇒ a.

aM(bM c) = bM c if b⇒ a.

The 11 formulæ for which the translation was
improved correspond to formulæ of Dwyer et al.
(1998) in which the ϕU(ψ ∨ Gϕ) idiom was used.
Rewriting these using W helped the translation since
it did not have to deal with promises associated to U.

4.3. Reaching the Minimum

Cichoń et al. (2009) studied several classes of LTL
formulæ for which they calculated the size (in states)
of the minimal Büchi automaton that could represent
the property. They compared the output of spot-0.4
and ltl2ba-1.1, neither of which was able translate
all formulæ efficiently. Sometimes they would take
too long, sometimes they would produce automata
larger than necessary.

Here are four families of formulæ they evaluated on
both tools for n ranging from 1 to 20:
αn = F(p ∧ X(p ∧X(p ∧ . . .))︸ ︷︷ ︸

n occurences of p

∧F(q ∧ X(q ∧X(q ∧ . . .))︸ ︷︷ ︸
n occurences of q

βn = F(p1 ∧ F(p2 ∧ F(. . .F pn))) ∧ F(q1 ∧ F(q2 ∧ F(. . .F qn)))
ϕn = GF p1 ∧ GF p2 ∧ . . . ∧ GF pn
ψn = FG p1 ∨ FG p2 ∨ . . . ∨ FG pn

The minimal Büchi automaton for αn has (n +
1)2 states. ltlba-1.1 and spot-0.4 both manage to
produce it, but they take a lot of time. In their
experiment ltl2ba-1.1 took 14 hours to translate α19

(they did not try α20) while spot-0.4 took 6 seconds
to translate α20. But 6 seconds are a lot for such a
formula: spot-0.7.1 takes less than 0.01 second.

The minimal Büchi automaton for βn also has (n+1)2

states, but a lot more transitions. Neither ltl2ba-
1.1 nor spot-0.4 were able to produce the smallest
automata for n > 1. For β20 the minimal automaton
has 441 states; ltl2ba-1.1 produced an automaton of

9

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml


LTL Translation Improvements in Spot
Duret-Lutz

1164 states in 21 seconds while spot-0.4 produced
1237 states in about 12 minutes.

ϕn did not cause any problem with either tools. The
minimal automaton were produced by both tools
instantaneously.

The worse formula was ψn although both tools
manage to build the minimal automaton (with n +
1 states), they have to deal with an exponential
number of transitions. ltl2ba took more that 3 hours
to translate ψ11 while spot-0.4 took 20 minutes for
ψ18 and subsequently died on ψ19 (out-of-memory?).

We are happy to report that spot-0.7.1 is able to
run this entire benchmark (the four families with n
ranging from 1 to 20) in less than 15 minutes and
always produces Büchi automata with the minimal
number of states. The necessary fixes are those
described in section 4.2, but running this benchmark
on spot-0.6 revealed that the “pulling of acceptance
conditions” could use a cache to avoid a quadratic
behavior16. This cache was added in spot-0.7.1.

4.4. WDBA Minimization

It is well known that not all Büchi automata are
determinizable (Vardi 1996, prop. 8). There is a
subclass of properties that can be represented by
Weak Deterministic Büchi Automata (WDBA), and
for which there exists an algorithm to compute
the minimal WDBA recognizing the property in
a way that is comparable to the minimization of
deterministic finite automata (Löding 2001). This
class corresponds to the “obligations” in the temporal
hierarchy of Manna and Pnueli (1990) and includes
a large number of LTL formulæ used for model
checking (starting with all safety properties). For
instance 40 formulæ out of the 55 formulæ from
Dwyer et al. (1998) are obligations.

Dax et al. (2007) did a comparison of the
size produced by different translators (not Spot,
which they did not know) with the size of the
minimal WDBA. This revealed that although it
was deterministic, the minimal WDBA usually had
number states smaller or equal to that of the
automata produced by the translators.

