In the Proceedings of the 6th International Conference on Virtual Systems and MultiMedia
(VSMM’2000), Intelligent Environments Workshop (published by 10S Press, USA,;
ISBN 1-58603-108-2), pages 714-724, Gifu, Japan, October 2000.

Urbi et Orbi: Unusual Design and Implementation
Choices for Distributed Virtual Environments

Didier Verna Yoann Fabre
Guillaume Pitel
EPITA /LRDE, 14-16 rue Voltaire, 94276 Kremlin-Bicétre cedex
mailto:didier@Irde.epita.fr
http://www.Irde.epita.fr

March 3, 2001

Abstract

This paper describddrbi et Orbi, a distributed virtual environment (DVE) project
that is being conducted in the Research and Development Laboratory at Epita. Our
ultimate goal is to provide support for large scale multi-user virtual worlds on end-user
machines. The incremental development of this project led us to take unusual design
and implementation decisions that we propose to relate in this paper. Firstly, a general
overview of the project is given, along with the initial requirements we wanted to meet.
Then, we go on with a description of the system’s architecture. Lastly, we describe and
justify the unusual choices we have made in the project’s internals.

1 Introduction

This paper describedrbi et Orbi, a distributed virtual environment (DVE) project that is
being conducted in the Research and Development Laboratory at Epitaet Orbi is a
virtual environment system: it provides users with a virtual world in which they can interact
with objects or other members. In additidgrbi et Orbi is adistributedvirtual environment
system: the world description is spread over several computers connected via a network.
Urbi et Orbi has been initially designed to belarge scaleDVE: a potentially large
number of participants could exist around the world, no-one having a complete control over
the virtual world at any time. Because of this required scalabilily fhere must not be
other material requirements than a standard personal computer, with a connection to a local
network or the Internet. This constraint brings up non trivial problems that the system must
handle, in particular, to cope with network bandwidth and information propagation latency.
This paper is structured as follows: firstly, a general overview of the project is given,
along with the initial requirements we wanted to meet. Then, we go on with a description of
the system’s architecture. Finally, we describe and justify the unusual choices we have made
in the project’s internals.

mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr

Figure 1. Part of a conceptual graph

avatar
islocalized on
\j

cell #2 w

ol tree
adjacency
4
cell #1 07 -

2 Initial requirements

2.1 High Level Scene Description

An important characteristic dirbi et Orbi is that contrary to many other DVE systems,

we wanted to provide rich semantics and high-level descriptions of the world components:
forests are composed of trees of which there are several types, objects such as a house has
an inside and an outside etc. We also wanted to avoi@ihdias virtual worlds should

be thought of as an abstract idea. Hence, thanks to a text terminal it should be possible for
the user to walk around and interact with the wadsgtually. With our approach, the world

has enough semantics for a terminal to represent it faithfully, whatever its nature: textual,
3D rendering, etc. Currently, we have a textual terminal, which is actually a shell to the
application kernel, allowing for textual action on the world components, and a 3D rendering
engine that uses an OpenGL display.

Another benefit of rich descriptions of scenes is that a lot of extra optimizations can
be performed, for instance related to the distance. Imagine a forest far off on the horizon:
there is no need to compute the graphic rendering of every single tree, since it will most
probably result in a green spot. The traditional answer is level of details (LOD) generated
by mesh simplification: objects present different LOD according to the distance from the
observer. Here, using a richer semantics, such as the variety of the trees and some of their
characteristics, we may provide different views, ranging from the green spot to the fully
detailed rendering, through approximations based on functions depending upon the nature of
the trees and their spatial disposition, etc. The nature of the flat green spot is very different
from the fully detailed description of the forest. Our “levels of details” not only imply a
guantitative change of the semantics of the objects, but also a qualitative change. And again,
since the observer may not have a 3D rendering engine, the type of the object, here “forest”,
can be used to deduce the fact we don't need to request further details.

In addition to the nature of the objects of the world, we also need relations between them.
Of course, we need relations such as “is on” or “is adjacent to” but we also need non-spatial
relations such as “is composed of” or “activates”. We are therefore naturally led to the notion
of conceptual graphs

Figurelillustrates a partial view of the world’s state: there are two geometrical cells, i.e.
regions or zones of the world, a tree decorating cell 2 and an avatar somewhere in this cell.
Yet in this simple example, there are three different relations involved: the link between the
two cells stating that we may reach one from the other, the oriented edge “is localized on”
specifying the presence of the avatar on a cell, and finally “decorates” which is similar to the
previous relation but slightly different: “decorates” gives the additional information that the

2

Figure 2: A landscape frordrbi et Orbi

tree is unessential and can be passed over at first approximation (for instance because some
more urgent updates need to be performed).

