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Abstract. In this paper, we present the project URBI ET ORBI, a frame-
work to dynamically manage distributed virtual environments (DVEs).
This framework relies on a dedicated scripting language, Goal, which is
typed, object-oriented and dynamically bound. Goal is interpreted by
the application hosted by each machine and is designed to handle effi-
ciently both network communications and interactivity. Finally, we have
made an unusual design decision: our project is based on a functional
programming language, Objective Caml.

1 Introduction

This paper presents the current state of the URBI ET ORBI project, a framework
to dynamically manage distributed environments, whose principle applications
are virtual worlds. Virtual worlds are virtual 3D scenes inhabited with common
objects (houses, trees, etc.) and avatars, in which one may walk around and
interact. In addition, this virtual world is distributed: its full description is spread
over several computers, connected via a network. There is no need for a single
host to have full knowledge of the world.

As Das et al. (1997), we focus on virtual worlds for a large audience, therefore
there are no other material requirements than a standard personal machine, with
a connection to a local network or the Internet. Windows and UNIX platforms
are supported. Scalability is required.

Compared to related projects the main characteristics of URBI ET ORBI are:

— full distribution. To support large scale environments, no host can be
privileged. Therefore, we exclude the client/server paradigm; each machine
hosts the same application and data is fully distributed.

— mostly asynchronous. Because there is no guarantee of network respon-
siveness, because the core of a DVE is essentially dealing with non determinis-
tic events, all the communications in our implementation are asynchronous,
including data management within each local application.



— data management. While developing our own virtual world we felt the
need to supply the objects with rich semantics (type, behavior, etc.) in addi-
tion to the usual geometric descriptions. Therefore we developed a language,
Goal, to describe the objects and their behavior including their distribution
policy.

— functional ground. Finally, the whole architecture, from the distribution
engine to the Goal interpreter, is implemented in a functional programming
language, Objective Caml.

This paper is structured as follows. In section 2, we give an overview of our
framework. We expose the way the information is structured and distributed.
In section 3, we present the language Goal. We explain how it satisfies our
requirements concerning the data structure; we point out its relationship to our
distributed system, and we describe the software architecture in which the Goal
interpreter plays a key role. Finally, section 4, presents our conclusion and future
work.

2  Overview of the framework

A very popular way of building virtual worlds is to use the VRML language;

a working group has specified an architecture for multi-user distributed VRML

worlds, Living Worlds, which has already been implemented by Wray and Hawkes (1998).
Another way is to reuse a dedicated language like NPSOFF by Zyda et al. (1993).
Unfortunately, both solutions do not meet our requirements: we want extra ob-

ject attributes without geometric semantics, we want complex relations between
objects, and we want a strong control on object distribution.

2.1  Structure of the information

We want to describe virtual worlds with rich semantics: forests are composed of
trees, of which there are several types, an object such as a house has an inside
and an outside, etc. We also want to avoid the 3D bias: virtual worlds should
be thought of as an abstract idea. Hence, thanks to a text terminal it should
be possible for the user to walk around and interact with the world teztually.
With our approach, the world has enough semantics for a terminal to represent
it faithfully, whatever its nature: textual, 3D rendering, etc. Currently, we have
a textual terminal, which is actually a shell to the Goal interpreter, and a 3D
rendering engine that uses an OpenGL display.

Another benefit of rich descriptions of scenes is that a lot of extra optimiza-
tions can be performed, for instance related to the distance. Imagine a forest far
off on the horizon: there is no need to compute the graphic rendering of every
single tree, since it will most probably result in a green spot. The traditional an-
swer is level of details (lods for short) generated by mesh simplification: objects
present different lods according to the distance from the observer. Here, using
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Fig. 1. Part of a conceptual graph.

a richer semantics, such as the variety of the trees and some of their character-
istics, we may provide different views, ranging from the green spot to the fully
detailed rendering, through approximations based on functions depending upon
the nature of the trees and their spatial disposition, etc. The nature of the flat
green spot is very different from the fully detailed description of the forest. Our
“levels of details” not only imply a quantitative change of the semantics of the
objects, but also a qualitative change. And again, since the observer may not
have a 3D rendering engine, the type of the object, here “forest”, can be used
to deduce the fact we don’t need to request further details.

The natural implementation of values with specific semantics leads to the
typing of values, more specifically, to the typing of the objects and their at-
tributes of our worlds. It is well-known in compilation that the more you know
about the semantics of the objects (which means the richer your typing system
is) the more opportunities the system has to perform optimizations.

We need a flexible type system which allows us to define families of objects
with different attributes, hence we need classes. We want to be able to specialize
some concepts, so we want inheritance.

