
Simplifying LTL Model Checking
Given Prior Knowledge

Alexandre Duret-Lutz3 ID , Denis Poitrenaud1,2 ID , Yann Thierry-Mieg�1 ID

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
denis.poitrenaud@lip6.fr, yann.thierry-mieg@lip6.fr

2 Université Paris Cité, F-75006 Paris, France
3 EPITA, LRE, Le Kremlin-Bicêtre, France

adl@lrde.epita.fr

Abstract. We consider the problem of the verification of an LTL specification 𝜑
on a system 𝑆 given some prior knowledge 𝐾 , an LTL formula that 𝑆 is known to
satisfy. The automata-theoretic approach to LTL model checking is implemented
as an emptiness check of the product 𝑆 ⊗ 𝐴¬𝜑 where 𝐴¬𝜑 is an automaton for the
negation of the property. We propose new operations that simplify an automaton
𝐴¬𝜑 given some knowledge automaton 𝐴𝐾 , to produce an automaton 𝐵 that can
be used instead of 𝐴¬𝜑 for more efficient model checking.
Our evaluation of these operations on a large benchmark derived from the MCC’22
competition shows that even with simple knowledge, half of the problems can be
definitely answered without running an LTL model checker, and the remaining
problems can be simplified significantly.

1 Introduction — Knowledge is Power

LTL model checking consists in verifying whether all infinite executions of a system
𝑆 satisfy an LTL formula 𝜑, i.e., ℒ(𝑆) ⊆ ℒ(𝜑). In this case we write 𝑆 |= 𝜑. In
the automata-theoretic approach to model checking [47], this inclusion test is usually
implemented as an emptiness check of the product of two automata: ℒ(𝑆 ⊗ 𝐴¬𝜑) = ∅,
where 𝐴¬𝜑 represents the negation of 𝜑.

The premise of this paper is that we assume to have some additional knowledge
𝐾 about 𝑆. In particular, the knowledge we consider are over-approximations of the
system: ℒ(𝑆) ⊆ ℒ(𝐾). For instance 𝐾 might be an LTL formula that has already been
proven on 𝑆. Of course if 𝐾 implies 𝜑, i.e. ℒ(𝐾) ⊆ ℒ(𝜑), then 𝜑 holds as well since
ℒ(𝑆) ⊆ ℒ(𝐾). And if ℒ(𝐾) ⊆ ℒ(¬𝜑), any run of the system is a counter-example.

But if none of these basic implications hold, we can still benefit from prior knowledge.
We show that verifying 𝑆 |= 𝜑 given 𝐾 is equivalent to checking ℒ(𝑆 ⊗ 𝐵) = ∅ for an
automaton 𝐵 that is simpler than 𝐴¬𝜑 , hopefully allowing a faster exploration of 𝑆 ⊗ 𝐵.

As an example the automaton 𝐴¬𝜑 that is on the left of Figure 3 (page 8) can be
replaced by the automaton 𝐵 that is on the right of the same figure. This new automaton
is smaller, uses fewer atomic propositions, is now deterministic, and needs fewer accep-
tance sets because it is now a terminal automaton [9,28]. Using this automaton 𝐵 should
therefore simplify the job of a model checker.

https://orcid.org/0000-0002-6623-2512
https://orcid.org/0009-0007-5038-7804
https://orcid.org/0000-0001-7775-1978

2 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

This paper is organized as follows. In Section 2 we formalize notion of 𝑆 |= 𝜑 given
𝐾 from the point of view of languages, and discuss possible goals when transposing this
on automata. In Section 3 we pose useful definitions, then Section 4 proposes basic and
Section 5 advanced automata operations that aim to simplify 𝐴¬𝜑 based on some given
knowledge 𝐾 . In Section 6 we propose costlier automata operations that aim to modify
𝐴¬𝜑 to make it stutter-insensitive, within the bounds allowed by some knowledge 𝐾 .
Finally, in Section 8 we evaluate the above techniques on a large third-party benchmark
provided by the model checking contest [26].

2 Bounding Languages “Given That...”

In this section, we focus on providing justification for our approach at the language level.
The language ℒ(X) of a system or property 𝑋 is a set of infinite words over an alphabet
Σ, ℒ(𝑋) ⊆ Σ𝜔 . We denote ℒ(𝑋) = Σ𝜔 \ℒ(𝑋) the complement of the language of 𝑋 .

A system 𝑆 satisfies property 𝜑, denoted 𝑆 |= 𝜑 if and only if the language ℒ(𝑆) of
the system is a subset of the property language ℒ(𝜑), i.e., ℒ(𝑆) ⊆ ℒ(𝜑). When 𝜑 is an
LTL formula, the classical automaton-based approach [47] is to testℒ(𝑆)∩ℒ(¬𝜑) = ∅,
i.e., perform an emptiness check with the language of the negated property.

In the following, we assume that ℒ(𝑆) ≠ ∅ since the empty system would satisfy
any property and its negation.

Now, consider a property 𝐾 (a knowledge) such that it has already been established
that 𝑆 |= 𝐾 , i.e., we know that ℒ(𝑆) ⊆ ℒ(𝐾). This a priori knowledge gives us some
degrees of freedom when testing whether 𝑆 satisfies a new property 𝜑. Indeed, we
already know that words outside ℒ(𝐾) are definitely not part of ℒ(𝑆).

The main intuition is given by Fig. 1. Since ℒ(𝑆) ⊆ ℒ(𝐾), it is safe to replace the
test ℒ(𝑆) ∩ℒ(¬𝜑) = ∅ by a test ℒ(𝑆) ∩ℒ(𝐵) = ∅ where ℒ(𝐵) is built from ℒ(¬𝜑)
by either removing or including words of ℒ(𝐾). Indeed, words in ℒ(𝐾) are not part of
the system, so they cannot belong to ℒ(𝑆) ∩ℒ(¬𝜑).

This leads to the following theorem whose proof follows immediately from Figure 1.

Theorem 1. Let 𝑆 be a system, and 𝐾 a property such that ℒ(𝑆) ⊆ ℒ(𝐾). For
any property 𝜑, we can define a ℒ(𝐵) such that ℒ(𝑆) ∩ ℒ(¬𝜑) = ∅ if and only if
ℒ(𝑆) ∩ℒ(𝐵) = ∅, by choosing ℒ(𝐵) between the following bounds:

ℒ(¬𝜑) ∩ℒ(𝐾) ⊆ ℒ(𝐵) ⊆ ℒ(¬𝜑) ∪ℒ(𝐾)

The lower bound ℒ(¬𝜑) ∩ℒ(𝐾) is called the restriction of ¬𝜑: it is constructed
fromℒ(¬𝜑) by removing words fromℒ(𝐾) (Fig. 1a). The upper boundℒ(¬𝜑)∪ℒ(𝐾)
is the relaxation of ¬𝜑, constructed from ℒ(¬𝜑) by adding words from ℒ(𝐾) (Fig. 1c).

The above theorem gives us more freedom in the automata-theoretic approach to
LTL model checking. In this context, both the property 𝜑 and the knowledge 𝐾 are
expressed as linear-time temporal logic (LTL) formulas which can be converted into
automata over infinite words.

Thus, model checking 𝑆 |= 𝜑 is implemented as ℒ(𝑆 ⊗ 𝐴¬𝜑) = ∅ where 𝐴¬𝜑 is
an automaton for ¬𝜑, and ⊗ is the product of automata [47]. Here, we want to use

Simplifying LTL Model Checking Given Prior Knowledge 3

ℒ(¬𝜑)

ℒ(𝑆)
ℒ(𝐾)ℒ(𝐵)

(a) The most restricted ℒ(𝐵)
that can be constructed from 𝐾 ,
ℒ(𝐵) = ℒ(¬𝜑) ∩ℒ(𝐾)

ℒ(𝐵)
=

ℒ(¬𝜑)

ℒ(𝐾)
ℒ(𝑆)

(b) Classic approach simply
using the language of ¬𝜑,
ℒ(𝐵) = ℒ(¬𝜑).

ℒ(¬𝜑)

ℒ(𝐾)

ℒ(𝐵)

ℒ(𝑆)

(c) The most relaxedℒ(𝐵) that
can be constructed given 𝐾 ,
ℒ(𝐵) = ℒ(¬𝜑) ∪ℒ(𝐾).

Fig. 1: The outside box represents all words in Σ𝜔 . Each language is depicted as an
ellipse, with the language of the system ℒ(𝑆) inside the knowledge ℒ(𝐾) but we do
not know whether the system language overlaps the negated property language ℒ(¬𝜑).
The language ℒ(𝐵) represented in magenta can be chosen anywhere between these
extremes to replace ℒ(¬𝜑) in the model-checking procedure.

Theorem 1 to find a simpler automaton 𝐵 such that model checking with ℒ(𝑆 ⊗ 𝐵) = ∅
is more efficient. Contrary to intuition, choosing the automaton 𝐵 with the smallest
language might be counter-productive, because a small language does not necessarily
equate to a small automaton.

To make model checking more efficient, we target the following goals:

smaller or more deterministic Reducing the size of 𝐵, or making it more deterministic
can often reduce the size of the product 𝑆 ⊗ 𝐵. (Blahoudek et al. [4] suggest that
contrary to previous measurements [39], “smaller” is more important than “more
deterministic” for model checking.)

simpler strength class The emptiness check algorithms can be simplified if 𝐵 belongs
to simpler classes of automata, such as weak, or terminal automata [6,9,35].

stutter-insensitive For concurrent systems, many partial-order reductions (POR) tech-
niques [32,46,21] and structural reductions [22,44] can be used when it is known
that 𝐵 is stutter-insensitive.

fewer atomic proposition checks Reducing the number of atomic propositions and the
syntactic complexity of the formulas labeling the edges of 𝐵 can reduce the time
required to build 𝑆 ⊗ 𝐵 in explicit model checking [5], and reducing the set of
observed propositions also helps the aforementioned POR based techniques.

The techniques we will propose mainly attempt to reduce the size of the automata,
their number of atomic propositions, and attempt to make them stutter-insensitive. Any
determinism improvement or strength reduction is a welcome side effect.

4 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

3 Simplifying Automata “Given That...”

We now turn the language bounds of Section 2 into automata constructions. We use a
variant of Büchi automata called transition-based generalized Büchi automata (TGBA).
This variant uses accepting transitions instead of accepting states. Additionally, the
acceptance condition is generalized: a run has to visit multiple accepting sets of tran-
sitions infinitely often. This variant is particularly compact to express weak fairness
conditions [11], and it also makes our subsequent definitions easier without loss of
generality.

3.1 Definitions

The following definitions are freely adapted from the literature.
Let B = {⊥,⊤} represent the Boolean set, and let AP represent a set of Boolean

atomic propositions. A valuation ℓ is a function from AP to B. The set of valuations is
denoted BAP. The set of Boolean formulas over AP is denoted B(AP). In the following,
we consider words that are infinite sequences of valuations, therefore the alphabet Σ of
Section 2 is Σ = BAP. For an atomic proposition 𝑎 ∈ AP we use 𝑎̄ or ¬𝑎 interchangeably
to represent its negation.