Please note that this approach is fully compatible with current solutions to reduce the
volume of information flow: a hierarchical description of the world as proposed by Sugano
et al.[16] and/or an aura management as proposed by Hagsand and S&miuby Hesina
and Schmalstiegd]. The nature of the data can depend on the scale on which the graph is
consulted; the world must be also represented by a multi-scale graph.

2.2 Full Distribution

A specific feature ofrbi et Orbi, with regard to most other frameworks, is that each host
which participates in the world is both a “server’ and a “cliert0[1, 16]. Therefore, all

the computers run the same application which combines both server (propagating the infor-
mation) and client tasks (rendering and interaction). This approach is similar to the ones of
Frécon and Steniug]in Dive, and of Greenhalgh and Benfors] jn MASSIVE. It contrasts

with client-server architectures.

As is the case for the world wide web, no single host knows the current state of the whole
world, or even merely an outdated approximation: the knowledge is distributed across the
machines, which only know the kingdom of their user, and the part of the world where their
user are. This is so called “shared distributed data bases with peer-to-peer updates” according
to [12].

Now, consider a scene with a windmill whose arms are rotating, as in figutme can
imagine at least two ways of publishing this information:

Distribution. The “owner” of the windmill sends frequent updates of the position of the
arms to its observers.

Replication. Several windmills are actually “created”, one per host. The implementation of
the windmill is run on each machine.

The distributed approach is very adapted for avatars: because their behavior is unpre-
dictable and there can be only one command center, the person who commands the avatar.
Conversely, the windmill motion is fully predictable, and frequent updates of its position
would waste the bandwidth. Here, tteplicationis a natural solution.

2.3 Group Communication

In order to reduce the amount of network communication, we have preferred, like Tram-
berend [L7], group communication to unicast and broadcast solutions. We excluded Unicast
because each time a machine needs to publish an update, it would have to send one message
per connected hosttestinationsaccumulate. We excluded Broadcast, since each time a ma-
chine publishes an update, all the machines would have to process the message, and maybe
discard it, which results in useless additional wakurcesaccumulate.

Group communication is a way of implementing the notion of aura in DVEs, and allows
us to define various groups equipped with different quality of service. Group communication
has several benefitdT]. Firstly, it allows the deployment of several groups with the same
members but with different protocols, hence various qualities of service. The possibility to
choose the protocol is a means to control the load imposed on the network: urgent mes-
sages which must be delivered safely obtain most of the bandwith, while messages of little
importance may be delayed or even lost.

The notion of group also helps in the design of the virtual world, since they constrain the
programmer to structure its description and to partition it properly.

When a user enters the world, she first joins a spatial group and some other user within
this group is elected to inform the newcomer of the current state of the world, more specif-
ically, of the current state of the view which is pertinent to the newcomer. An economic
consistency of the knowledge is obtained thanks to different policies on the distribution of
the messages. For instance, elections are made with an extreme care, some actions require a
causal ordering, and finally some unimportant tasks are just multicast with almost no quality
of service. Furthermore, the possibility of choosing different qualities of service is a means
to control the load imposed on the network: urgent messages which must be delivered safely
obtain most of the bandwidth at a given time, while messages of little importance may be
delayed or even lost.

3 Software Architecture

3.1 TheGoal Language

Our requirements pertaining to the structure of the information and to the distribution system
drove us to desigidrbi et Orbi as a language-oriented system. The additional requirement
that world management must be programmer-friendly naturally led to the concept of a script-
ing language. Several options were available, most prominently Java. However, because no
language offered all the facilities we wanted to implement for a DVE, we decided to build
our own languageGoal.

