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Abstract

In this article, we present an algorithm to compute the
convex hull of a binary shape. Efficient algorithms to
compute the convex hull of a set of points had been
proposed long time ago. For a binary shape, the com-
mon practice is to rely on one of them: to compute the
convex hull of binary shape, all pixels of the shape are
first listed, and then the convex hull is computed on
this list of points. The computed convex hull is finally
rasterized to provide the final result (as, for example,
in the famous scikit-image library [6]). To compute the
convex hull of an arbitrary set of points, the points of
the list that lie on the outline of the convex hull must be
selected (to simplify, we call these points “extrema”).
To find them, for an arbitrary set of points, it is neces-
sary to browse all the points but not in the particular
case of a binary shape. In this specific situation, the
extrema necessarily belong to the inner boundary of
the shape. It is a waste of time to browse all the pixels
as it is possible to discard most of them when we search
for these extrema. Based on this analysis, we propose
a new method to compute the convex hull dedicated
to binary shapes. This method browses as few pixels
as possible to select a small subset of boundary pixels.
Then it deduces the convex hull only from this sub-
set. As the size of the subset is very small, the convex
hull is computed in real time. We compare it with the
commonly used methods and common functions from
libraries to prove that our approach is faster. This
comparison shows that, for a very small shape, the dif-
ference is acceptable, but when the area of the shape
grows, this difference becomes significant. This leads
us to conclude that substituting current functions to
compute convex hull of binary shapes with our algo-
rithm in frequently used libraries would lead to a great
improvement.
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1 Introduction

Convex hull computation is a major task. It is used
in various situations in 2D as well as in 3D (and even
more), and most of the time this task requires effi-
ciency. It is the cornerstone of many algorithms [28]
like in [24, 37, 36] and inspires many models and solu-
tions [38, 15].

Several solutions have already existed for a long
time, and these solutions are still up to date. Current
research does not have proposed a new method that
has defeated these old algorithms (for mono-thread
approaches); they remain reference algorithms, even
if there are some tries [25, 7]. Anyway, research in
this topic is still active, but the vast majority of the
works focus on specific cases. With the growing usage
of GPU, current research works focus also on paral-
lel algorithms and algorithms efficient on GPU. How-
ever, for the simple case of a binary shape in im-
age processing, the common strategy is still to list
all the pixels of the shape, to compute the convex
hull using an efficient algorithm and then to go back
to the image to fill in and rasterize the computed
convex hull. It is the choice of popular tools such
as the famous scikit-image library [6]: the function
kimage.morphology.convex_hull_image lists all the
pixels in the shape and then computes the convex hull
using scipy.spatial.ConvexHull which relies on the
Qhull library [5]. MATLAB [2] has a similar strategy
with its function bwconvhull. It is the custom for this
specific case.

Based on this analysis, let’s have a look to the ref-
erence algorithms able to compute the convex hull of a
set of points. The keystone of these algorithms is to be
able to select in the set of points, as fast as possible,
the points that belong to the boundary of the convex
hull. (To simplify, we call these points “extrema” or
“extreme points.”)

In the following, we will note n the number of input
points and h the number of extreme points.

A reference algorithm to compute the convex hull of
a set of points is the Graham’s algorithm [26]. It is the
choice of the Pylene library, for example, [4]. There are
some variants of this algorithm [10]. It is also used as a
step in more complex algorithms [16]. Graham’s scan
starts by searching the lowest y-coordinate point P .
Then, all points P ′ are sorted according to the angle
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between the line (PP ′) and the x-axis. All points are
successively visited in that order to determine whether
they belong to the boundary of the convex hull or not.
This leads to require O(n log n) time. In [10], instead of
sorting points according to the angle, Andrew proposes
to sort points according to the x-coordinates of points.
He also proposes to determine the convex hull in two
steps: the upper part and the lower part.