Definition 1 (TGBA). A Transition-based Generalized Büchi Automaton (TGBA), is a
structure 𝐴 = ⟨AP, 𝑄, 𝜄,Acc, 𝛿⟩ where

– AP is a finite set of Boolean atomic propositions,
– 𝑄 is a finite set of states,
– 𝜄 ∈ 𝑄 is the initial state,
– Acc is a finite set of acceptance marks (denoted 0 , 1 , 2 , etc.)
– 𝛿 ⊆ 𝑄 ×B(AP) × 2Acc ×𝑄 is the transition relation where we use 𝑡 = 𝑞

𝑓 ,𝑎
−−−→ 𝑞′ to

denote an element 𝑡 ∈ 𝛿, 𝑓 is a Boolean formula over AP that we call the label of
the transition and 𝑎 is a set of acceptance marks.

A run of 𝐴 on an infinite word 𝑤 = ℓ1ℓ2ℓ3 . . . ∈ (BAP)𝜔 is an infinite sequence of
connected transitions 𝜌 = 𝑞1

𝑓1 ,𝑎1−−−−→ 𝑞2
𝑓2 ,𝑎2−−−−→ 𝑞3

𝑓3 ,𝑎3−−−−→ 𝑞4 . . . ∈ 𝛿𝜔 such that 𝑞1 = 𝜄

and for all 𝑖, ℓ𝑖 ⇒ 𝑓𝑖 . (Recall that ℓ𝑖 is a valuation of all atomic propositions, therefore
a conjunction of atomic propositions, in negative or positive form, but 𝑓𝑖 is a Boolean
formula.) A run is accepting iff for each mark 𝑚 ∈ Acc there are infinitely many 𝑖 such
that 𝑚 ∈ 𝑎𝑖 .

The language of 𝐴, denoted ℒ(𝐴), is the set of all infinite words 𝑤 such that there
exists an accepting run of 𝐴 on 𝑤.

Theorem 2 (TGBA for a formula [11,19,20]). Given an LTL formula 𝜑 over AP, one
can build a TGBA 𝐴𝜑 with 𝑂 (2 |𝜑 |) states such that ℒ(𝐴𝜑) = ℒ(𝜑).

For instance the leftmost automaton of Figure 3 (page 8) is a TGBA for F(𝑝 ∧ 𝑟) ∨
G((F𝑞) ∨ (F𝑞)). An accepting run has to encounter marks 0 and 1 infinitely often.
Therefore, any run reaching state 1 is accepting, and any run reaching state 2 is accepting

Simplifying LTL Model Checking Given Prior Knowledge 5

if both 𝑞 and 𝑞 hold infinitely often. Note that 𝐴𝜑 is not unique. There is a vast literature
on techniques for building and simplifying automata [15,42,16,18,2,13, ...].

An obvious optimization is to discard the useless parts of the automaton by trimming
it. The trim of an automaton 𝐴, denoted Trim(𝐴), is the restriction of 𝐴 to the transitions
and states that appear in at least one accepting run of 𝐴. Doing so preserves the language
of 𝐴. This operation can be done in linear time by studying the strongly connected
components of the automaton [15].

The intersection of the languages of two automata 𝐴1 and 𝐴2 is represented by a
product 𝐴1 ⊗ 𝐴2 such that ℒ(𝐴1 ⊗ 𝐴2) = ℒ(𝐴1) ∩ℒ(𝐴2).

Definition 2 (Product of TGBA). Given two automata 𝐴1 = ⟨AP1, 𝑄1, 𝜄1,Acc1, 𝛿1⟩
and 𝐴2 = ⟨AP2, 𝑄2, 𝜄2,Acc2, 𝛿2⟩, where Acc1 ∩ Acc2 = ∅, the product 𝐴1 ⊗ 𝐴2 is the
automaton ⟨AP, 𝑄, 𝜄,Acc, 𝛿⟩ where:

– AP = AP1 ∪ AP2
– 𝑄 = 𝑄1 ×𝑄2
– 𝜄 = (𝜄1, 𝜄2)
– Acc = Acc1 ∪ Acc2.

– 𝛿 =

{
(𝑞1, 𝑞2)

𝑓1∧ 𝑓2 ,𝑎1∪𝑎2−−−−−−−−−−→ (𝑞′1, 𝑞
′
2)

���� 𝑞1
𝑓1 ,𝑎1−−−−→ 𝑞′1 ∈ 𝛿1, 𝑞2

𝑓2 ,𝑎2−−−−→ 𝑞′2 ∈ 𝛿2

}
For instance Figure 2 shows in the bottom right the product 𝐴¬𝜑 ⊗ 𝐴𝐾 of the two

surrounding automata. The transitions that would be removed by Trim are dashed.
One can also define the sum of two TGBA 𝐴1⊕𝐴2 such thatℒ(𝐴1⊕𝐴2) = ℒ(𝐴1)∪

ℒ(𝐴2), and the complement 𝐴 such that ℒ(𝐴) = (BAP)𝜔 \ℒ(𝐴). We omit the precise
definition of these operations. While sum and product are cheap operations (at most
quadratic in the size of the automata), the complement is worse than exponential [48,38]
so it is often desirable to avoid it (e.g., we prefer to compute 𝐴¬𝜑 instead of 𝐴𝜑).

4 Basic Strategies

The simplest way to apply Theorem 1 is to build automata for the most restricted and
the most relaxed languages pictured in Figure 1. Consider the following two definitions:

min |𝐾 (𝐴¬𝜑) = 𝐴¬𝜑 ⊗ 𝐴𝐾 (1)
max |𝐾 (𝐴¬𝜑) = 𝐴¬𝜑 ⊕ 𝐴¬𝐾 (2)

When 𝐵 is chosen as min |𝐾 (𝐴¬𝜑), we are using the most restricted language of
Figure 1a. If 𝐵 is max |𝐾 (𝐴¬𝜑) we are using the most relaxed language of Figure 1c.

Note that if ℒ(min |𝐾 (𝐴¬𝜑)) = ∅, then it follows from the definition that ℒ(𝐾) ⊆
ℒ(𝜑), and sinceℒ(𝑆) ⊆ ℒ(𝐾) we have 𝑆 |= 𝜑. Dually, ifℒ(max |𝐾 (𝐴¬𝜑)) = (BAP)𝜔 ,
then ℒ(𝐾) ⊆ (¬𝜑), which means that 𝑆 |= ¬𝜑 (i.e., every run of 𝑆 is a counterexample
of 𝜑) and therefore 𝑆 ̸ |= 𝜑 (because 𝑆 is nonempty).

While the emptiness check of a TGBA ℒ(𝐴) = ∅ can be performed in linear
time [11], the universality test ℒ(𝐴) = (BAP)𝜔 requires exponential time [17]. Fortu-
nately the universality test ℒ(max |𝐾 (𝐴¬𝜑)) = (BAP)𝜔 can be avoided by replacing it
with ℒ(min |𝐾 (𝐴𝜑)) = ∅ provided a formula for 𝜑 is known.

6 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

Moreover, the automata products and sums in the above min |𝐾 and max |𝐾 construc-
tions can also be replaced by logical operations on formulas before translating them to
TGBA, as in 𝐴¬𝜑∧𝐾 and 𝐴¬𝜑∨¬𝐾 respectively.

In the case where the min and max automata are neither empty nor universal, their
sizes are unlikely to be smaller than the original 𝐴¬𝜑 . In a way, using these automata
for model checking is similar to asking the model checker to prove 𝐾 in addition to ¬𝜑.
As stated in Section 2, we would prefer to select a 𝐵 that is “simpler” than 𝐴¬𝜑 .

The knowledge 𝐾 could contain atomic propositions that do not appear in ¬𝜑. Let
𝑃 be the set of atomic propositions that appear in 𝐾 but not in 𝜑. To avoid introducing
needless atomic propositions in 𝑃, we suggest to existentially quantify them. This
quantification can be done precisely on the automaton 𝐴𝐾 by existentially quantifying 𝑃
from all labels, or it can be over approximated on the LTL formula 𝐾 by quantifying 𝑃
from all its Boolean subformulas (considered individually). We note𝑄𝐸 (𝑃, 𝐾) the latter
operation. To show that this is an over-approximation, consider the unsatisfiable formula
𝐾 = X(𝑎 ∧ 𝑏) ∧ X(𝑎̄ ∧ 𝑏) and 𝑃 = {𝑎}. We have (∃𝑎, 𝑎 ∧ 𝑏) = 𝑏 and (∃𝑎, 𝑎̄ ∧ 𝑏) = 𝑏,
therefore, 𝑄𝐸 (𝑃, 𝐾) = X(𝑏) ∧ X(𝑏) = X(𝑏) which is satisfiable.

Assuming 𝑃 contains the atomic propositions of 𝐾 that are not in 𝜑, let us introduce
the following notations:

min∃
|𝐾 (¬𝜑) = 𝐴(¬𝜑)∧𝑄𝐸 (𝑃,𝐾) (3)

max∃
|𝐾 (¬𝜑) = 𝐴(¬𝜑)∨¬𝑄𝐸 (𝑃,𝐾) (4)

5 Using Transition-Based Boolean Bounds on Labels

In this section, we investigate how to leverage theorem 1 so that given an automaton for
a knowledge 𝐾 , we rewrite the automaton 𝐴¬𝜑 into a simpler automaton 𝐵.

Simplicity here is measured syntactically on the automaton; we want an automaton
that has fewer states, fewer transitions, fewer atomic propositions, fewer acceptance
marks, and simpler (smaller) Boolean formulas labeling the transitions of the automaton.

To achieve this, we propose to compute a set of Boolean bounds for each transition
of the automaton 𝐴¬𝜑 . These bounds enable more flexibility in the selection of transition
labels by providing the most restrictive and the most relaxed Boolean formulas that can
label each transition.

Minato’s algorithm [30] is a recursive way to rewrite a Boolean formula as a prime-
irredundant cover, which is very compact in general. The algorithm works recursively
using formulas in three-valued logic, and Minato [30, Section 4.4] suggests an imple-
mentation of this algorithm using Binary Decision Diagrams [8] where a three-valued
formula is simply bounded using two Boolean functions: (𝑓low, 𝑓high) and the algorithm
generates an irredundant sum-of-product 𝑓 ′ such that 𝑓low ⇒ 𝑓 ′ ⇒ 𝑓high. In other
words, 𝑓 ′ is generated as a disjunction of conjunctions of literals, such that no conjunct
is uncessary, and no literal can be removed from any conjunct. We use this algorithm to
simplify transition labels, as it removes literals that are unnecessary to stay within those
bounds.

In Sections 5.1 and 5.2, we introduce strategies to compute Boolean lower and upper
bounds for each label of the automaton. Then, in Section 5.3, we show how to simplify
transition labels by using Minato’s algorithm on the computed bounds. This approach

Simplifying LTL Model Checking Given Prior Knowledge 7

preserves the transition structure of the automaton. It can sometimes remove transitions
(if its label becomes ⊥), it can remove states (when they become unreachable), it can
reduce the number of atomic propositions used, and it generally simplifies the expression
of the labels. So, contrary to the min∃

|𝐾 (¬𝜑) and max∃
|𝐾 (¬𝜑) approaches presented in

Section 4, this approach always produces a simpler automaton.