In addition to the nature of the objects of the world, we also need relations
between them. Of course, we need relations such as “is on” or “is adjacent to”
but we also need non-spatial relations such as “is composed of” or “activates”.
We are therefore naturally led to the notion of conceptual graphs. Again, such
relations should be typed, which simply means that attributes, or slots, of our
objects must be typed.

Figure 1 illustrates a partial view of the world’s state: there are two geo-
metrical cells, i.e. regions or zones of the world, a tree decorating cell 2 and an
avatar somewhere in this cell. Yet in this simple example, there are three differ-
ent relations involved: the link between the two cells stating that we may reach
one from the other, the oriented edge “is localized on” specifying the presence
of the avatar on a cell, and finally “decorates” which is similar to the previous
relation but slightly different. “decorates” gives additional information: the tree
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Fig. 2. Global graph modification and local evolution.

is unessential and can be passed over at first approximation (for instance because
some more urgent updates need to be performed).

Because the world changes, the graph is constantly modified. The updates
must be reflected in each local partial view of the world. They must be dis-
tributed.

The prototypal example of a graph incremental update is when an avatar
moves and changes cell. Figure 2 shows such an example. The machine hosting
the avatar has then to inform the world (namely the users seeing these cells)
of the moves, to fetch needed information such as cell 4 and to flush useless
information such as cell 1. There are two operations: the graph of the world is
changing and the local graph of each host is evolving.

Please note that this approach is fully compatible with current solutions to
reduce the volume of information flow: a hierarchical description of the world
as proposed by Sugano et al. (1997) and/or an aura management as proposed
by Hagsand and Stenius (1997) or by Hesina and Schmalstieg (1998). The na-
ture of the data can depend on the scale on which the graph is consulted; the
world must be also represented by a multi-scale graph.

2.2 Distribution management

Our aim in the design of URBI ET ORBI is to provide a completely distributed
environment. This approach is similar to the ones of Frécon and Stenius (1998)
in DIVE, and of Greenhalgh and Benford (1995) in MASSIVE. It contrasts with
client-server architectures.

In order to reduce the amount of network communication, we have preferred,
like Tramberend (1999), group communication to multicast and broadcast so-
lutions. Group communication is a way of implementing the notion of aura in
DVEs, and allows us to define various groups equipped with different quality



of service. To this end, we rely on Ensemble ', a group communication toolkit
developed at Cornell University by Hayden (1998):

“For a distributed systems researcher, Ensemble is a highly modular and
reconfigurable toolkit. The high-level protocols provided to applications
are really stacks of tiny protocol layers. These protocol layers each im-
plement several simple properties: they are composed to provide sets of
high-level properties, such as total ordering, security, virtual synchrony,
etc. Individual layers can be modified or rebuilt to experiment with new
properties or change the performance characteristics of the system. This
makes Ensemble a very flexible platform on which to do research.”

As mentioned by Macedonia and Zyda (1997), system requirements such as
strong data consistency, strict causality, very reliable communications and real-
time interaction imply tough penalties on scalability. Consequently we decided
to relax these requirements and to rely on different qualities of services provided
by Ensemble. In particular, it is easily feasible with Ensemble to test distribu-
tion models like, for instance, the one proposed by Ryan and Sharkey (1998).
We also observe that combining group communication with asynchronous and
partially reliable transfer protocols results in low-cost and efficient data exchange
mechanisms.

When a user enters the world, she first joins a spatial group and some other
user within this group is elected to inform the newcomer of the current state of
the world, more specifically of the current state of the view of world pertinent to
the newcomer. An economic consistency of the knowledge is obtained thanks to
different policies on the distribution of the messages. For instance, elections are
made with an extreme care, some actions require a causal ordering, and finally
some unimportant tasks are just multicast with almost no quality of service.
Furthermore, the possibility of choosing the protocol is a means to control the
load imposed on the network: urgent messages which must be delivered safely
obtain most of the bandwidth at a given time, while messages of little importance
may be delayed or even lost.

Note finally that the notion of group also helps in the design of the virtual
world, since they constrain the programmer to structure its description and to
partition it properly.

3 The language Goal

Our requirements pertaining to the structure of the information and to the dis-
tribution system drove us to build a new language. The additional requirement
that world management must be programmer-friendly naturally led to the con-
cept of a scripting language: Goal. “High level” Goal is used between the user
and the environment to describe and modify the world, whereas “low level”
Goal is exchanged between the machines through the network and between the
different modules which constitute the user application.

! http://www.cs.cornell.edu/Info/Projects/Ensemble



3.1 Features of Goal

Strongly typed. When Goal instructions are introduced in the environment,
the Goal interpreter checks for errors before executing them and modifying the
environment. The strong typing policy is a fundamental help in developing the
complex features of the project, leading to safer code.