This WDBA minimization has since been integrated
into spot-0.7.1. Table 3 completes the benchmark of
Dax et al. (2007) using the sizes of the degeneralized
automata generated by spot-0.7.1. The first column
is the number of the formula, so you can compare
with the figure for other tools displayed at http://
www.daxc.de/eth/atva07/index.html. The second
16This is because the degeneralization is performed on-the-fly
in Spot: the degeneralized automaton is constructed from the
original TGBA as needed by subsequent algorithms and never
stored.

and third numbers give the number of states and
transitions17 of the automaton produced by Spot
(with formula simplifications and SCC simplifications
turned on), while the fourth and fifth numbers
show the number of states and transitions with an
additional WDBA minimization step.

We can observe that some minimized automata
have more transitions: this is because their structure
changed when they were determinized. Even though
they have the same number of states as the non-
minimized automaton, the states do not accept the
same language. There is even one case (formula 36)
where the minimized automaton got one more state.

In only two cases (formulae 31 and 35) the
minimization actually removed states in addition to
making the automata deterministic.

5. CONCLUSION

We have presented the main improvements realized
in the LTL translation module of Spot between
versions 0.4 and 0.7.1, both in the size of the
produced automata and in the time it takes to
generate them. We also gave insight into its
implementation and explained why using BDDs
during the translation actually allows many reduction.

It has been argued (Cichoń et al. 2009; Tsay et al.
2011) that rather than optimizing an algorithm to
try to produce the best automata always, it would
be useful to create a database of optimal automata
for commonly used formulæ. However different uses
may call for different definition of optimal automaton.
In the context of model-checking, one usually wants
to reduce the size of product of the property with
the system, and translating the property into a small
automaton that is the most deterministic possible
usually helps (Sebastiani and Tonetta 2003). In the
context of synthesis of reactive systems Ehlers and
Finkbeiner (2010) prefer to minimize the number of
states at the expense of determinism.

Also different kinds of automata can be used
for verification: model checking with TGBA is
usually better than model checking with Büchi
automata when the formula incur a lot of acceptance
conditions (Couvreur et al. 2005). Using testing
automata also appears promising (Geldenhuys and
Hansen 2006; Ben Salem et al. 2011). A database
should therefore not be limited to Büchi automata.

While we agree such a database could indeed be
useful, we still believe that it is important to have a
translation that is efficient and versatile enough to be
tuned to the needs of a particular situation.
17See footnote 14.
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before after
# st. tr. st. tr. formula
1 2 4 2 4 ¬(G p̄)

2 3 10 3 10 ¬(F r → (p̄U r))

3 3 13 3 12 ¬(G(q → G p̄))

4 4 30 4 32 ¬(G((q ∧ r̄ ∧ F r) → (p̄U r)))

5 3 21 3 24 ¬(G(q ∧ r̄ → ((p̄U r) ∨ G p̄)))
6 1 1 1 1 ¬(F p)

7 2 7 2 7 ¬((r̄U(p ∧ r̄)) ∨ (G r̄))

8 2 5 2 5 ¬(G q̄ ∨ F(q ∧ F p))
9 3 23 3 24 ¬(G(q ∧ r̄ → ((r̄U(p ∧ r̄)) ∨ G r̄)))

10 6 12 6 12 ¬((p̄U((pU((p̄U((pUG p̄) ∨ G p)) ∨ G p̄)) ∨ G p)) ∨ G p̄)
11 7 18 7 18 ¬(F r → ((p̄ ∧ r̄)U(r ∨ ((p ∧ r̄)U(r ∨ ((p̄ ∧ r̄)U(r ∨ ((p ∧ r̄)U(r ∨ (p̄U r))))))))))

12 7 28 7 28 ¬(F q → (q̄U(q ∧ ((p̄U((pU((p̄U((pUG p̄) ∨ G p)) ∨ G p̄)) ∨ G p)) ∨ G p̄))))
13 8 46 8 64 ¬(G((q ∧ F r) → ((p̄ ∧ r̄)U(r ∨ ((p ∧ r̄)U(r ∨ ((p̄ ∧ r̄)U(r ∨ ((p ∧ r̄)U(r ∨ (p̄U r)))))))))))