Another algorithm is the QuickHull algorithm [12].
A well-known implementation is provided in the Qhull
library [5]. A specific version of this algorithm for
2D spaces has been exposed by Eddy in [18]. A non-
recursive version of this variation has been exposed by
Bykat in [14]. We then expect that Bykat’s version
be faster than Eddy’s version even if they both require
O(nh) time in the worst case. The QuickHull algorithm
starts by finding the leftmost and the rightmost points
(P1 and P2, respectively) in the set of points. These
two points belong to the convex hull. They determine
a line (P1P2) which separates the set of points into two
subsets. Then, the algorithm searches for the point P3
which is the furthest from this line. This point also
belongs to the boundary of the convex hull. All points
in the triangle P1P2P3 can be discarded as they do not
belong to the boundary of the convex hull. Then, we
iterate over the line (P2P3) and so on. The algorithm
stops when there are no remaining points.

The algorithm proposed by Akl and Toussaint [8]
relies also on a similar strategy to try to discard some
points. The idea in 2D is to form a convex quadrilat-
eral using four extreme points and then discard points
located inside the quadrilateral. It requires O(n log n)
time.

Another algorithm is the algorithm proposed by
Melkman [30]. This algorithm computes the convex
hull, while the points are being added. It requires O(n)
time.

To finish, we can cite the classical Jarvis march [27]
(gift wrapping algorithm) which requires O(nh) time.
The idea is to start from the leftmost point P (which
obviously belongs to the outline of the convex hull).
Then, the idea is to browse all other points in order to
find the leftmost point P ′ for which there is no point
on the left of [PP ′]. This idea is repeated until we go
back to point P in order to wrap all other points. This
march is used in other algorithms like in Chan’s algo-
rithm. Chan [16] proposes to compute a partition of
the points and compute the convex hull of each subset
(with Graham algorithm for example [26]) and then
deduce the final convex hull by a Jarvis march over
the convex hull of all subsets. This leads to require
O(n log h) time.

All these algorithms are rather old but still up to
date. Current research tries to improve the speed by
improvement of existing method or by using parallel
computing or also focus on specific cases. It is uncom-
mon to propose a new method for the general case.
A usual strategy to save time is to preprocess the input
points. Recently Alshamrani et al. [9] propose to im-

prove the speed of convex hull computation for a large
set of points by preprocessing points and discarding
many of them with a simple test to decrease the num-
ber of considered points and then speed up the convex
hull computation. After this preprocessing step, the
convex hull computation relies on the Graham algo-
rithm [26]. They show that this strategy for a large
set of points is faster than the Graham algorithm [26]
without preprocessing and also faster than the classi-
cal Jarvis march [27]. The idea of preprocessing is also
investigated in [31]. Another strategy to improve the
speed is to use parallel computing; to do so, current
research explores the usage of the GPU [33]. Similar
to the work on preprocessing exposed in [9], prepro-
cessing is also investigated [34] on the GPU. Current
research also focuses on specific cases or situations.
Nguyen et al. have proposed a solution for the spe-
cific case of computing the convex hull of a collection
of disks [32, 29]. Chan and Chen [17] consider solu-
tions that require limited storage and make only a few
passes over the input. Dynamic convex hull has also
been investigated [13] which allows to efficiently update
the convex hull if we remove or add points in the set of
points. Obviously, higher dimensions have been inves-
tigated like in [23, 22]. To finish, note that the deep
neural network has been used to compute approxima-
tion of the convex hull [11].

In this article, we expose an algorithm to compute
the convex hull specifically in the case of a binary
shape. In this case, we may not need to consider all
pixels to compute the convex hull. It is sufficient to
browse the points on the boundary of the shape. We
propose:

• a way to find extreme points without neither scan-
ning all pixels of the shape nor computing the edge
of the shape,

• a new method to compute the convex hull of a bi-
nary shape, thanks to our way of selecting extreme
points,

• a comparison between our method with other
methods from reference libraries and tools like
OpenCV [3],

To summary, we propose a new fast strategy to com-
pute the convex hull of a binary shape to use instead
of the commonly used algorithms in popular libraries.
This algorithm is compatible with real-time applica-
tions without relying on a GPU.