5.1 Boolean upper bounds

The first step consists in realizing that since 𝑆 |= 𝐾 , in every state of 𝐴𝐾 we are over-
approximating the state the system 𝑆 might be in. Some paths in 𝐴𝐾 might not be
realizable by 𝑆, but the system definitely cannot do anything that 𝐾 does not allow.

We start by building the synchronized product 𝐴¬𝜑 ⊗ 𝐴𝐾 in which every state is a
pair (𝑞, 𝑘). We can then apply the Trim operation to discard any transition that does not
belong to an accepting Strongly Connected Component (SCC) or to the prefix of one,
and then discard any state of the product unreachable from the initial state.

Now consider for a given state 𝑞 of 𝐴¬𝜑 the set of states 𝑄𝑞 of the knowledge
automaton 𝐴𝐾 in correspondence with 𝑞. The state of the system 𝑆 in this set of
states can be over-approximated as the logical disjunction of the formulas labeling any
transition that is outgoing from any state in 𝑄𝑞 .

Definition 3 (Knowledge-based state guarantee). Given two automata 𝐴¬𝜑 = ⟨AP, 𝑄,
𝜄,Acc, 𝛿⟩, and 𝐴𝐾 = ⟨AP, 𝑄𝐾 , 𝜄𝐾 , 𝛿𝐾 ,Acc𝐾 ⟩, let Trim(𝐴¬𝜑 ⊗ 𝐴𝐾) = ⟨AP, 𝑄𝑃 , 𝜄𝑃 ,
Acc𝑃 , 𝛿𝑃⟩ be the trim product of 𝐴¬𝜑 and 𝐴𝐾 .

For any state 𝑞 ∈ 𝑄, let 𝑄𝑞 ⊆ 𝑄𝐾 denotes the subset of states of 𝐴𝐾 that can
synchronize with 𝑞 in the product:

𝑄𝑞 = {𝑘 ∈ 𝑄𝐾 | (𝑞, 𝑘) ∈ 𝑄𝑃}

From this set of states, we define the state guarantee in state 𝑞 :

SG(𝑞) =
∨
𝑘∈𝑄𝑞

∨
𝑘
𝑓 ,𝑎−−−→𝑘′∈ 𝛿𝐾

𝑓

that represents the disjunction of all transition labels of 𝐴𝐾 that leave a state of 𝑄𝑞 .

In the trim product Trim(𝐴¬𝜑 ⊗ 𝐴𝐾), consider a transition (𝑞, 𝑘)
𝑓∧ 𝑓𝑘 ,𝑎∪𝑎𝑘−−−−−−−−−→ (𝑞′, 𝑘 ′)

that was built as a product of 𝑞
𝑓 ,𝑎
−−−→ 𝑞′ and 𝑘

𝑓𝑘 ,𝑎𝑘−−−−→ 𝑘 ′. Then it is guaranteed that
𝑓𝑘 ⇒ SG(𝑞) by construction. Hence, when the component 𝐴¬𝜑 of the product is known
to be in 𝑞, this SG(𝑞) is an over approximation of the labels 𝑓𝑘 that the transitions in
component 𝐴𝐾 can satisfy.

Since 𝐴𝐾 overapproximates the system 𝑆, it is also true that SG(𝑞) will overapprox-
imate the behaviors of the states of 𝑆 that can synchronize with 𝑞. This state guarantee
formula thus provides an upper bound or over approximation of the system state when
reaching 𝑞; therefore, for any transition 𝑞

𝑓 ,𝑎
−−−→ 𝑞′ ∈ 𝛿, relaxing the transition label 𝑓 to

accept 𝑓 ∨ ¬SG(𝑞) would not modify the language of the product with the system 𝑆,
since the system cannot satisfy ¬SG(𝑞) in this state of the product.

Figure 2 shows examples of computation of SG.

8 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

𝑞1 𝑞0 𝑞2

𝑘0 𝑞1, 𝑘0 𝑞0, 𝑘0 𝑞2, 𝑘0

𝑘1 𝑞1, 𝑘1 𝑞0, 𝑘1 𝑘2, 𝑞1

𝑎 ∧ 𝑐 𝑎̄ ∨ 𝑐

⊤
0 1

𝑎̄ ∨ 𝑐 𝑏
0

𝑏̄1

𝑏 ∧ 𝑐

𝑐

𝑏 ∧ 𝑐
2

𝑎 ∧ 𝑐 𝑎̄ ∧ 𝑐

𝑎̄ ∧ 𝑐

𝑐

0 1
𝑏 ∧ 𝑐
0

𝑏̄ ∧ 𝑐1

𝑏 ∧ 𝑐

0
12

𝑎̄ ∧ 𝑏 ∧ 𝑐
2

𝑏 ∧ 𝑐
02

𝑏 ∧ 𝑐 𝑎̄ ∧ 𝑏 ∧ 𝑐 𝑏 ∧ 𝑐

𝑎 ∧ 𝑏 ∧ 𝑐 𝑎̄ ∧ 𝑏 ∧ 𝑐
𝑎 ∧

𝑏 ∧
𝑐

𝑎 ∧
𝑏 ∧
𝑐

(𝐴¬𝜑)

(𝐴𝐾) (𝐴¬𝜑 ⊗ 𝐴𝐾)

Fig. 2: Example of product of 𝐴¬𝜑 ⊗ 𝐴𝐾 for ¬𝜑 = F(𝑎 ∧ 𝑐) ∨ G((F𝑏) ∧ (F𝑏̄)) and
𝐾 = FG(𝑏) ∧ G(𝑐). The dashed transitions are those removed by Trim. We have
SG(𝑞0) = SG(𝑞1) = (𝑐) ∨ (𝑏 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) = 𝑐 because these two states can be
synchronized with all the states of 𝐴𝐾 , therefore their state guarantee is the disjunction
of all labels of 𝐴𝐾 . This result indicates that when the system is synchronized with
state 𝑞0, it will always satisfy 𝑐. We have TG(𝑞1

⊤, 0 1−−−−→ 𝑞1) = (𝑐) ∨ (𝑏 ∧ 𝑐) = 𝑐,
which indicates that when a transition of the system is synchronized with this self-loop,
it will always satisfy 𝑐. Finally, TG(𝑞0

𝑎̄∨𝑐̄,∅−−−−−→ 𝑞2) = ⊥ because the only transition
synchronizing with this one was trimmed, showing that this transition is not needed.

Fig. 3: Use of Spot in a Jupyter notebook to integrate some knowledge 𝐾 = FG(𝑏) ∧
G(𝑐) into the automaton for ¬𝜑 = F(𝑎 ∧ 𝑐) ∨ G((F𝑏) ∧ (F𝑏̄)). Note that this is the
same example as Figure 2 where the construction of the bounds is explained in detail.
𝐴¬𝜑 is on the left. The integration of knowledge 𝐾 is represented as an intermediate
“bounded automaton” in which each transition is bounded according to Theorem 3
(second automaton). Applying Minato’s algorithm gives the third automaton, which can
be further simplified to the rightmost automaton reducing the problem to verification of
F𝑎. Note that Spot’s notations differ slightly from those used in the paper, for instance
0, 1, and !a|!c stand for ⊥, ⊤ and 𝑎̄ ∨ 𝑐 respectively.

Simplifying LTL Model Checking Given Prior Knowledge 9

5.2 Boolean lower bounds

Let us look at a way to restrict a transition label of 𝐴¬𝜑 without limiting the ways in
which the system can synchronize with this transition. For this purpose, we introduce
TG(𝑡) the transition guarantee of a transition 𝑡 = 𝑞

𝑓 ,𝑎
−−−→ 𝑞′ of 𝐴¬𝜑 , as the disjunction

of all labels of transitions of 𝐾 that synchronize with 𝑡 in the trim product.

Definition 4 (Knowledge-based transition guarantee). Using the same automata as
in Definition 3, for any transition 𝑡 = 𝑞

𝑓 ,𝑎
−−−→ 𝑞′ ∈ 𝛿, we consider the set of formulas

𝐾𝑡 = { 𝑓𝑘 | (𝑞, 𝑘)
𝑓∧ 𝑓𝑘 ,𝑎∪𝑎𝑘−−−−−−−−−→ (𝑞′, 𝑘 ′) ∈ 𝛿𝑃} that appear on transitions of 𝐴𝐾 that

synchronize with 𝑡 in the product. From the disjunction of this set of formulas, we define
the transition guarantee for transition 𝑡:

TG(𝑡) =
∨
𝑓𝑘 ∈𝐾𝑡

𝑓𝑘

Intuitively the label 𝑓 of 𝑡 can be restricted to 𝑓 ′ = 𝑓 ∧ TG(𝑡) since this formula
is already enough to match all labels of transitions of 𝐾 that would synchronize with 𝑡
in an accepted run. Hence, labeling 𝑡 with 𝑓 ′ is also enough to match all states of the
system 𝑆 that would synchronize with 𝑡 with its original label 𝑓 .

Figure 2 shows examples of computation of TG.

5.3 Using the bounds

Theorem 3. Using the same automata as in Definition 3, consider a transition 𝑡 =

𝑞
𝑓 ,𝑎
−−−→ 𝑞′ ∈ 𝛿, and let 𝐵 = ⟨AP, 𝑄, 𝜄,Acc, 𝛿 \ {𝑡} ∪ {𝑡′}⟩ be a copy of 𝐴¬𝜑 where 𝑡 has

been replaced by 𝑡′ = 𝑞
𝑓 ′ ,𝑎
−−−→ 𝑞′ where 𝑓 ′ ∈ B(AP) is any formula such that

𝑓 ∧ TG(𝑡)︸ ︷︷ ︸
lower bound

⇒ 𝑓 ′ ⇒ 𝑓 ∨ ¬SG(𝑞)︸ ︷︷ ︸
upper bound

Then ℒ(𝐵 ⊗ 𝐴𝐾) = ℒ(𝐴¬𝜑 ⊗ 𝐴𝐾)

For size reasons, the proof is in Appendix A.
Our implementation of this construction is an extension of Spot [14] in which

the Boolean bounds of Theorem 3 can be represented directly on the automaton. Fig-
ure 3 shows our implementation at work. Our knowledge bound integration function
spot.update bounds given can be called repeatedly to integrate multiple knowledge
incrementally, as we will discuss in Section 7.

To select a simple label compatible with the bounds, we apply Minato’s algo-
rithm [30] (introduced at the top of Section 5) to compute a simpler label 𝑓 ′ such that
𝑓 ∧ TG(𝑡) ⇒ 𝑓 ′ ⇒ 𝑓 ∨ ¬SG(𝑞). Note that when the lower bound is ⊥, Minato’s
algorithm will always return 𝑓 ′ = ⊥ (the transition can be removed), else if the upper
bound is ⊤, 𝑓 ′ = ⊤ will be returned.

