
Spot 2.0 — a framework for
LTL and ω-automata manipulation

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud,
Étienne Renault, and Laurent Xu

LRDE, EPITA, Kremlin-Bicêtre, France
spot@lrde.epita.fr

Abstract. We present Spot 2.0, a C++ library with Python bindings and an
assortment of command-line tools designed to manipulate LTL and ω-automata in
batch. New automata-manipulation tools were introduced in Spot 2.0; they support
arbitrary acceptance conditions, as expressible in the Hanoi Omega Automaton
format. Besides being useful to researchers who have automata to process, its
Python bindings can also be used in interactive environments to teach ω-automata
and model checking.

1 Introduction

Spot is a C++ library of model-checking algorithms that was first presented in 2004 [15].
It contains algorithms to perform the usual tasks in the automata-theoretic approach
to LTL model checking [36]. It was purely a library until Spot 1.0, when we started
distributing command-line tools for LTL manipulation [13] and translation of LTL to
some generalizations of Büchi Automata.

Spot 2.0 is a very large rewrite of the core of the library, in C++11, with a focus
on supporting automata with arbitrary acceptance conditions as described in the Hanoi
Omega Automata format (HOA) [6]. Those acceptance conditions are expressed as posi-
tive Boolean formulas over terms such as Inf(n) and Fin(n), which indicate respectively
that some set Sn of states or transitions should be visited infinitely or finitely often.
Traditional acceptance conditions look as follows in this formalism:

Büchi: Inf(0) generalized-Büchi: Inf(0) ∧ Inf(1) ∧ Inf(2) ∧ . . .
co-Büchi: Fin(0) generalized-co-Büchi: Fin(0) ∨ Fin(1) ∨ Fin(2) ∨ . . .
Rabin: (Fin(0) ∧ Inf(1)) ∨ (Fin(2) ∧ Inf(3)) ∨ . . .
Streett: (Fin(0) ∨ Inf(1)) ∧ (Fin(2) ∨ Inf(3)) ∧ . . .

Parity acceptance, generalized-Rabin [24, 5], and any Boolean combination of the above
can be expressed as well. The use of HOA as default format makes it easy to chain Spot’s
command-line tools, and interact with other tools that implement HOA, regardless of the
actual acceptance condition used.

Additionally, Spot 2.0 ships with Python bindings usable in interactive environments
such as IPython/Jupyter [29], easing development, experimentation, and teaching.

Spot is a free software and can be obtained from https://spot.lrde.epita.
fr/. The reader who wants to try Spot without installing it is invited to visit http://
spot-sandbox.lrde.epita.fr/ where a live installation of Jupyter and Spot allows
all examples (command lines or Python) of this paper to be replayed.

https://www.lrde.epita.fr/
https://spot.lrde.epita.fr/
https://spot.lrde.epita.fr/
http://spot-sandbox.lrde.epita.fr/
http://spot-sandbox.lrde.epita.fr/

libspot libspot-ltsmin

libbddx

import spot.ltsminimport spot

randltl genltl

ltlfilt randaut

autfilt ltl2tgba

ltl2tgta dstar2tgba

ltlcross ltlgrind ltldo

divineSpinS

IPython / Jupyter

Fig. 1. Architecture of Spot. C++ libraries are in orange boxes, binaries in red, and Python
packages in blue. The outlined area is what Spot distributes.

Figure 1 shows that Spot is actually split in three libraries. libbddx is a customized
version de BuDDy [26] for representing Binary Decision Diagrams [10] which we use to
label transitions in automata, and to implement a few algorithms [14, 4]. libspot is the
main library containing all data structures and algorithms. libspot-ltsmin contains
code to interface with state-spaces generated as shared libraries by LTSmin [20].

In the rest of this article, we highlight some of the features of Spot by presenting the
command-line tools and the Python bindings built on top of these libraries. The reader
should keep in mind that everything that we illustrate as shell command or in Python
can be performed directly in C++; in fact our web site gives several examples of tasks
implemented with each of these three interfaces.

2 Command-line tools

Spot 2.0 installs the following eleven command-line tools, that are designed to be
combined as traditional Unix tools.