Frame-oriented. Goal is a frame language implementing the concept of
class and inheritance. Since Goal is strongly typed the notion of conceptual
graph (Cf. section 2.1) is implicitly supported by objects containing references
to other objects. Each slot of the objects may be equipped with a daemon,
i.e., a routine triggered when its slot is modified. Here, objects help modularize
world descriptions and daemons help divide the tasks: when values are updated,
there are usually a collection of actions to take, but some of them imply a global
side-effect for several users spread over the network while others are purely local.

Distribution/replication-oriented. In a distributed environment, objects
are usually replicated over the network and, when a user acts on such objects, a
Goal routine is executed which may contain code for sending messages to distant
replicates. Furthermore, objects can belong to several groups, which implies that
objects’ behavior at run-time may use several communication channels. Group
communication (Cf. section 2.2) should be a primitive of the environment pro-
vided to the programmer. Goal provides a high level interface to Ensemble.

Dynamic. Goal has been designed to make the virtual environment evolve.
It allows to dynamically insert objects in the environment as easily as a web
page is published on the Internet. Similarly, a new class can be defined by a user
and loaded dynamically in the environment while running; this new class can
then be accessed by another programmer and reused.

Reflectivity. All Goal entities can be introspected. With a class name, we
can know the list of its attributes and methods; with a given object, we can get
the name of its class and the values of its attributes.

Efficiency. Although Goal is an interpreted language, we have a very efficient
virtual machine, built on the top of the one of Objective Caml, a strongly-
typed functional programming language from the ML family; see Leroy, Rémy
et al. (1999) for a description of this language.

3.2 Interpretation and Objective Caml

Scripting languages have proven to be extremely useful both for extensions of
the system and for programmer interface (e.g. shell scripts, TCL, etc.) The fact
that scripting languages are interpreted is part of their success: they ensure very
easy prototyping, dynamic extensions and modifications (no need to recompile
and reinstall the software, which is ideal for distributed systems) and an extreme
comfort for the programmer thanks to the interaction with the interpreter.
The interpreted nature of Goal, together with the ease of extension, made it
possible to have different types of terminals: obviously, a 3D terminal in charge
of rendering the OpenGL information, but also a text terminal which is able to
listen to the world, change it, control it, etc. Other kinds of terminals will be easy



NET ‘ DISPLAY
AN

4

N2L: | L2N:1 | 1 p/

gvm  |e---o- proc

TERM

Fig. 3. Software architecture.

to develop; in particular, inferfaces with VR devices such as datagloves or head
mounted displays. Please note that Objective Caml can be easily interfaced with
other languages; for instance, the 3D rendering in URBI ET ORBI is performed
in C code.

The functional paradigm has proven to be suitable to implement most of the
transformations we apply on the distributed data, helping us to isolate the areas
where imperative instructions are truly needed. The development environment
is also attractive: thanks to the ability to mix compiled and interpreted code it
is fairly easy to observe the behavior at run-time. Finally, the performance of
the compiled executable outperforms Java.

In addition, since our project is based on Objective Caml, Ensemble, also
based on Objective Caml, appeared as an attractive choice for the distribution
layer.

3.3 Overview of the software architecture

A major issue in DVEs design is to ensure that network communication does
not degrade the interactivity between the machine and the user.

With this aim in view, our application is composed of three active modules,
depicted by a bold rectangle in figure 3. Each module is responsible for an
independent task, and offers particular services.

MMk (or kernel) is the core of our software; it receives a flow of instructions,
schedules their execution and manages the resources (files, memory, display
and communication). MMK includes the Goal Virtual Machine (GvM for
short) to process Goal instructions.



NET is in charge of the communications through the network; it handles the
connection/disconnection and information transfer. This module can be seen
as a layer over Ensemble.

DISPLAY (or renderer, or navigator) provides the user with “read” access to the
state of the world as known by MMEK, and with “write” access: when a user
moves or activates an element of the world, the display sends information to
MMEK. For sake of simplicity the data circuit is not represented in figure 3
and it will not be discussed touch.

Each task runs in a separate thread (symbolized by the letter T in figure 3).
Goal is expressive enough for programmers to introduce bugs in their programs,
such as deadlocks. However, the implementation, based on time slots, still guar-
antees that the system is fair: each task will be provided with the ability to make
a step.

In figure 3, the arrows represent channels, i.e., queues of messages/requests,
and not function calls. When a Goal instruction requires services (network, dis-
play etc.), the interpreter delegates the procedure call to the module proc. proc
then sends the procedure p to the proper module. Technically, p is a closure: it
contains both the procedure and the environment it needs. Then the module
applies the closure: once the whole environment is filled, the procedure is exe-
cuted. The receiving module is not blocked while awaiting further data: it still
executes other routines. This mechanism could be considered as an asynchronous
execution transfer.

The TERMinal is also represented; it is a shell (command interpreter) which
allows direct textual communication with MMK, via Goal instructions.