If 𝐴 and 𝐾 are defined over different sets of atomic propositions, the result of
Theorem 3 might include atomic propositions from 𝐾 that were not in 𝐴, which is

10 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

Fig. 4: Use of Spot in a Jupyter notebook to integrate some trivial knowledge 𝐾 =

𝑎̄ (top right automaton) into the stutter-sensitive automaton for ¬𝜑 = XF(𝑎) (top-
left automaton) and turn it into a stutter-insensitive automata. Simplified automata for
sirestrict |𝐾 (𝐴) and sirelax |𝐾 (𝐴) are given on the bottom left and right respectively.

counterproductive. In this case, we simplify 𝐾 by existential quantification of the propo-
sitions that are not in 𝐴 to produce an automaton 𝐾𝑄𝐸 . The language of this automaton
contains ℒ(𝐾), therefore it also contains ℒ(𝑆) and it can still be used as a knowledge.
We denote BM |𝐾 (𝐴) the “Bounded by Minato” automaton, i.e., the automaton built
from 𝐴 and 𝐾 by applying Minato’s algorithm on the Boolean bounds computed by
Theorem 3 with existential quantification of the atomic propositions not in 𝐴.

6 Building Stutter-Insensitive Automata “Given that...”

When model checking a concurrent system 𝑆 against a formula 𝜑, several advanced and
very effective simplification techniques can be used when it is known that ℒ(𝐴¬𝜑) is
stutter-insensitive with reductions up to a factorial factor [32,46,21,22,44].

In this section, we consider the case where the language of 𝐴¬𝜑 is stutter-sensitive,
and, given a knowledge 𝐾 , we want to replace 𝐴¬𝜑 by an automaton 𝐵 whose language
is stutter-insensitive. Even if 𝐵 is “bigger” than 𝐴¬𝜑 , model checking might become
more efficient thanks to the aforementioned simplifications.

Given a word 𝑤, let [𝑤] be the set of stutter-equivalent words that can be obtained
from 𝑤 by finitely duplicating letters or removing repetitions.4 A language ℒ(𝐴) is
stutter-sensitive iff there exists at least one equivalence class [𝑤] that is only partly
covered by ℒ(𝐴), i.e., such that [𝑤] ∩ℒ(𝐴) ≠ ∅ and [𝑤] ∩ℒ(𝐴) ≠ ∅.

As an example, consider the automaton 𝐴XF𝑎 given that 𝐾 = 𝑎̄. Figure 4 shows
this example using automata. The knowledge provided here is very simple, but this
kind of effect could occur anywhere in the automaton, not just starting in the initial
state. Automaton 𝐴XF𝑎 is stutter-sensitive: it rejects the word 𝑤 = 𝑎𝑎̄𝑎̄𝑎̄ · · · , but it
accepts words starting with more than one 𝑎. However, notice 𝑤 is outside ℒ(𝐾), so
by Theorem 1, 𝑤 could be added to the language of 𝐵 to make it stutter-insensitive

4 [𝑤] is an equivalence class for the ∼lim relation of Peled et al. [33, Lemma 3].

Simplifying LTL Model Checking Given Prior Knowledge 11

(now accepting F𝑎), giving the bottom-right automaton of Figure 4. Another strategy
would be to remove all words in [𝑤] from 𝐵: since all these words all start by 𝑎, the
whole class [𝑤] is outside ℒ(𝐾). This second option, corresponding to the formula
G(𝑎)∨F(𝑎̄∧F𝑎) gives the bottom-left automaton of Figure 4. Note that on this example,
using the approach based on Minato’s algorithm described in Section 5.3 will only give
us bounds 𝑎̄...⊤ on the first transition of 𝐴XF𝑎, but since this transition is already labeled
by ⊤ it would not be changed.

As seen in this example, we propose two strategies to turn a stutter-sensitive au-
tomaton into a stutter-insensitive one. For each partly-covered equivalence class [𝑤],
the relaxing strategy consists in adding the rest of [𝑤] to ℒ(𝐴). Dually, the restrict-
ing strategy consists in removing [𝑤] from ℒ(𝐴). This is legitimated by Theorem 1
provided that the added or removed parts are outside the knowledge.

To realize these strategies on automata, let us equip ourselves with a function si(𝐴)
that returns an automaton 𝐴′ such that ℒ(𝐴′) is the smallest stutter-insensitive language
that contains ℒ(𝐴). Such an operation has already been defined for Büchi automata [23]
or TGBA [29]. Intuitively, it consists in two simple syntactic transformations: adding
shortcut edges to reduce stutter, and adding states to allow stuttering after traversing any
transition. The effect of this operation is that all classes [𝑤] partly covered by ℒ(𝐴) get
fully included into ℒ(si(𝐴)).

Additionally, let us define ss(𝐴) the stutter-sensitive part of 𝐴 as the automaton
that recognizes only the words 𝑤 ∈ ℒ(𝐴) such that [𝑤] ∩ ℒ(𝐴) ≠ ∅. While, to our
knowledge, this operation does not exist in the literature, it can be defined using si,
complement and product as follows:

ss(𝐴) = 𝐴 ⊗ si(si(𝐴) ⊗ 𝐴)

In the above formula, si(𝐴) ⊗ 𝐴 accepts exactly the words that should be added to ℒ(𝐴)
to make it stutter-invariant. Therefore, si(si(𝐴) ⊗ 𝐴) accepts all the words 𝑤 such that
[𝑤] is partly covered by 𝐴.

We now show how to realize our two strategies using these automata operations.

Theorem 4 (Stutter-Insensitive relaxation and restriction). Let 𝐴 be a stutter-sensitive
TGBA and 𝐾 be an LTL formula. We define the SI-relaxation and SI-restriction of 𝐴
given 𝐾 as follows.

sirelax |𝐾 (𝐴) =
{

si(𝐴) if ℒ(si(𝐴) ⊗ 𝐴 ⊗ 𝐴𝐾) = ∅
𝐴 else

sirestrict |𝐾 (𝐴) =
{
𝐴 ⊗ ss(𝐴) if ℒ(ss(𝐴) ⊗ 𝐴𝐾) = ∅
𝐴 else

Then ℒ(sirelax |𝐾 (𝐴) ⊗ 𝐴𝐾) = ℒ(sirestrict |𝐾 (𝐴) ⊗ 𝐴𝐾) = ℒ(𝐴 ⊗ 𝐴𝐾).

Proof. The proof follows from Theorem 1 and the fact that ℒ(ss(𝐴)) ⊆ ℒ(𝐴) ⊆
ℒ(si(𝐴)). Indeed, the above relaxation returns si(𝐴) if and only if the words added by
si (i.e. ℒ(si(𝐴) ⊗ 𝐴)) are outside ℒ(𝐾) (i.e., si(𝐴) ⊗ 𝐴 ⊗ 𝐴𝐾 has an empty language).
Similarly, the restriction removes from ℒ(𝐴) the words of ℒ(ss(𝐴)) if and only if they

12 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

are all outside of ℒ(𝐾). When the given knowledge does not allow adding or removing
those words, the original automaton is returned.5 ⊓⊔

Figure 4 shows stutter-insensitive automata obtained with these two constructions.
In practice the complement of 𝐴 (present in both strategies) can be avoided when

an LTL formula for 𝐴 is known. However, the complement of ss(𝐴), needed only for
sirestrict |𝐾 (𝐴) can be rather costly, especially considering the current definition of
ss(𝐴), which tends to create large automata. Fortunately, the latter complementation
need only be performed after it has been checked that the removed words are not part of
the knowledge. Our hope is therefore that any stutter-insensitive optimization performed
by the model checker will offset the costs incurred by the computation of sirestrict |𝐾 (𝐴).

7 Incremental Integration of Knowledge

In this section we show how to integrate knowledge when we know multiple facts about
the system. We also discuss some strategies to obtain cheap knowledge tailored to help
simplify a given property.

7.1 Working with a Knowledge Base

Previously, in Section 3–6, we discussed how to simplify 𝐴¬𝜑 given a single knowledge
𝐾 . We now assume that we have multiple knowledge facts 𝐴𝐾1 , 𝐴𝐾2 , . . ., 𝐴𝐾𝑛 about the
system 𝑆 and discuss strategies to integrate them all.

We could simplify 𝐴¬𝜑 by applying Theorems 3–4 using 𝐴𝐾 = 𝐴𝐾1⊗𝐴𝐾2⊗· · ·⊗𝐴𝐾𝑛 .
However, since the product of automata is quadratic in size, this automaton 𝐴𝐾 might be
very big. Even the translation of the conjunction of all 𝐾𝑖 at once 𝐴𝐾 = 𝐴𝐾1∧𝐾2∧...∧𝐾𝑛
might be a large automaton.

In the following, we propose techniques to integrate knowledge incrementally, even
if this comes with a loss of precision.

For the Boolean Bounds, we suggest applying Theorem 3 using one 𝐴𝐾𝑖 at a time,
in a loop, and delay the choice of the label (using Minato’s algorithm) until the end of
the loop. In the syntax of Figure 3 we do:

for k in list_of_facts:

a = spot.update_bounds_given(a, k)

a_minato = spot.bounds_simplify(a)

Here the operation spot.update bounds given(a, k) is using the lower bounds of
each transition of automaton a when building the product in the definition of TG and
SG. In this loop, each call to spot.update bounds given may only restrict the lower
bounds and relax the upper bounds of the transitions of a.

The incremental construction of sirestrict |𝐾 (𝐴) and sirelax |𝐾 (𝐴) is handled dif-
ferently. Since the automata si(𝐴) and 𝐴 ⊗ ss(𝐴) constructed by these techniques are

5 The user of these functions may therefore assume that the returned automaton is stutter-
insensitive whenever it is different from the input.

Simplifying LTL Model Checking Given Prior Knowledge 13

independent of the knowledge that allow to adopt them, we can stop as soon as we find
a suitable knowledge. More formally:

sirelax |𝐾1 ,𝐾2 ,...,𝐾𝑛 (𝐴) =
{

si(𝐴) if ∃𝑖,ℒ(si(𝐴) ⊗ 𝐴 ⊗ 𝐴𝐾𝑖) = ∅
𝐴 else

sirestrict |𝐾1 ,𝐾2 ,...,𝐾𝑛 (𝐴) =
{
𝐴 ⊗ ss(𝐴) if ∃𝑖,ℒ(ss(𝐴) ⊗ 𝐴𝐾𝑖) = ∅
𝐴 else

This generalization, which is what we implement, explains why the single fact k was
being passed in an array in Figure 4. In the implementation the terms si(𝐴) ⊗ 𝐴 and
ss(𝐴) are of course computed only once, and not for each 𝐾𝑖 .

7.2 Seeking Knowledge

The strength of our approach is that it is agnostic to the source or proof method of
the knowledge. Of course some facts might simply be other formulas we have already
proven, when we are dealing with a set of specification formulas to check against a given
system.