[13]



randltl generates random LTL/PSL formulas
genltl generates LTL formulas from scalable patterns
ltlfilt filter, converts, and transforms LTL/PSL formulas
ltl2tgba translates LTL/PSL formulas into generalized Büchi automata [14],

or deterministic parity automata (new in 2.0)
ltl2tgta translates LTL/PSL formulas into Testing automata [8]
ltlcross cross-compares LTL/PSL-to-automata translators to find bugs

(works with arbitrary acceptance conditions since Spot 2.0)
ltlgrind mutates LTL/PSL formulas to help reproduce bugs on smaller ones
dstar2tgba converts ltl2dstar automata into Generalized Büchi automata [1]
randaut generates random ω-automata
autfilt filters, converts, and transforms ω-automata
ltldo runs LTL/PSL formulas through other translators, providing

uniform input and output interfaces
The first six tools were introduced in Spot 1.0 [13], and have since received sev-

eral updates. For instance ltl2tgba now uses better simulation reductions and de-

generalization [4], and it now provides a way to output deterministic automata using
transition-based parity acceptance; ltlfilt has learned to decide stutter-invariance
of any LTL/PSL formula using an automaton-based check that is independent on the
actual logic used [27]; and ltlcross can now perform precise equivalence checks of
automata in addition to supporting arbitrary acceptance conditions—it has been used
by the authors of ltl3dra [5], ltl2dstar [21, 22], and Rabinizer 3 [23] to test recent
releases of their respective tools.

The dstar2tgba tool was introduced in Spot 1.2 while working on the minimization
of deterministic generalized Büchi automata using a SAT-solver [1]. It implements
algorithms that translate deterministic Rabin automata into Büchi automata, preserving
determinism if possible [25], as well as conversion from Streett to generalized Büchi.
These two different kinds of input correspond to the possible outputs of ltl2dstar.
In Spot 2.0, these specialized acceptance conversions have been preserved, but they
are supplemented with more general transformations that input automata with arbitrary
acceptance conditions, and transform them into automata with “Fin-less” acceptance, or
with (Generalized) Büchi acceptance. These acceptance transformations are essential to
a few core algorithms that cannot cope with arbitrary acceptance: for instance currently
Spot can only check the emptiness of automata with Fin-less acceptance (all SCC-based
emptiness-checks [11, 12, 31] are compatible with that), so more complex acceptances
are transformed when needed.

All these acceptance transformations, as well as other automata transformations are
available through the autfilt tool. This command can input a stream of automata in
4 different formats (HOA [6], LBTT’s format [33], never claims [19], or ltl2dstar’s
format [22]), and can output automata, maybe after filtering or transformation, in some
other format (including GraphViz’s dot format [17] for display).

As an example of transformation and format conversion, consider:
% spin -f ’[]<>a’ | autfilt --complement --dot=abr | dot -Tpng >aut.png

This command translates the LTL formula GFa into a Büchi automaton using spin [19],
the resulting never claim is then fed into autfilt for complementation, and the com-
plemented automaton is output into GraphViz’s format for graphical rendering with
dot. The arguments a, b, and r passed to --dot cause the acceptance condition to be
displayed, and the acceptance marks to be shown as colored bullets.

In the above example the input to autfilt happens to be a deterministic Büchi
automaton, so the complementation is as simple as changing the acceptance condition
into co-Büchi. If a Büchi output is desired instead, the above command should be
changed to autfilt --complement --ba and will output a non-deterministic Büchi
automaton. This of course works with arbitrary acceptance conditions as input.

Complementation of non-deterministic automata is done via determinization. Our
determinization algorithm inputs transition-based Büchi automata (so we may have some
preprocessing to do if the input has a different acceptance), and outputs automata with
transition-based Parity acceptance. It mixes the construction of Redziejowski [30] with
some optimizations of ltl2dstar [21, 22] and a few of our own.

The ltldo command wraps third-party LTL translators and provides them with
inputs and outputs that are compatible with the Spot tool-suite. In particular it allows
using “single-shot” translators in a pipeline. For instance spin can only translate one

formula at a time to produce a never claim. The command ltldo spin will process
multiple formulas (in any syntax supported by Spot [13]), translate them all using spin,
and output all results in any supported automaton format (HOA by default). For instance
the following command uses Spin to translate 10 random LTL formulas into Büchi
automata in the HOA format:
% randltl -n 10 a b | ltldo spin --name=%f

Option --name=%f requests input formulas to be used as the “name:” field in the HOA
format. This field could then be used to retrieve the original formula after further pro-
cessing: autfilt --stats=%M can be used to print the name of each input automaton.

As a more complex example, the following pipeline finds 10 formulas for which
ltl3ba [3] produces a deterministic Büchi automaton, but ltl2ba [18] does not.
% randltl -n -1 a b |

ltldo ltl3ba --name=%f | autfilt --is-deterministic --stats=%M |

ltldo ltl2ba --name=%f | autfilt -v --is-deterministic --stats=%M -n 10

This creates an infinite (-n -1) stream of LTL formulas over atomic propositions a
and b, translates them using ltl3ba, retains those that were translated to deterministic
automata, translate them with ltl2ba and retains the non-deterministic ones (-v inverts
matches, as with grep). With the final -n 10, the pipeline is eventually killed once the
last command has found 10 matches.