Goal is the vehicular language used throughout the project. “High le@ekl is used
between the user and the environment to describe and modify the world, whereas “low level”
Goal is exchanged between the machines through the network and between the different
modules which constitute the user application. Since one of the main purpo&embis
to offer an abstraction of the network to the programmer, its runtime naturally resembles a
miniature OS kernelGoal has several features that are worth mentioning:

Strong Typing. WhenGoal instructions are introduced in the environment, @wl inter-

preter checks for errors before executing them and modifying the environment. The strong
typing policy is a fundamental help in developing the complex features of the project, leading
to safer code. 4

Figure 3. Code sample.
/" file windmill.goal

@mill_shape = New Shape; 1
@mill_shape <- Set file3DS = "mill.3ds"; /I 2

@mill = New 3DGridObject; /I 3
@mill <- Set shape = shape_mill; Il 4
@sails_shape = New Shape; /I 5
@sails_shape <- Set file3DS = "sails.3ds"; // 6

@sails = New 3DGridObject; /7
@sails <- Set shape = sails_shape; /I 8
@rotator = New Rotator; /I 9
@rotator <- Set target = sails; /l 10
@rotator <- Set delay = 0.02; /I 11

Frame-Oriented. Goal is a frame language implementing the concept of class and inher-
itance. SinceGoal is strongly typed the required notion of conceptual graph is implicitly
supported by objects containing references to other objects. Each slot of the objects may be
equipped with a daemon, i.e., a routine triggered when its slot is modified. Here, objects
help modularize world descriptions and daemons help divide the tasks: when values are up-
dated, there are usually a collection of actions to undertake, but some of them imply a global
side-effect for several users spread over the network while others are purely local.

Distribution/Replication-Oriented. In a distributed environment, objects are usually repli-
cated over the network and, when a user acts on such obje@salaroutine is executed

which may contain code for sending messages to distant replicates. Furthermore, objects can
belong to several groups, which implies that objects’ behavior at run-time may use several
communication channels. Group communication should be a primitive of the environment
provided to the programmer.

Dynamicity. Goal has been designed to make the virtual environment evolve. It allows

to dynamically insert objects in the environment as easily as a web page is published on
the Internet. Similarly, a new class can be defined by a user and loaded dynamically in the
environment while running; this new class can then be accessed by another programmer and
reused.

Reflexivity. All Goal entities can be introspected. With a class name, we can know the list
of its attributes and methods; with a given object, we can get the name of its class and the
values of its attributes.

Scripting. Goal is a scripting language, interpreted withitMk (Matrix Micro Kernel,

see [L5 for etymology), our application kernel. Although it is interpreted, thanks to the
numerous optimizations (e.g. early binding, as in PostScript) its interpretation is fast. On the
other hand, because the programs are scripts, code can easily migrate, which is necessary to
properly model animated objects (consider again the windmill example).

3.2 A sampleGoal script

In order to illustrate all these ideas, we provide a very simplified exampleGwad script.
This code sample appears in figiieand actually implements the windmill example of fig-
ure2.

The symbol@indicates that the instruction is only sent to the local virtual machine (alter-
natives are and! to broadcast the instruction to the members of the communication group,
respectively including and excluding the local machine). Lines 1 to 4 define the mill, lines 5
to 8 the sails, and lines 9 to 11 a rotator to make the sails turn and to manage their speed.

Apart from huge constant data like object textures, all values in the system are truly dis-
tributed, that is, created somewhere and then propagated via the network. Nevertheless, for
the sake of the bandwidth economy, the remaining data is classified per priority. A high pri-
ority data is more likely to be updated than low priority data. The priority of the various
attributes/objects is specified as part of their type: it is therefore completely and cleanly inte-
grated intodGoal and handled seamlessly by the application. For instar@i@GridObject
is an object that decorates a grid cell: its priority is medium.

Without entering in gory details, we also noted that shared values have a completely dis-
tinct status from replicated values. In particular, it is forbidde®oal to set a shared value:
one has to ask the object containing this value to perform that task. Then, the usual daemon
mechanism is launched. This simple limitation, voluntarily introduce@aal, appeared to
save the world / objects developers from many errors, leading them to question the status
(replicated or shared) of their values in a distributed world: there is a natural tendency to use
parsimony. In the example above, the sails of the windmill have a fully predictable behavior
and frequent updates of their position would waste the bandwidth. Soepheationis a
natural solution, and each host has a local timer.

3.3 Software Components

The software is composed of three active modules as depicted in figiEach module is
responsible for an independent task and offers particular services.

MMk (or kernel) is the core of our software; it receives a flow of instructions, schedules their
execution and manages the resources (files, memory, display and communication).