We now suggest ways to obtain some cheap knowledge about the system 𝑆, tailored
to fit the formula 𝜑 that we intend to verify. For instance, we can find some simple facts
on 𝑆 using bounded explorations (breadth-first search, bounded model checking [3],
. . .), structural analysis of the system, or a decision procedure for reachability. . . and
that can help simplify 𝐴¬𝜑 .

Our implementation currently looks for various kinds of knowledge, using simpler
decision procedures than full LTL to prove them.

Initial state First, we can check the label of the initial state of the system, giving us a
knowledge of the form ℓ ∈ 2AP. While this knowledge is very basic, it is free. Using
the initial state of the model to simplify a property has already been proposed for
CTL [7].

First steps Similarly, exploring the first steps of the system is cheap. We compute the
set of formulas labeling the transitions reachable in the first 𝑛 steps of 𝐴¬𝜑 , and
check the first 𝑛 steps of 𝑆 to check if their values allow us to define a knowledge of
the form X 𝑓 , XX 𝑓 . . .
We limit our exploration to 𝑛 = 2 in our experiments. We use a breadth-first search
with some limits to avoid explosion on models with very large branching factors
(≥ 104). We could also have used any technique based on bounded model checking
relying on a SAT or SMT solver.

Invariants Proving some invariants of a system can be delegated to tools that are
specialized in reachability analysis and are more effective at this task than LTL
model checkers.
We start by looking at the value of each atomic proposition of 𝜑 in the initial state
of 𝑆 and try to prove that this value never evolves using a reachability solver. We
then try to evaluate compatibility of the atomic propositions, checking given two
atomic propositions 𝑎 and 𝑏 whether all of 𝑎̄𝑏̄, 𝑎̄𝑏, 𝑎𝑏̄ and 𝑎𝑏 are possible. For

14 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

instance, 𝑎 = [𝑥 > 2] and 𝑏 = [𝑥 > 3] have a strong relationship. Knowledge
about the exclusions between APs was also used by Blahoudek et al. [5]. We use
an SMT solver to check if some of these cases are impossible, not even looking at
the system but simply at the atomic proposition definitions. We finally also check if
formulas labeling the transitions of 𝐴¬𝜑 are invariants. All of these strategies output
knowledge of the form G 𝑓 .

Convergent atomic propositions In this approach we try to prove that a given atomic
proposition 𝑎 will eventually converge, providing a knowledge of the form F(G𝑎 ∨
G𝑎̄).
We use a low complexity structural test based on an analysis of recurring behaviors
(SCC in the state graph of the system). Any atomic proposition that only observes
variables in the prefix of such SCC must converge; they cannot oscillate indefi-
nitely. We can also, using an SMT solver, try to determine the polarity of atomic
propositions at convergence, yielding knowledge of the form FG𝑎 (or FG𝑎̄).

These strategies are all very basic currently, but show how we can leverage a diver-
sity of decision procedures (with lower complexity than full LTL model-checking) to
populate a knowledge base that is tailored for a given formula to assist an LTL model
checking step.

8 Experimental Study

Knowledge-based simplifications (“given that”) have been implemented in Spot 2.13 [14].
The knowledge collection described in Section 7.2 has been implemented in ITS-
tools [43], which won the LTL category of the Model Checking Contest in 2023 for
the first time, thanks in part to these strategies. The tools to gather the knowledge and
integrate it are open source and publicly available. A reproducibility package for the ex-
periments can be found at https://codeocean.com/capsule/1210152/tree/v1.

During the competition, ITS-tools allots a small time slice to incrementally collect
and integrate knowledge. After this time, it runs a portfolio of model-checkers, including
a symbolic solution [43] and LTSmin [24] configured as an explicit model checker with
partial-order reductions.

Measurement of the entire model checking procedure would introduce many biases
due to the complex interactions of the portfolio techniques with the main refinement loop
of ITS-Tools [44]. Therefore, we focus our evaluation on the knowledge integration step
of the procedure, and compare the automata obtained using the strategies introduced in
this paper.

8.1 Experimental Setup

The following performance analysis is based on the models and formulas of MCC’22 [25].
The benchmark uses a total of 150 different model families (coming from various do-
mains) configured to build 1617 model instances (some models are scalable).

For each of these (colored) Petri net models, the benchmark contains 32 randomly
generated LTL formulas providing a total of 51744 LTL formulas.

https://codeocean.com/capsule/1210152/tree/v1

Simplifying LTL Model Checking Given Prior Knowledge 15

For each model instance, we first collected some knowledge using the basic approach
of section 7.2 using ITS-Tools [43], setting a generous timeout of 15 minutes to collect
it. Obtaining knowledge is cheap (median 0.67 minutes and 75% of cases below 4
minutes) as it leverages low complexity structural and symbolic tests, and in the worst
case reachability queries which are much simpler than full LTL. High time usage to
collect this basic knowledge correlates with models where LTL model-checking (at
least in the empty product case, with no counter-example) is typically prohibitively
expensive (huge models with millions of elements), so that the effort is worth it.

After this processing, we obtain some knowledge for 1601 model instances (out of
1617). For each model instance the knowledge is represented as a set of LTL assertions,
for a total of 240345 small facts (roughly 150 facts per model instance). From the original
set of 51744 LTL formulas we only retain 48975 formulas that intersect the gathered
facts.

To add some diversity, we consider the above 48975 formulas and their negations
for a total of 97950 formulas. Note that verifying an LTL formula and its negation are
two independent chalenges: it can be the case that neither of these formula is verified.

For each formula, we retain only the subset of available facts whose alphabet inter-
sects that of the formula in the experiments.6

Our benchmark therefore contains 97950 problems that consist in one specification
LTL formula accompanied by a set of knowledge facts (on average 12.7, median 9 facts
per formula).

We then proceed to apply each of our strategies to these problems to build an
automaton and compute various metrics on its size. The strategies we compare are the
following. A “p.” used as prefix indicates a precise construction that considers all facts
𝐾 =

∧
𝑖 𝐾𝑖 at once. While precise variants can pay a significant cost to manipulate the

conjunction of known facts, they also benefit from a more precise knowledge so that
there is a trade-off between precise and incremental approaches.

raw is formula ¬𝜑 translated to a TGBA, without any integration of knowledge
p.min, p.max are obtained by building 𝐴¬𝜑∧𝐾 and 𝐴¬𝜑∨¬𝐾 as discussed in Section 4,

where 𝐾 is the conjunction 𝐾 of all facts.
p.min∃, p.max∃ are the variants with existential quantification shown in equations

(3)–(4) from Section 4.
p.BM, BM use respectively the strategy BM |𝐾 (𝐴) presented in Section 5.3, and the

incremental strategy described in Section 7.1.
p.SIrelax, p.SIrestrict, SIrelax, SIrestrict are the strategies of Section 6, and their

incremental variants from Section 7.1

Finally, we also consider some combination of techniques. For instance “SIrelax+BM”
designates the incremental implementation of SIrelax followed by the incremental im-
plementation of BM.

6 This is not necessarily optimal. Consider 𝜑 = GF𝑎 with alphabet {𝑎} and facts 𝑘1 = G(𝑏 →
X𝑎) and 𝑘2 = FG𝑏, ignoring 𝑘2 because its alphabet does not intersect 𝜑’s is in fact a mistake ;
however selecting too many facts can easily overload some approaches particularly those using
the conjunction of known facts, and does not help our incremental approaches that consider
each fact in isolation since they typically ignore atomic propositions not in 𝜑.

16 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

Table 1: Amount of problems (out of 97950 composed of formulas and their negation)
that could be shown to be empty or universal using the provided knowledge.

Strategy Universal Empty Total

p.min 0 25508 25508
p.max 24453 0 24453
p.min∃ 0 25508 25508
p.max∃ 25508 0 25508
BM 23080 25095 48175
SIrelax 208 0 208
SIrestrict 0 219 219

Strategy Universal Empty Total

p.BM 23258 25508 48766
p.SIrelax 212 0 212
p.SIrestrict 0 223 223
SIrelax+BM 23286 25091 48377
BM+SIrelax 23164 25095 48259
p.SIrelax+p.BM 23708 25508 49216
p.BM+p.SIrelax 23344 25508 48852

When providing statistics about the automata produced by the above variants, we
always assume that those automata have been further simplified using techniques imple-
mented in Spot (notably, removing useless states, useless acceptance marks, and using
simulation-based reductions to merge states and prune unnecessary transitions [2]).

The average runtime for solving a problem with any strategy is 35.6ms. On the
97950 benchmark problems, the only strategies that exceed a very generous timeout
of 10 seconds are “SIrestrict” on 470 problems, and “p.SIrestrict” on 522 problems.
Those strategies are occasionally very slow only because of the amount of automata
complementations they have to perform. Overall the knowledge integration step is truly
negligible before any test involving the actual system. If the knowledge gathering step
only uses low complexity procedures or knowledge simply consists of previously proven
properties, knowledge integration scales exceptionally well to complex problems.

8.2 Problems Reduced to Empty or Universal

We first study the problems that could be fully solved given the knowledge by reducing the
automaton to an empty or universal one. For testing universality, we syntactically check
if the resulting automaton has been reduced to a single-state all-accepting automaton.

Table 1 presents those results. While it is certainly due to the random nature of
the formulas of the MCC, in total 51016/97950 ≈ 52% of the formulas of the MCC
benchmark we kept (49% of all formulas of the MCC) could be solved using only the
basic approach to glean related knowledge presented in Section 7.2, thus avoiding a full
LTL model-checking procedure.

We can see that “min∃” and “p.min∃” are the most effective strategies to find
empty problems, on par with “p.BM”. Dually “p.max∃” is the only most effective at
deducing universal problems. The amount of problems reduced to empty by “p.min∃”
and to universal by “p.max∃” are identical as hoped, because our benchmark includes
both formulas and their negations. Strategy “p.max” is less effective than “p.max∃”
because it keeps atomic propositions that are not in 𝜑. Still, while they might produce
a larger automaton as discussed in the next section if they can’t solve the problem, it is
important in a full decision approach involving some knowledge to first test “p.min∃”
and “p.max∃” for full solutions.

Simplifying LTL Model Checking Given Prior Knowledge 17

Table 2: Comparison of the different strategies over 46934 problems that could not
be already reduced to false or true by previous methods. ‘raw’ designates the original
automata, for baseline. For each strategy we report various metrics of the produced
automata: its number of states and transitions,

∑ | 𝑓 | is the total size of all labels, SI (resp.
det) shows the fraction of automata that were stutter-insensitive (resp. deterministic),
|𝐴𝑃 | is the number of atomic proposition, Time reports the number of milliseconds
needed by the strategy, and TO counts the number of timeouts (> 10 seconds). Different
statistics are provided for some measurements: ‘q95’ denotes the 95% quantile (i.e., 95%
of all values are below the indicated value), ‘geom’ denotes the geometric mean. Values
within 2% of the best (resp. worse) value of a column, ‘raw‘ excluded, are highlighted
in yellow (resp. pink).