14 7 38 7 56 ¬(G(q → ((p̄ ∧ r̄)U(r ∨ ((p ∧ r̄)U(r ∨ ((p̄ ∧ r̄)U(r ∨ ((p ∧ r̄)U(r ∨ ((p̄U r) ∨ G p̄) ∨ G p))))))))))
15 2 4 2 4 ¬(G p)

16 3 10 3 10 ¬(F r → (pU r))

17 3 13 3 12 ¬(G(q → G p))

18 4 15 4 16 ¬(G((p ∧ r̄ ∧ F r) → (pU r)))

19 3 21 3 24 ¬(G(q ∧ r̄ → ((pU r) ∨ G p)))
20 4 12 4 12 ¬((p̄U s) ∨ G p)
21 3 18 3 18 ¬(F r → (p̄U(s ∨ r)))
22 4 54 4 64 ¬(G((q ∧ r̄ ∧ F r) → (p̄U(s ∨ r))))
23 3 37 3 48 ¬(G(q ∧ r̄ → ((p̄U(s ∨ r)) ∨ G p̄)))
24 3 19 3 20 ¬(F r → (p→ (r̄U(s ∧ r̄)))U r)
25 4 59 4 64 ¬(G((q ∧ r̄ ∧ F r) → (p→ (r̄U(s ∧ r̄)))U r))
26 3 20 3 20 ¬(F p→ (p̄U(s ∧ p̄ ∧ X(p̄U t))))

27 4 44 4 44 ¬(F r → (p̄U(r ∨ (s ∧ p̄ ∧ X(p̄U t)))))

28 4 48 4 48 ¬((G q̄) ∨ (q̄U(q ∧ F p→ (p̄U(s ∧ p̄ ∧ X(p̄U t))))))

29 5 128 5 160 ¬(G((q ∧ F r) → (p̄U(r ∨ (s ∧ p̄ ∧ X(p̄U t))))))

30 4 92 4 128 ¬(G(q → (F p→ (p̄U(r ∨ (s ∧ p̄ ∧ X(p̄U t)))))))

31 4 34 3 20 ¬((F(s ∧ XF t)) → (s̄U p))

32 4 46 4 44 ¬(F r → ((¬(s ∧ r̄ ∧ X(r̄U(t ∧ r̄))))U(r ∨ p)))
33 5 82 4 52 ¬((G q̄) ∨ (q̄U(q ∧ ((F(s ∧ XF t)) → (s̄U p)))))

34 5 130 5 160 ¬(G((q ∧ F r) → ((¬(s ∧ r̄ ∧ X(r̄U(t ∧ r̄))))U(r ∨ p))))
35 10 254 4 128 ¬(G(q → (¬(s ∧ r̄ ∧ X(r̄U(t ∧ r̄)))U(r ∨ p) ∨ G(¬(s ∧ XF t)))))
36 4 36 5 50 ¬(F r → (s ∧ X(r̄U t) → X(r̄U(t ∧ F p)))U r)
37 4 52 4 52 ¬(F r → (p→ (r̄U(s ∧ r̄ ∧ X(r̄U t))))U r)

38 5 148 5 160 ¬(G((q ∧ F r) → (p→ (r̄U(s ∧ r̄ ∧ X(r̄U t))))U r))

39 4 104 4 104 ¬(F r → (p→ (r̄U(s ∧ r̄ ∧ z̄ ∧ X((r̄ ∧ z̄)U t))))U r)
40 5 296 5 320 ¬(G((q ∧ F r) → (p→ (r̄U(s ∧ r̄ ∧ z̄ ∧ X((r̄ ∧ z̄)U t))))U r))

Table 3: Size of (degeneralized) Büchi automata produced by spot-0.7.1 before and after WDBA minimization.

For the interested reader, the Büchi Store
project (Tsay et al. 2011) is a database of formulæ
associated to representative Büchi automata, where
users can submit better automata. In February 2011,
we downloaded their list of formulæ and automata
for benchmarking purpose. Out of the 322 formulæ
involving only future-time LTL operators Spot was
able to produce smaller automata in 52 cases, and
bigger automata in 21 cases (in this comparison,
the number of transitions was used to compare
automata with equal number of states). We have yet
to submit our automata for these 52 cases.
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