NET is in charge of the communications through the network; it handles the connection /
disconnection and information transfer.

DISPLAY (or renderer, or navigator) provides the user with read access to the state of the
world as known byMMKk. It also allows the user to “write”: when a user moves or
activates an element of the world, feedback is giveNdk. For simplicity’s sake the
data circuit is not represented in figut@and will not be discussed.

In figure 4, the TERMinal is also represented; it is a shell (command interpreter) which
allows direct textual communication wiMiMk, via Goal instructions. This has proven to be
a great help in the design and implementation of virtual worlds.

Several other projects have based their approach upon a kernel, such as Miveriie]
of the most striking difference between the two projects lies in the fact that their approach is
based upon modules, while we stressed on the importance of a high level language.

Figure 4. Software components.

NET . DISPLAY
)

N2L: | L2N:1 | 1o P/

gvm e] proc

TERM

A central module of Maverik is its Spatial Management System (SMS), which is in charge
of processing any 3D related thing. Urbi et Orbi, there is no such module. Because we
aim a generic approach of the information, we have tried to avoid any dedicated low level
code for 3D in the kernel: the processing of 3D information is spread across the components
(more specifically the renderer).

This results in a wide set of primitive operations that are bourtgdal instructions. The
programmer then merely needs to attach gBohl instructions to her objects to access these
primitives. For instancé&oal objects, typically 3D objects, may be bound to a cell, which
means the object is “in” the cell. Then, the programmer merely has to declare that her object
implements gridlistener[pos] , In order to have automatic binding of the object
to the proper cell. This makes heavy use of the daemons.

3.4 Multi-Threading and Asynchrony

Monolithic software is not adapted for interactive worlds: in order to provide the user with
proper interactivity, tasks should be scheduled to favor human-visible operations. Fairness is
also a strong requirement: neither rendering nor communication can be interrupted without
degrading the interactivity of the whole application. Even if the traffic is high, the renderer
must not freeze, and conversely, a complex rendering must not prevent the host from com-
municating.

Therefore, inUrbi et Orbi, each task runs in a separditeead (symbolized by the letter
T in figure4). The implementation, based on time slots, guarantees that we cannot enter a
deadlock.Goal is sufficiently expressive so that programmers may introduce bugs in their
Goal programs, such as deadlocks. However, thanks to the time slots, the system is still fair,
and each task will be provided with the ability to make a step.

In addition to the real OS of the ho$¥]Mk handles concurrency between the modules,
such as the renderer and the communication modules. Modules send requests to each other
via MMK; contrary to procedure calls, the modules cannot hang while making a relyiMkt.
delegates their execution to the proper modules, which run concurrently. Again, thanks to the
time slots, it is also impossible for a module to hang.

7

4 Internal Design Choices

4.1 The First Prototype

A very popular way of building virtual worlds is to use the VRML language. A working
group has specified an architecture for multi-user distributed VRML woklidsyg Worlds
which has already been implemented by Wray and Hawk&s Pnother way is to reuse a
dedicated language like NPSOFF by Zyd&|[

With the additional requirement of full distribution, we decided to implement the first pro-
totype in Java, describe the world in VRML, and handle the distribution layer witlgact
Request BrokefORB) as in B, 2]. Unfortunately, this prototype was very disappointing:

firstly, the combination of Java, VRML, and an ORB turned out to be a major perfor-
mance penalty.

secondly, many difficulties arose when we wanted to process communication, display
and user interaction simultaneously.

finally, the VRML solution did not meet our requirements: we wanted extra object
attributes without geometric semantics, and complex relations between objects.

4.2 Using Ensemble for Group Communication

In order to efficiently implement group communication, we decided to use Ensemble, a group
communication toolkit developed at Cornell University by Hayeeal.[7]:

“For a distributed systems researcher, Ensemble is a highly modular and recon-
figurable toolkit. The high-level protocols provided to applications are really
stacks of tiny protocol layers. These protocol layers each implement several sim-
ple properties: they are composed to provide sets of high-level properties, such as
total ordering, security, virtual synchrony, etc. Individual layers can be modified
or rebuilt to experiment with new properties or change the performance charac-
teristics of the system. This makes Ensemble a very flexible platform on which
to do research.”