States Transitions |𝐴𝑃 | ∑ | 𝑓 | SI det Time (ms)

Strategy q95 max mean geom q95 max mean geom mean mean mean geom TO

raw 8 73 3.71 3.13 18 286 7.32 5.52 2.14 21.76 49% 50% 20.26 19.95 0

p.min 9 684 5.30 4.79 19 16834 8.71 6.71 3.35 48.36 9% 50% 55.04 49.82 0
p.max 10 76 6.30 5.90 25 295 12.78 11.23 3.35 58.15 9% 43% 55.86 50.27 0
p.min∃ 9 684 5.23 4.67 19 16834 8.60 6.55 2.21 35.06 11% 50% 54.18 48.97 0
p.max∃ 10 76 6.14 5.73 25 295 12.37 10.77 2.21 42.54 11% 45% 54.91 49.39 0
BM 6 65 3.13 2.68 13 286 5.42 4.24 1.70 13.39 46% 59% 41.46 40.62 0
SIrelax 8 73 3.86 3.16 22 286 8.07 5.82 2.14 26.51 66% 49% 42.19 41.09 0
SIrestrict 10 19463 6.77 3.23 27 373093 52.25 5.96 2.14 335.58 67% 51% 57.65 44.28 122
p.BM 6 65 3.13 2.68 13 286 5.41 4.24 1.69 13.35 46% 59% 46.13 43.50 0
p.SIrelax 9 73 3.93 3.18 24 340 8.47 5.92 2.14 29.15 70% 49% 46.20 43.71 0
p.SIrestrict 11 84249 10.59 3.28 32 1252969 105.47 6.12 2.14 677.23 70% 51% 57.34 45.53 130
SIrelax+BM 6 65 3.07 2.62 13 286 5.38 4.18 1.70 13.49 51% 59% 63.37 61.75 0
BM+SIrelax 7 65 3.19 2.67 15 286 5.93 4.49 1.70 16.21 67% 58% 63.15 61.46 0
p.SIrelax+p.BM 6 65 3.04 2.59 13 286 5.34 4.15 1.69 13.44 52% 59% 72.08 66.89 0
p.BM+p.SIrelax 7 65 3.16 2.63 16 286 5.99 4.46 1.69 16.83 70% 58% 71.85 66.69 0

Generally, strategies based only on restriction (resp. relaxation) can prove only
emptiness (resp. universality) and obtaining “empty” seems easier on this benchmark
than obtaining “universal” perhaps due to our limited syntactic check for universality.

8.3 Simplifying the Remaining Unsolved Formulas

We now study in Table 2 statistics for all the 46934 problems that could not be proven
empty or universal by any strategy.

Since our goal is to reduce the size of the automaton, we first study the number
of states and transitions. To better understand the distribution of values, we present the
95% quantile, as well as the arithmetic and geometric means. Cases where the arithmetic
mean is much larger than the geometric mean indicate the presence of a few very large
outliers.

We observe that basic strategies based on “p.min” or “p.max” are not very good, as
feared, doubling the average size. However, all strategies involving “BM” perform well:
the average number of state is reduced by 15%, and transitions by 25%. The “SIrelax”
strategy produces a moderate size increase that can be further alleviated by combining it

18 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

with “BM”. However, “SIrestrict” can dramatically increase the size of the automaton,
and even time out in extreme cases.

The number of atomic propositions (column |𝐴𝑃 |) and size of the formula labels
(
∑ | 𝑓 |) is also significantly reduced by all variants using “BM”. The average number of

atomic propositions is reduced from 2.14 to around 1.7 (a 21% gain), and the average
size of formula labels goes from 21.76 to around 13.4 (a 38% gain).

Concerning the stutter insensitivity (column “SI”) of the resulting automaton, only
49% of the “raw” problems are stutter-insensitive. “min” and “max” degrade this number
significantly. Both of the strategies “SIrestrict” and “SIrelax” developed to optimize this
metric are indeed effective (but “SIrestrict” is more expensive and liable to timeout).
Combined strategies that finish with a “SIrelax” step lead to the best results, being both
small and stutter-insensitive in 70% of cases. The precise variants are a bit better than
the incremental constructions.

While our algorithm is not looking to improve determinism (column “det”), this
characteristic is nonetheless improved by all variants involving “BM”. This is a wel-
come side-effect since having small and deterministic automata can only help model
checking [39,4].

On this subset of 46934 cases, the average time to solve a problem is up to two
times higher than the average of the 97950 benchmark problems (which was 35.6ms
as mentioned earlier). However it is still very cheap. The fastest strategies to integrate
knowledge is “BM” (with an average of 41ms). “p.” precise variants all pay a reasonable
time penalty, but the improvement in size is very modest. The only timeouts we observe
on these problems that cannot be entirely solved are for “SIrestrict” and its precise
variant (in less than 3‰ cases).

In conclusion, combined strategies using “SIrelax” and “BM” produce the smallest
automata without real drawbacks apart from moderate increase of the run time. Given
the very reasonable run times, it is even feasible to run several of these strategies and
then select the most appropriate automaton on a case by case basis.

9 Related Work

Theorem 1 proposes an original framework for exploiting prior knowledge in LTL
model checking. This generalizes approaches that only consider invariants [7] or quasi-
invariants [27].

Theorem 1 is also related to the problem of language separation: given two languages,
a separator is a third language that contains the first one and is disjoint from the second
one [34]. In our case, we are looking for an automaton 𝐵 whose language separates
ℒ(𝐴) ∩ ℒ(𝐾) (which it should include) from ℒ(𝐾) \ ℒ(𝐴) (which it should not
intersect). However, the two languages to separate aren’t independent: 𝐴 is already
known to be a separator, and we are trying to find a simpler 𝐵 by simplifying 𝐴.

Blaoudek et al. [5, Section 5] also consider a simplification of labels leveraging
Minato’s algorithm as we did in Section 5. While it is limited to an invariant about mu-
tually exclusive propositions, it did prove to be an effective simplification. Our approach
generalizes theirs: if the knowledge encodes mutual exclusion of atomic propositions,

Simplifying LTL Model Checking Given Prior Knowledge 19

we will generate the same bounds, however we can handle arbitrary LTL knowledge,
and we take the structure of the automaton into account.

Using Minato’s algorithm to find a simple 𝑓 ′ such that 𝑓𝑙𝑜𝑤 ⇒ 𝑓 ′ ⇒ 𝑓ℎ𝑖𝑔ℎ can be
related to Coudert and Madre’s restrict and constraint operators [10] that find 𝑓 ′

such that 𝑓 ∧ 𝑐 ⇒ 𝑓 ′ ⇒ 𝑓 ∨ ¬𝑐, where 𝑐 is a Boolean formula. However, in our case,
𝑓𝑙𝑜𝑤 and 𝑓ℎ𝑖𝑔ℎ are not limited to this form.

The use of bounded automata in Section 5 evokes the notion of incompletely specified
Mealy machines used in synthesis, where “don’t care” edges are leveraged to produce
smaller automata [31,1,36]. The bounded automata we propose can be used for bound-
aware simulation-based reductions [41]; this could complement our current approaches.

Dureja and Rozier [12] consider the problem of model checking a single model
against a large set of LTL formulas. They compute a matrix of implications between
formulas 𝑓𝑖 ⇒ 𝑓 𝑗 , and they use previously proven formula 𝑓1 to avoid model checking
of implied formulas 𝑓2. Such an implication test, between a previously proven formula
𝑓1 (the knowledge) and an unproved formula 𝑓2, is covered in our approach since “ 𝑓2
given 𝑓1” will be an empty automaton (see Section 8.2). However, we can also obtain a
simpler automaton for 𝑓2 even in the absence of full implication. Moreover, we suggest
several approaches to leverage all accumulated knowledge incrementally.

Our definitions suggest explicit representation of automata, however our approach
can be used for symbolic model checking. Instead of using a direct symbolic encoding of
Büchi automaton [37], obtained directly from LTL, we can encode the explicit automaton
resulting from our knowledge simplifications into a symbolic representation [40]. In fact,
ITS-tools uses both a knowledge-based approach and a symbolic encoding.

Although this work is motivated by model checking, our techniques can be used to
optimize any inclusion check ℒ(𝐴) ⊆ ℒ(𝐵). E.g., in the traditional implementation
based on a complementation [45] of 𝐵, any knowledge about 𝐴, can be used to simplify
𝐵 before its complementation.

10 Conclusion

We have introduced new operations that help simplify the model-checking of a new for-
mula when we already possess some prior knowledge on the system. Our strategies are
automata-based operations, thus capturing any nature of LTL property or prior knowl-
edge. The evaluation of our current implementation on a large benchmark demonstrates
the effectiveness of the approach.

Studying the problem of knowledge integration led us to the problem of producing a
(small) automaton given bounds on the language it represents. This challenging problem
is new to our knowledge and while we have proposed several strategies in this paper,
there is a lot of room for more research in this direction. For instance the strategies
we presented in Section 6 to produce stutter-insensitive automata currently do not take
any advantage of the Boolean bounds computed in Section 5. Similarly, those Boolean
bounds could very likely be used for other kinds of simplifications, such as bound-
aware simulation-based reductions [41]. The problem of seeking relevant knowledge
by leveraging simpler decision procedures than full LTL is also an avenue for further
exploration, paving the way to strategies achieving an incremental verification process.

20 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

References
1. Abel, A., Reineke, J.: MeMin: SAT-based exact minimization of incompletely specified Mealy

machines. In: Proceedings for the 34th International Conference on Computer-Aided Design
(ICCAD’15). pp. 94–101. IEEE Press (2015). https://doi.org/10.1109/ICCAD.2015.
7372555

2. Babiak, T., Badie, T., Duret-Lutz, A., Křetı́nský, M., Strejček, J.: Compositional ap-
proach to suspension and other improvements to LTL translation. In: Proceedings of the
20th International SPIN Symposium on Model Checking of Software (SPIN’13). Lec-
ture Notes in Computer Science, vol. 7976, pp. 81–98. Springer (Jul 2013). https:
//doi.org/10.1007/978-3-642-39176-7_6

3. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial Intelligence
and Applications, vol. 336, pp. 739–764. IOS Press (2021). https://doi.org/10.3233/
FAIA201002

4. Blahoudek, F., Duret-Lutz, A., Křetı́nský, M., Strejček, J.: Is there a best Büchi automaton
for explicit model checking? In: Proceedings of the 21th International SPIN Symposium on
Model Checking of Software (SPIN’14). pp. 68–76. ACM (Jul 2014). https://doi.org/
10.1145/2632362.2632377

5. Blahoudek, F., Duret-Lutz, A., Rujbr, V., Strejček, J.: On refinement of Büchi automata
for explicit model checking. In: Proceedings of the 22th International SPIN Symposium on
Model Checking of Software (SPIN’15). Lecture Notes in Computer Science, vol. 9232, pp.
66–83. Springer (Aug 2015). https://doi.org/10.1007/978-3-319-23404-5_6

6. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking of lin-
ear time logic properties. In: Proceedings of the Eleventh Conference on Computer Aided
Verification (CAV’99). Lecture Notes in Computer Science, vol. 1633, pp. 222–235. Springer-
Verlag (1999)

7. Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simplification of CTL formulae
for efficient model checking of Petri nets. In: Petri Nets. LNCS, vol. 10877, pp. 143–163.
Springer (2018)

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers 35(8), 677–691 (Aug 1986)

9. Černá, I., Pelánek, R.: Relating hierarchy of temporal properties to model checking. In:
Rovan, B., Vojtáǎ, P. (eds.) Proceedings of the 28th International Symposium on Mathematical
Foundations of Computer Science (MFCS’03). Lecture Notes in Computer Science, vol. 2747,
pp. 318–327. Springer-Verlag, Bratislava, Slovak Republic (Aug 2003)

10. Coudert, O., Madre, J.C.: A unified framework for the formal verification of sequential
circuits. In: Proceedings of the International Conference on Computer-Aided Design (IC-
CAD’90). pp. 126–129 (1990). https://doi.org/10.1109/ICCAD.1990.129859

11. Couvreur, J.M.: On-the-fly verification of temporal logic. In: Wing, J.M., Woodcock, J.,
Davies, J. (eds.) Proceedings of the World Congress on Formal Methods in the Development
of Computing Systems (FM’99). Lecture Notes in Computer Science, vol. 1708, pp. 253–271.
Springer-Verlag, Toulouse, France (Sep 1999)

12. Dureja, R., , Rozier, K.Y.: More scalable LTL model checking via discovering design-
space dependencies (𝐷3). In: Proceedings of the 24th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’24). pp.
309–327. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2_17

13. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. International Journal on Crit-
ical Computer-Based Systems 5(1/2), 31–54 (Mar 2014). https://doi.org/10.1504/
IJCCBS.2014.059594

https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
https://doi.org/10.1145/2632362.2632377
https://doi.org/10.1145/2632362.2632377
https://doi.org/10.1145/2632362.2632377
https://doi.org/10.1145/2632362.2632377
https://doi.org/10.1007/978-3-319-23404-5_6
https://doi.org/10.1007/978-3-319-23404-5_6
https://doi.org/10.1109/ICCAD.1990.129859
https://doi.org/10.1109/ICCAD.1990.129859
https://doi.org/10.1007/978-3-319-89960-2_17
https://doi.org/10.1007/978-3-319-89960-2_17
https://doi.org/10.1007/978-3-319-89960-2_17
https://doi.org/10.1007/978-3-319-89960-2_17
https://doi.org/10.1504/IJCCBS.2014.059594
https://doi.org/10.1504/IJCCBS.2014.059594
https://doi.org/10.1504/IJCCBS.2014.059594
https://doi.org/10.1504/IJCCBS.2014.059594

Simplifying LTL Model Checking Given Prior Knowledge 21

14. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-Caissier, P.,
Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From Spot 2.0 to Spot 2.10: What’s
new? In: Proceedings of the 34th International Conference on Computer Aided Verification
(CAV’22). Lecture Notes in Computer Science, vol. 13372, pp. 174–187. Springer (Aug
2022). https://doi.org/10.1007/978-3-031-13188-2_9

15. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) Pro-
ceedings of the 11th International Conference on Concurrency Theory (Concur’00). Lecture
Notes in Computer Science, vol. 1877, pp. 153–167. Springer-Verlag, Pennsylvania, USA
(2000)

16. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state
space reduction for Büchi automata. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
Proceedings of the 28th international colloquium on Automata, Languages and Programming.
Lecture Notes in Computer Science, vol. 2076, pp. 694–707. Springer-Verlag, Crete, Greece
(Jul 2001)

17. Fogarty, S., Vardi, M.Y.: Efficient Büchi universality checking. In: Proceedings of the 16th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’10). pp. 205–220. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12002-2_17

18. Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations
for alternating Büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) Proceedings of the 8th In-
ternational Conference on Implementation and Application of Automata (CIAA’03). Lecture
Notes in Computer Science, vol. 2759, pp. 35–48. Springer-Verlag, Santa Barbara, California
(Jul 2003)

19. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon,
H., Finkel, A. (eds.) Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01). Lecture Notes in Computer Science, vol. 2102, pp. 53–65. Springer-
Verlag, Paris, France (2001). https://doi.org/10.1007/3-540-44585-4_6

20. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL
formulæ to Büchi automata. In: Peled, D., Vardi, M. (eds.) Proceedings of the 22nd IFIP WG
6.1 International Conference on Formal Techniques for Networked and Distributed Systems
(FORTE’02). Lecture Notes in Computer Science, vol. 2529, pp. 308–326. Springer-Verlag,
Houston, Texas (Nov 2002)

21. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems: An Ap-
proach to the State-Explosion Problem, Lecture Notes in Computer Science, vol. 1032.
Springer-Verlag (1996)

22. Haddad, S., Pradat-Peyre, J.F.: New efficient Petri nets reductions for parallel programs
verification. Parallel Processing Letters 16(01), 101–116 (2006)

23. Holzmann, G.J., Kupferman, O.: Not checking for closure under stuttering. In: Proceedings
of the 2nd workshop on the Spin Verification System (SPIN’96). pp. 17–22. American
Mathematical Society (1996)

24. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: Ltsmin: High-
performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) Pro-
ceedings of the 21st conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’15). pp. 692–707. Springer Berlin Heidelberg (2015). https:
//doi.org/10.1007/978-3-662-46681-0_61

25. Kordon, F., Bouvier, P., Garavel, H., Hulin-Hubard, F., Amat., N., Amparore, E., Berthomieu,
B., Donatelli, D., Dal Zilio, S., Jensen, P., Jezequel, L., He, C., Li, S., Paviot-Adet, E., Srba,
J., Thierry-Mieg, Y.: Complete Results for the 2022 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2022/results.php (June 2022)

https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-642-12002-2_17
https://doi.org/10.1007/978-3-642-12002-2_17
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61

22 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

26. Kordon, F., Hillah, L.M., Hulin-Hubard, F., Jezequel, L., Paviot-Adet, E.: Study of
the efficiency of model checking techniques using results of the model-checking con-
test mcc from 2015 to 2019. International Journal on Software Tools for Technology
Transfer (2021). https://doi.org/10.1007/s10009-021-00615-1, https://doi.
org/10.1007/s10009-021-00615-1

27. Larraz, D., Nimkar, K., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: Proving non-
termination using Max-SMT. In: Biere, A., Bloem, R. (eds.) Proceeding of the 26th Interna-
tional Conference on Computer Aided Verification (CAV’14). pp. 779–796. Springer Interna-
tional Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_52

28. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing (PODC’90). pp. 377–410. ACM,
New York, NY, USA (1990)

29. Michaud, T., Duret-Lutz, A.: Practical stutter-invariance checks for 𝜔-regular languages. In:
Proceedings of the 22th International SPIN Symposium on Model Checking of Software
(SPIN’15). Lecture Notes in Computer Science, vol. 9232, pp. 84–101. Springer (Aug 2015).
https://doi.org/10.1007/978-3-319-23404-5_7

30. Minato, S.: Fast generation of irredundant sum-of-products forms from binary decision
diagrams. In: Proceedings of the third Synthesis and Simulation and Meeting International
Interchange workshop (SASIMI’92). pp. 64–73. Kobe, Japan (Apr 1992)

31. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified sequential
switching functions. IRE Transactions on Electronic Computers EC-8(3), 356–367 (Sep
1959). https://doi.org/10.1109/TEC.1959.5222697

32. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: Proceed-
ings of the 6th International Conference on Computer Aided Verification (CAV’94). Lecture
Notes in Computer Science, vol. 818, pp. 377–390. Springer-Verlag (1994)

33. Peled, D., Wilke, T., Wolper, P.: An algorithmic approach for checking closure properties
of temporal logic specifications and 𝜔-regular languages. Theoretical Computier Science
195(2), 183–203 (Mar 1998). https://doi.org/10.1016/S0304-3975(97)00219-3

34. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. Logical Meth-
ods in Computer Science Volume 12, Issue 1 (Mar 2016). https://doi.org/10.2168/
lmcs-12(1:5)2016

35. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-based decomposition of the
property Büchi automaton for faster model checking. In: Piterman, N., Smolka, S.A. (eds.)
Proceedings of the 19th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’13). Lecture Notes in Computer Science, vol. 7795, pp.
580–593. Springer (Mar 2013). https://doi.org/10.1007/978-3-642-36742-7_42

36. Renkin, F., Schlehuber-Caissier, P., Duret-Lutz, A., Pommellet, A.: Effective reductions of
Mealy machines. In: Proceedings of the 42nd International Conference on Formal Techniques
for Distributed Objects, Components, and Systems (FORTE’22). Lecture Notes in Computer
Science, Springer (Jun 2022), to appear

37. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfiability check-
ing. In: Butler, M.J., Schulte, W. (eds.) Proceedings of the 17th International Symposium
on Formal Methods (FM’11). Lecture Notes in Computer Science, vol. 6664, pp. 417–431.
Springer (2011). https://doi.org/10.1007/978-3-642-21437-0_31

38. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementation of
generalised Büchi automata. In: Chakraborty, S., Mukund, M. (eds.) Proceedings of the
10th International Symposium on Automated Technology for Verification and Analysis
(ATVA’12). Lecture Notes in Computer Science, vol. 7561, pp. 42–56. Springer (Oct 2012).
https://doi.org/10.1007/978-3-642-33386-6_5

https://doi.org/10.1007/s10009-021-00615-1
https://doi.org/10.1007/s10009-021-00615-1
https://doi.org/10.1007/s10009-021-00615-1
https://doi.org/10.1007/s10009-021-00615-1
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-23404-5_7
https://doi.org/10.1007/978-3-319-23404-5_7
https://doi.org/10.1109/TEC.1959.5222697
https://doi.org/10.1109/TEC.1959.5222697
https://doi.org/10.1016/S0304-3975(97)00219-3
https://doi.org/10.1016/S0304-3975(97)00219-3
https://doi.org/10.2168/lmcs-12(1:5)2016
https://doi.org/10.2168/lmcs-12(1:5)2016
https://doi.org/10.2168/lmcs-12(1:5)2016
https://doi.org/10.2168/lmcs-12(1:5)2016
https://doi.org/10.1007/978-3-642-36742-7_42
https://doi.org/10.1007/978-3-642-36742-7_42
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-642-33386-6_5

Simplifying LTL Model Checking Given Prior Knowledge 23

39. Sebastiani, R., Tonetta, S.: ”more deterministic” vs. ”smaller” Büchi automata for efficient
LTL model checking. In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds.) Proceedings of the
12th Advanced Research Working Conference on Correct Hardware Design and Verification
Methods (CHARME’03). Lecture Notes in Computer Science, vol. 2860, pp. 126–140.
Springer-Verlag, L’Aquila, Italy (Oct 2003)

40. Sebastiani, R., Tonetta, S., Vardi, M.Y.: Symbolic systems, explicit properties: on hybrid
approches for LTL symbolic model checking. In: Etessami, K., Rajamani, S.K. (eds.) Pro-
ceedings of 17th International Conference on Computer Aided Verification (CAV’05). Lecture
Notes in Computer Science, vol. 3576, pp. 350–363. Springer, Edinburgh, Scotland, UK (Jul
2005)