The autfilt tool provides access to other ω-automata algorithms such as prod-
uct, emptiness checks, language inclusion or equivalence, language-preserving sim-
plifications of automata, refinement of labels [9], strength-based decompositions [32],
SAT-based minimization of deterministic automata with arbitrary input and output ac-
ceptance [2], or conversion from transition-based acceptance to state-based acceptance.
Most algorithms work with arbitrary acceptance conditions, except a few (emptiness
checks, determinization) that currently have to reduce the acceptance conditions upfront.

3 The Python Interface

Similar tasks can be performed in a more “algorithm-friendly” environment using the
Python interface. Combined with the IPython/Jupyter notebook [29] (a web application
for interactive programming), this provides a nice environment for experiments, where
automata and formulas are automatically displayed. Figure 2 shows two examples that
we used in a practical lecture on model checking with students from EPITA.

The first example illustrates how LTL formulas can be parsed (spot.formula()),
and then translated (using translate()) into automata with transition-based general-
ized Büchi acceptance. Using product, negation, and emptiness check, a student can
define a procedure to test the equivalence of two LTL formulas and then use it to explore
her understanding of LTL.

The second example illustrates the classical automata-theoretic approach to explicit
LTL model checking [36]. Spot can read the shared-libraries used to represent state
spaces in the LTSmin project [20]. Those can be compiled from Promela models using
SpinS [35], or from DiVinE models using LTSmin’s modified version of DiVinE 2 [7]. In
this example the %%dve keyword is used to specify a short DiVinE model called adding
(this model comes from the BEEM database [28]) which is immediately compiled and

http://www.epita.fr/

Fig. 2. Two examples of using the Python bindings of Spot in the Jupyter notebook.

loaded as a shared library. Printing the adding Python variable reveals that it is an
object using the LTSmin interface, and lists the variables that can be used to build atomic
proposition on this model. A Kripke structure can be instantiated from the model by
providing a list of atomic propositions that should be valuated on each state. Displaying
large Kripke structures is of course not very practical: by default Spot displays only the
50 first states (this can be changed using for instance the max states argument in the
first cell). With this interface, we can now easily write a model check() procedure that
inputs a model and a formula, instanciates a Kripke structure from the model using all
the atomic propositions that appear in the formula, translates the negation of the formula
into an automaton, and tests the emptiness of the product between the Kripke structure
and this automaton. Note that otf product() performs an on-the-fly product: the
state-space and the product are constructed as needed by the emptiness check algorithm.

4 Model checkers built using Spot

At the C++ level, the interface with LTSmin demonstrated above wraps the LTSmin state-
space as a subclass of Spot’s Kripke structure class. This class basically just specifies
the initial state and how to find the successors of a state, therefore allowing on-the-fly
exploration. Model checkers like ITS-Tools [34] or Neco [16] have been implemented in
the same way (both have been recently updated to Spot 2.0).

References

1. S. Baarir and A. Duret-Lutz. Mechanizing the minimization of deterministic generalized
Büchi automata. In FORTE’14, vol. 8461 of LNCS, pp. 266–283. Springer, 2014.

2. S. Baarir and A. Duret-Lutz. SAT-based minimization of deterministic ω-automata. In
LPAR’15, vol. 9450 of LNCS, pp. 79–87. Springer, 2015.

3. T. Babiak, M. Křetı́nský, V. Řehák, and J. Strejček. LTL to Büchi automata translation: Fast
and more deterministic. In TACAS’12, vol. 7214 of LNCS, pp. 95–109. Springer, 2012.

4. T. Babiak, T. Badie, A. Duret-Lutz, M. Křetı́nský, and J. Strejček. Compositional approach to
suspension and other improvements to LTL translation. In SPIN’13, vol. 7976 of LNCS, pp.
81–98. Springer, 2013.

5. T. Babiak, F. Blahoudek, M. Křetı́nský, and J. Strejček. Effective translation of LTL to
deterministic Rabin automata: Beyond the (F, G)-fragment. In ATVA’13, vol. 8172 of LNCS,
pp. 24–39. Springer, 2013.

6. T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křetı́nský, D. Müller, D. Parker, and
J. Strejček. The Hanoi Omega-Automata format. In CAV’15, vol. 9206 of LNCS. Springer,
2015. See also http://adl.github.io/hoaf/.

7. J. Barnat, L. Brim, and P. Rockai. DiVinE 2.0: High-performance model checking. In HiBi’09,
pp. 31–32. IEEE Computer Society Press, 2009.

8. A. E. Ben Salem, A. Duret-Lutz, and F. Kordon. Model checking using generalized testing
automata. Transactions on Petri Nets and Other Models of Concurrency (ToPNoC VI), 7400:
94–112, 2012.

9. F. Blahoudek, A. Duret-Lutz, V. Rujbr, and J. Strejček. On refinement of Büchi automata for
explicit model checking. In SPIN’15, vol. 9232 of LNCS, pp. 66–83. Springer, 2015.

10. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, 35(8):677–691, 1986.

11. J.-M. Couvreur. On-the-fly verification of temporal logic. In FM’99, vol. 1708 of LNCS, pp.
253–271. Springer, 1999.

12. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks for general-
ized Büchi automata. In SPIN’05, vol. 3639 of LNCS, pp. 143–158. Springer, 2005.

13. A. Duret-Lutz. Manipulating LTL formulas using Spot 1.0. In ATVA’13, vol. 8172 of LNCS,
pp. 442–445. Springer, 2013.

14. A. Duret-Lutz. LTL translation improvements in Spot 1.0. Int. J. on Critical Computer-Based
Systems, 5(1/2):31–54, 2014.

15. A. Duret-Lutz and D. Poitrenaud. SPOT: an Extensible Model Checking Library using
Transition-based Generalized Büchi Automata. In MASCOTS’04, pp. 76–83. IEEE Computer
Society Press, 2004.

16. Ł. Fronc and A. Duret-Lutz. LTL model checking with Neco. In ATVA’13, vol. 8172
of LNCS, pp. 451–454. Springer, 2013. Code moved to https://github.com/Lvyn/
neco-net-compiler.

17. E. R. Gansner and S. C. North. An open graph visualization system and its applications to
software engineering. Software – Practice and Experience, 30(11):1203–1233, 2000.

18. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV’01, vol. 2102 of
LNCS, pp. 53–65. Springer, 2001.

19. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,
2003.

20. G. Kant, A. Laarman, J. Meijer, J. Pol, S. Blom, and T. Dijk. LTSmin: High-performance
language-independent model checking. In TACAS’15, vol. 9035 of LNCS, pp. 692–707.
Springer, 2015.

http://adl.github.io/hoaf/
https://github.com/Lvyn/neco-net-compiler
https://github.com/Lvyn/neco-net-compiler

21. J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas of linear
temporal logic. Theoretical Computer Science, 363(2):182–195, 2006.

22. J. Klein and C. Baier. On-the-fly stuttering in the construction of deterministic ω-automata.
In CIAA’07, vol. 4783 of LNCS, pp. 51–61. Springer, 2007.

23. Z. Komárková and J. Křetı́nský. Rabinizer 3: Safraless translation of LTL to small determinis-
tic automata. In ATVA’14, vol. 8837 of LNCS, pp. 235–241. Springer, 2014.

24. J. Křetı́nský and J. Esparza. Deterministic automata for the (F,G)-fragment of LTL. In
CAV’12, vol. 7358 of LNCS, pp. 7–22. Springer, 2012.

25. S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-vis deterministic
Büchi automata. In ISAAC’94, vol. 834 of LNCS, pp. 378–386. Springer, 1994.

26. J. Lind-Nielsen and H. Cohen. BuDDy: Binary Decision Diagram package. Release 2.4,
2014. https://sourceforge.net/projects/buddy/.

27. T. Michaud and A. Duret-Lutz. Practical stutter-invariance checks for ω-regular languages.
In SPIN’15, vol. 9232 of LNCS, pp. 84–101. Springer, 2015.

28. R. Pelánek. BEEM: benchmarks for explicit model checkers. In Proc. of the 14th international
SPIN conference on Model checking software, LNCS, pp. 263–267. Springer, 2007.

29. F. Pérez and B. E. Granger. IPython: a system for interactive scientific computing. Computing
in Science and Engineering, 9(3):21–29, 2007. See also http://ipython.org.

30. R. Redziejowski. An improved construction of deterministic omega-automaton using deriva-
tives. Fundamenta Informaticae, 119(3-4):393–496, 2012.

31. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Three SCC-based emptiness checks
for generalized Büchi automata. In LPAR’13, vol. 8312 of LNCS, pp. 668–682. Springer,
2013.

32. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Strength-based decomposition of
the property Büchi automaton for faster model checking. In TACAS’13, vol. 7795 of LNCS,
pp. 580–593. Springer, 2013.

33. H. Tauriainen and K. Heljanko. Testing LTL formula translation into Büchi automata. STTT,
4(1):57–70, 2002.

34. Y. Thierry-Mieg. Symbolic model-checking using ITS-tools. In TACAS’15, pp. 231–237.
Springer, 2015.

35. F. I. van der Berg and A. W. Laarman. SpinS: Extending LTSmin with Promela through
SpinJa. In PDMC’12, vol. 296 of ENTCS, pp. 95–105. Elsevier, 2012.

36. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff’94, vol. 1043
of LNCS, pp. 238–266. Springer, 1996.

https://sourceforge.net/projects/buddy/
http://ipython.org

	Spot 2.0 — a framework forLTL and -automata manipulation