As mentioned by Macedonia and Zydh?], system requirements such as strong data
consistency, strict causality, very reliable communications and real-time interaction imply
tough penalties on scalability. Consequently we decided to relax these requirements and to
rely on different qualities of services provided by Ensemble. In particular, it is easily fea-
sible with Ensemble to test distribution models, like for instance the one proposed by Ryan
and Sharkey14]. We also observe that combining group communication with asynchronous
and partially reliable transfer protocols results in low-cost and efficient data exchange mech-
anisms.

4.3 UsingObjective Camfor Grounding the Application

In the preceding section, we described some specificities of our langBagé, This lan-
guage has been built on top Objective Cam[13, 11], because we found that most of our
requirements were met, or at least made easier. Here are the most important of them:

Objective Camis strongly typed. As we want rich semantics in the world description, we
need a strong typing system, more specifically, we need a strong typing for the objects and
their attributes. It is well-known in compilation that the more you know about the semantics
of the objects (which means the richer your typing system is) the more opportunities the
system has to perform optimizatio@hjective Camprovides this functionality.

Also, we need a flexible typing system which allows us to define families of objects with
different attributes, hence we need classes. We want to be able to specialize some concepts, so
we want inheritance. Agai@bjective Camprovides this thanks to its powerful polymorphic

typing.

Objective Camlnd scripts. Scripting languages have proven to be extremely useful both
for extensions of the system and for programmer interface (e.g. shell scripts, TCL, etc.). The
fact that scripting languages are interpreted is part of their success: they ensure very easy
prototyping, dynamic extensions and modifications (no need to recompile and reinstall the
software, which is ideal for distributed systems) and an extreme comfort for the program-
mer thanks to the interaction with the interpret@bjective Camhbctually provides script
interpretation, byte-code compilation as well as native compilation.

Also, please note th&bjective Camtan be easily interfaced with other languages; for
instance, the 3D rendering ldrbi et Orbi is performed in C code. Thanks to this ability
to mix compiled and interpreted code it is fairly easy to observe the behavior at run-time.
Finally, the performance of the compiled executable outperforms Java.

Objective Camis a functional language. The functional paradigm has proven to be suit-
able to implement most of the transformations we apply on the distributed data, helping us
to isolate the areas where imperative instructions are truly nee@dbgective Camlwhile
providing all features that one can expect from imperative languages, fully supports the func-
tional paradigm.

In addition, Ensemble is also based©hjective Camlwhich made it even more attrac-
tive to us.

5 Conclusion

In this paper, we have presented thebi et Orbi project, its motivations and the rationale

for our unusual design decisions. Specifically, we have detailed why we think thed tiec
language that we have develop@&@hal, is suitable to describe large and complex interactive
virtual worlds. Goal is the natural high level interface to a distribution kernel, kiglk,

which makes heavy use of Ensemble in order to ensure the coherence of the partial views
each host has of the world.

The architecture dfirbi et Orbi is designed to face such difficulties while ensuring real-
time rendering. Conceptors of worlds can then take care of the graphical aspect. To get
immersive capabilities witkurbi et Orbi, the end-user can today buy cheap commercial 3D
glasses which rely on OpenGL to produce 3D sensations. Our experiments were limited to a
fast LAN (Ethernet 100MB) with PC equipped with 3D video cards: we typically reach 25
frames per seconds with high quality images (see figuend excellent interactivity.

A key aspect of our projet is the intensive use of the functional langQégective Cam
which allows the developers to leverage powerful language support to attain high perfor-
mance and flexibility.Urbi et Orbi differs from other systems in that it is mostly scripted.

9

The advantage is twofold. This feature addresses the real need of being able to develop com-
ponents that may be dynamically inserted into a distributed virtual environment, and it also
allows to dynamically adjust the configuration of the environment.

In its current state, therbi et Orbi project has proven that non standard tools can be of
a great help in the design and implementation of a DVE. Comparing the two versions of the
prototype has also demonstrated that with such tools, one can obtain even better performances
than with fashionable languages such as Java or VRML. Lastly, several problems have been
put under evidence thanks to the prototype, notably in the field of information structuring. A
rewrite of the system, possibly by using languages dedicated to distributed systems, such as
Erlang, is currently under study.

References

[1] Tapas K. Das, Gurminder Singh, Alex Mitchell, P. Senthil Kumar, and Kevin McGee.
Developing social virtual environments using NetEffectPhoceedings of the 6th IEEE
Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE’'97) IEEE Computer Society Press, pages 148-154, 1997.