Several other projects have based their approach upon a kernel, such as
MAVERIK by Hubbold et al. (1996). One of the most striking differences between
the two projects lies in the fact that their approach is based upon modules, while
we stress the importance of the high level language, Goal. A detailed description
of our architecture is given by Fabre et al. (2000).

3.4 Example

A sample file containing few Goal instructions is given in figure 4. It defines the
interactive windmill depicted in the virtual landscape of figure 5.

The symbol @ indicates that the instruction is only sent to the local virtual
machine (alternatives are . and ! to broadcast the instruction to the members
of the communication group, respectively including and excluding the local ma-
chine). Lines 1 to 4 define the mill, lines 5 to 8 the sails, and lines 9 to 13 a
rotator to make the sails turn and to manage their speed.

Goal provides distribution primitives. Distributing data is the major chal-
lenge in large distributed worlds: ideally, any data that has to be shared or
transmitted between hosts should be distributed. But, in order to perform an
efficient distribution of the data we first have to classify it.



// file windmill.goal

@mill_shape = New Shape; // 1
@mill_shape <- Set file3DS = "mill.3ds"; // 2
@mill = New 3DGridObject; // 3
@mill <- Set shape = shape_mill; // 4
@sails_shape = New Shape; // 5
@sails_shape <- Set file3DS = "sails.3ds"; // 6
@sails = New 3DGridObject; /17
@sails <- Set shape = sails_shape; // 8
@rotator = New Rotator; // 9
Q@rotator <- Set target = sails; // 10
@rotator <- Set delay = 0.02; // 11
@listener = New RotatorListener; // 12
Q@listener <- Set eventTarget = sails; // 13

Fig. 4. Code sample.

Oversized objects, e.g. textures or classical 3D models (like the mill in the
example of the previous section), are considered as part of a standard library
that members must have available on their hosts (maybe via standard point-to-
point file transport protocols). Since we aim at large distributed systems (several
hundreds or thousands of participants), it is unreasonable to distribute such huge
constant values to each newcomer.

All other values are truly distributed values, that is created somewhere and
then propagated via the network. Nevertheless, for the sake of the bandwidth
economy, the remaining data is classified per priority. A high priority data is
more likely to be updated than low priority data. The priority of the various
attributes/objects is specified as part of their type: it is therefore completely
and cleanly integrated into Goal and handled seamlessly by the VE application.
For instance, a 3DGrid0bject is an object that decorates a grid cell; its priority
is medium.

Without entering the gory details, we also noted that shared values have a
completely distinct status from replicated values. In particular, it is forbidden
in Goal to set a shared value: one has to ask the object containing this value
to perform that task. Then, the usual daemon mechanism is launched. This
simple limitation, voluntarily introduced in Goal, appeared to save the VR-
programmers from many errors, leading them to question the status (replicated
or shared) of their values in a distributed world: there is a natural tendency to
use parsimony. In the example, the sails of the windmill have a fully predictable
behavior (they turn!) and frequent updates of their position would waste the
bandwidth. So, the replication is a natural solution, and each host has a local
timer.
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Fig. 5. A virtual landscape with a windmill.

4 Conclusion and criticism

We have presented our project URBI ET ORBI, its motivations, the rationale for
unusual design decisions. Specifically, we have detailed why we think that the
ad hoc language that we have developed, Goal, is suitable to describe large and
complex interactive virtual worlds. Goal is the natural high level interface to a
distribution kernel, the MMK, which makes heavy use of Ensemble in order to
ensure the coherence of the partial views each host has of the world.

The architecture of URBI ET ORBI is designed to face such difficulties while
ensuring real-time rendering. Conceptors of worlds can then take care over the
graphical aspect. To get immersive capabilities with URBI ET ORBI, the end-user
can today buy cheap commercial 3D glasses which rely on OpenGL to produce
3D sensations. Our experiments were limited to a fast LAN (Ethernet 100MB)
with PC equipped with 3D video cards: we typically reach 25 frames per seconds
with high quality images (see figure 5) and excellent interactivity.

A key aspect of our projet is the intensive use of the functional language
Objective Caml, which allows the developers to leverage powerful language sup-
port to attain high performance and flexibility. URBI ET ORBI differs from other
systems in that it is mostly scripted. The advantage is twofold. This feature
addresses the real need of being able to develop components that may be dy-
namically inserted into a distributed virtual environment, and it also allows to
dynamically adjust the configuration of the environment.

Many tasks remain to be fulfilled. The priority management has not yet
been implemented; the number of groups, their nature and qualities of services
have not been completely established. These elements should be fixed in our
current re-engineering of the prototype. Tests have only been carried out on a
high speed local network; a full scale test, with an environment spread over large
distances, still have to be performed. Nevertheless, the prototype behaves in a
very satisfactory manner.
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