41. Smolka, D.: Simulation-Based Reduction of Modal Omega-Automata. Bachelor’s thesis,
Mazaryk University, Faculty of Informatics (Apr 2023), https://is.muni.cz/th/qq7ad/
?lang=en

42. Somenzi, F., Bloem, R.: Efficient Büchi automata for LTL formulæ. In: Proceedings of the
12th International Conference on Computer Aided Verification (CAV’00). Lecture Notes in
Computer Science, vol. 1855, pp. 247–263. Springer-Verlag, Chicago, Illinois, USA (2000)

43. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: TACAS. LNCS, vol. 9035,
pp. 231–237. Springer (2015)

44. Thierry-Mieg, Y.: Structural reductions revisited. In: Petri Nets. LNCS, vol. 12152, pp.
303–323. Springer (2020)

45. Tsai, M.H., Fogarty, S., Vardi, M.Y., Tsay, Y.K.: State of Büchi complementation. Logical
Methods in Computer Science Volume 10, Issue 4 (Dec 2014). https://doi.org/10.
2168/lmcs-10(4:13)2014

46. Valmari, A.: On-the-fly verification with stubborn sets. In: Proceedings of the 5th Interna-
tional Conference on Computer Aided Verification (CAV ’93). pp. 397–408. Springer-Verlag,
London, UK (1993)

47. Vardi, M.Y.: Automata-theoretic model checking revisited. In: VMCAI. LNCS, vol. 4349,
pp. 137–150. Springer (2007)

48. Yan, Q.: Lower bounds for complementation of omega-automata via the full automata tech-
nique. Logical Methods in Computer Science 4(1) (Mar 2008)

https://is.muni.cz/th/qq7ad/?lang=en
https://is.muni.cz/th/qq7ad/?lang=en
https://doi.org/10.2168/lmcs-10(4:13)2014
https://doi.org/10.2168/lmcs-10(4:13)2014
https://doi.org/10.2168/lmcs-10(4:13)2014
https://doi.org/10.2168/lmcs-10(4:13)2014

24 A. Duret-Lutz, D. Poitrenaud, Y. Thierry-Mieg

The following appendix is not meant to be part of the published paper because of
size restrictions. It is included for the benefit of the interested reviewers.

A Proof of Theorem 3

Theorem 3. Using the same automata as in Definition 3, consider a transition 𝑡 =

𝑞
𝑓 ,𝑎
−−−→ 𝑞′ ∈ 𝛿, and let 𝐵 = ⟨AP, 𝑄, 𝜄,Acc, 𝛿 \ {𝑡} ∪ {𝑡′}⟩ be a copy of 𝐴¬𝜑 where 𝑡 has

been replaced by 𝑡′ = 𝑞
𝑓 ′ ,𝑎
−−−→ 𝑞′ where 𝑓 ′ ∈ B(AP) is any formula such that

𝑓 ∧ TG(𝑡)︸ ︷︷ ︸
lower bound

⇒ 𝑓 ′ ⇒ 𝑓 ∨ ¬SG(𝑞)︸ ︷︷ ︸
upper bound

Then ℒ(𝐵 ⊗ 𝐴𝐾) = ℒ(𝐴¬𝜑 ⊗ 𝐴𝐾)

Proof. As a preliminary, notice that since 𝐵 and 𝐴¬𝜑 differ only by the labels of their
transitions, but the product 𝐵 ⊗ 𝐴𝐾 and 𝐴¬𝜑 ⊗ 𝐴𝐾 have the same states.

(⊇) Consider a word 𝑤 = ℓ0ℓ1ℓ2 . . . ∈ ℒ(𝐴¬𝜑 ⊗ 𝐴𝐾). There exists an accepting run

𝑟 = (𝑞1, 𝑞𝑘1)
𝑓1∧ 𝑓𝑘1 ,𝑎1∪𝑎𝑘1−−−−−−−−−−−−→

𝑡1
(𝑞2, 𝑞𝑘2)

𝑓2∧ 𝑓𝑘2 ,𝑎2∪𝑎𝑘2−−−−−−−−−−−−→
𝑡2

· · · of 𝐴¬𝜑 ⊗ 𝐴𝐾 such that for all 𝑖,
we have ℓ𝑖 ⇒ 𝑓𝑖∧ 𝑓𝑘𝑖 . We named the transitions 𝑡1, 𝑡2, ... for later reference. By definition
of the product, this run can be seen a the synchronization of two runs: 𝑟𝐴 = 𝑞1

𝑓1 ,𝑎1−−−−→
𝑡𝑎1

𝑞2
𝑓2 ,𝑎2−−−−→
𝑡𝑎2

· · · a run of 𝐴¬𝜑 accepting 𝑤, and 𝑟𝐾 = 𝑞𝑘1
𝑓𝑘1 ,𝑎𝑘1−−−−−−→ (𝑞𝑘2)

𝑓𝑘2 ,𝑎𝑘2−−−−−−→ · · · a run
of 𝐴𝐾 accepting 𝑤 as well.

Since 𝐵 has been constructed from 𝐴¬𝜑 by just changing the labels of the edges to

anything permitted by the theorem, 𝐵 necessarily contains a run 𝑟𝐵 = 𝑞1
𝑓 ′1 ,𝑎1
−−−−→ 𝑞2

𝑓 ′2 ,𝑎2
−−−−→

· · · such that 𝑓𝑖 ∧ TG(𝑡𝑎𝑖) ⇒ 𝑓 ′
𝑖

for each 𝑖. This run 𝑟𝐵 is accepting because it sees the
same acceptance marks as 𝑟𝐴. We claim that 𝑟𝑏 is an accepting run on 𝑤 because it can
be shown that ℓ𝑖 ⇒ 𝑓𝑖 ∧ TG(𝑡𝑎𝑖) ⇒ 𝑓 ′

𝑖
.

Since it is already the case that ℓ𝑖 ⇒ 𝑓𝑖 for each 𝑖 (since 𝑟𝐴 accepts𝑤), we just have to
prove that ℓ𝑖 ⇒ TG(𝑡𝑎𝑖). The transition 𝑡𝑖 (which was obtained by synchronizing 𝑡𝑎𝑖 and
𝑡𝑘𝑖) is part of the accepting run 𝑟 , so it also belongs to Trim(𝐴¬𝜑 ⊗ 𝐴𝐾). This means that
TG(𝑡𝑎𝑖) contains at least 𝑓𝑘𝑖 as a disjunct. We can therefore say that ℓ𝑖 ⇒ 𝑓𝑘𝑖 ⇒ TG(𝑡𝑎𝑖)
for all 𝑖. Conclusion: 𝑤 is still accepted by 𝐵 and therefore by 𝐵 ⊗ 𝐴𝐾 as well.

(⊆) Consider an accepted word 𝑤 = ℓ0ℓ1ℓ2 . . . ∈ ℒ(𝐵 ⊗ 𝐴𝐾). There exists an

accepting run 𝑟 ′ = (𝑞1, 𝑞𝑘1)
𝑓 ′1∧ 𝑓𝑘1 ,𝑎1∪𝑎𝑘1
−−−−−−−−−−−−→

𝑡 ′1
(𝑞2, 𝑞𝑘2)

𝑓 ′2∧ 𝑓𝑘2 ,𝑎2∪𝑎𝑘2
−−−−−−−−−−−−→

𝑡 ′2
· · · of 𝐵 ⊗ 𝐴𝐾 such

that for all 𝑖, we have ℓ𝑖 ⇒ 𝑓 ′
𝑖
∧ 𝑓𝑘𝑖 .

By definition of the product, this run can be seen a the synchronization of two runs:

𝑟𝐵 = 𝑞1
𝑓 ′1 ,𝑎1
−−−−→
𝑡𝑏1

𝑞2
𝑓 ′2 ,𝑎2
−−−−→
𝑡𝑏2

· · · a run of 𝐵, and 𝑟𝐾 = 𝑞𝑘1
𝑓𝑘1 ,𝑎𝑘1−−−−−−→ 𝑞𝑘2

𝑓𝑘2 ,𝑎𝑘2−−−−−−→ · · · a run of
𝐴𝐾 , both accepting 𝑤.

Because of the way 𝐵 has been constructed in the Theorem, we know that for
each transition 𝑡𝑏𝑖 there is a corresponding transition 𝑞𝑖

𝑓𝑖 ,𝑎𝑖−−−−→ 𝑞𝑖+1 in 𝐴¬𝜑 such that

Simplifying LTL Model Checking Given Prior Knowledge 25

𝑓 ′
𝑖
⇒ 𝑓𝑖 ∨ ¬SG(𝑞𝑖). Therefore, since ℓ𝑖 ⇒ 𝑓 ′

𝑖
we have (ℓ𝑖 ⇒ 𝑓𝑖) ∨ (ℓ𝑖 ⇒ ¬SG(𝑞𝑖)).

Let us show that the latter clause is false, so that the former one needs to be true.
Since SG(𝑞𝑖) is the disjunction of all labels that 𝐴𝐾 could do when it is synchronized

with 𝑞𝑖 , let us assume that (𝑞𝑖 , 𝑞𝑘𝑖) is reachable in Trim(𝐴¬𝜑 ⊗ 𝐴𝐾). Then the transition

𝑞𝑘𝑖
𝑓𝑘𝑖 ,𝑎𝑘𝑖−−−−−→ 𝑞𝑘 (𝑖+1) is considered when building the disjuncts of SG(𝑞𝑖), so we have

ℓ𝑖 ⇒ 𝑓𝑘𝑖 ⇒ SG(𝑞𝑖). This implies that ℓ𝑖 ⇏ ¬SG(𝑞𝑖), which, combined with the last
equation of the previous paragraph implies that ℓ𝑖 ⇒ 𝑓𝑖 .

We conclude that if (𝑞𝑖 , 𝑞𝑘𝑖) is reachable, then not only ℓ𝑖 ⇒ 𝑓𝑖 , but also the tran-
sition (𝑞𝑖 , 𝑞𝑘𝑖)

𝑓𝑖∧ 𝑓𝑘𝑖 ,𝑎𝑖∪𝑎𝑘𝑖−−−−−−−−−−−→ (𝑞𝑖+1, 𝑞𝑘 (𝑖+1)) exists in 𝐴¬𝜑 ⊗ 𝐴𝐾 making (𝑞𝑖+1, 𝑞𝑘 (𝑖+1))
reachable in turn.

Since the initial state is obviously reachable, the above reasoning allows us to
inductively define a run 𝑟 = (𝑞1, 𝑞𝑘1)

𝑓1∧ 𝑓𝑘1 ,𝑎1∪𝑎𝑘1−−−−−−−−−−−−→ (𝑞2, 𝑞𝑘2)
𝑓2∧ 𝑓𝑘2 ,𝑎2∪𝑎𝑘2−−−−−−−−−−−−→ · · · of

𝐴¬𝜑 ⊗ 𝐴𝐾 that accepts 𝑤. ⊓⊔

	Simplifying LTL Model Checking Given Prior Knowledge