[2] M. Deriggi, M. M. Kubo, A. C. Sementille, S. G. Santos, C. Kirner, and J. R. F. Brega.
CORBA platform as support for distributed virtual environmentsPtaceedings of the
IEEE Virtual Reality International Conference (VR'9®ouston, USA, March 1999.

[3] Stephan Diehl. Towards lean and open multi-user technologieBrolceedings of the
International Symposium on Internet Technology (ISIT,98)pei, Taiwan, April 1998.

[4] Emmanuel Frécon and Mgarten Stenius. DIVE: A scaleable network architecture for
distributed virtual environmentDistributed Systems Engineering Journal (special is-
sue on Distributed Virtual Environmeni$)(3):91-100, September 1998.

[5] Chris Greenhalgh and Steve Benford. MASSIVE: a distributed virtual reality system
incorporating spatial trading. IRroceedings of the 15th International Conference on
Distributed Computing Systems (DCS’'9B)EE Computer Society Press, pages 27-34,
Vancouver, Canada, May-June 1995.

[6] Olog Hagsand and Mgarten Stenius. Using spatial techniques to decrease message
passing in a distributed VE system.

[7] Mark Hayden. The Ensemble system. Technical Report TR98-1662, Cornell University,
January 1998.

[8] Gerd Hesina and Dieter Schmalstieg. A network architecture for remote rendering. In
Proceedings of 2nd International Workshop on Distributed Interactive Simulation and
Real Time Applications (DIS-RT'98)ages 88-91, Montreal, Canada, July 1998.

[9] Roger Hubbold, Xiao Dongbo, and Simon Gibson. Maverik —the Manchester virtual en-
vironment interface kernel. Ifihird Eurographics Workshop on Virtual Environments
1996.

[10] Rodger Lea, Yasuaki Honda, and Kouichi Matsuda. Virtual Society: Collaboration in
3d spaces on the internelournal of Collaborative Computer Supported Cooperative
Work (CSCW)6(2/3):227-250, 1997.

10

[11] Xavier Leroy, Didier Rémy, Jéréme Vouillon, and Damien Doligélze Objective Caml
systemINRIA, 1999. http://caml.inria.fr/index-eng.html.

[12] Michael R. Macedonia and Michael J. Zyda. A taxonomy for networked virtual envi-
ronments.|EEE MultiMedia 4(1):48-56, January-March 1997.

[13] Didier Rémy and Jérome Vouillon. Objective ML: An effective object-oriented exten-
sion to ML. Theory And Practice of Objects Systerdd):27-50, 1998.

[14] M.D. Ryan and P.M Sharkey. Distortion in distributed virtual environments.1din
international conference on Virtual Worldgages 42—48, Paris, France, 1998.

[15] D. Schmalstieg and M. Gervautz. Implementing gibsonian virtual environments. In
Proceedings of the 13th European Meeting on Cybernetics and Systems Rgsegesh
928-933, Vienna, Austria, April 1996.

[16] Hiroyasu Sugano, Koji Otani, Haruayasu Ueda, Shinichi Hiraiwa, Susumu Endo, and
Youji Kohda. SpaceFusion: A multi-server architecture for shared virtual environments.

[17] Henrik Tramberend. Avocado: A distributed virtual reality frameworkPceedings

of the IEEE Virtual Reality International Conference (VR’9Blouston, USA, March
1999.

[18] Mike Wray and Rycharde Hawkes. Distributed virtual environments and VRML.: an
event-based architectur€omputer Networks and ISDN systei®8:43-51, 1998.

[19] Michael J. Zyda, Kalin P. Wilson, David R. Pratt, James G. Monahan, and John S. Falby.
NPSOFF: An object description language for supporting virutal worlds construction.
Computer and Graphicd7(4):457-464, 1993.

11

	1 Introduction
	2 Initial requirements
	2.1 High Level Scene Description
	2.2 Full Distribution
	2.3 Group Communication

	3 Software Architecture
	3.1 The Goal Language
	3.2 A sample Goal script
	3.3 Software Components
	3.4 Multi-Threading and Asynchrony

	4 Internal Design Choices
	4.1 The First Prototype
	4.2 Using Ensemble for Group Communication
	4.3 Using Objective Caml for Grounding the Application

	5 Conclusion