Our article is organized as follows: in Sect. 2 we
expose all the steps of the algorithm. In Sect. 3 we
compare our method with multiple algorithms and in
Sect. 4 we conclude.

2 Algorithm
2.1 Overview
We want to compute the convex hull of the binary
shape (a set) as illustrated in Fig. 1. The convex hull
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C of the shape S noted Hull(S) is the smallest convex
set which includes S. C is convex; this means:

∀(x, y) ∈ C2 ⇒ [x, y] ⊂ C (1)

In 2D, the convex hull of a set of points is the smallest
convex polygon, that encompasses all the points in the
set. For a binary shape, it is the smallest convex set
that encompasses the binary shape.

To be able to compute this convex hull, we first start
by computing the outline of the convex hull (Fig. 1b)
of the initial shape (Fig. 1a). To do so, we browse the
upper part of the shape to find the potential upper
maxima. We do the same with the lower part. Among
all detected points, we select those who really belong to
the boundary of the convex hull. To finish, we connect
all selected points to get the outline of the convex hull,
and then we fill in the region to get the complete convex
hull (Fig. 1c). Even if the extreme points of the convex
hull must lie over the boundary of the shape, we want
to avoid computing the boundary of the shape. We
try to browse as few pixels as possible to find these
extreme points in order to save time.

The complete scheme of the method is illustrated
in Fig. 2, and every step is exposed in the following
subsections.

2.2 Step-by-step algorithm
We want to compute the convex hull of a binary shape
(as in Fig. 2a). We look over every step of our algo-
rithm in the following subsections.

2.2.1 Find left and right boundaries

The first step is to find the first vertical segment of
the shape (the leftmost vertical segment) and the last
one (the rightmost vertical segment) as illustrated in
Fig. 2b. It is important because these two segments ob-
viously belong to the outline of the convex hull. There
is no difficulty for this step, assuming we know the
bounding box of the shape. You can start from the four
corners of the bounding box of the shape and browse
pixels vertically until you hit the shape. The four inter-
section pixels define the two searched segments. The
process is summarized in Algorithm 1. Another solu-
tion is to go throw the first and last columns to note
the first and last encountered points. It is just impor-
tant to notice that the segment may have holes or may
be 1 pixel long (Fig. 3).

2.2.2 Find upper and lower extrema candi-
dates

The second step is to find points of the shape that
belong to the outline of the convex hull. These points
belong obviously to the boundary of the shape and are
not inside the shape.

For simplicity, we call these points “ascending ex-
trema” (for those who lie on the upper part of the

Algorithm 1: Find left and right boundaries
Data: p_upper: the point (the coordinates

(x, y)) of the upper point of the
bounding rectangle of the binary shape,
p_lower: the point (the coordinates
(x, y)) of the lower point of the bounding
rectangle of the binary shape. I: the
image

Result: p1, p2, p3, p4: the 2 extremities of the
first and last vertical segments of the
shape

p = p_upper;
while I[p] 6= foreground do

p.y = p.y − 1
end
p1 = p;
p = (p_upper.x, p_lower.y);
while I[p] 6= foreground do

p.y = p.y + 1;
end
p2 = p;
p = p_lower;
while I[p] 6= foreground do

p.y = p.y + 1;
end
p3 = p;
p = (p_lower.x, p_upper.y);
while I[p] 6= foreground do

p.y = p.y − 1;
end
p4 = p;
return p1, p2, p3, p4;
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(a) A binary shape. (b) A binary shape with the
convex outline of the shape.

(c) The convex hull of the bi-
nary shape.

Figure 1: a/ a binary shape, b/ a binary shape with the outline of the convex hull, and c/ the convex hull of
this shape (with the outline of the convex hull).

shape) and “descending extrema” (for those who lie
on the lower part of the shape).

To find these points, we browse pixels horizontally,
from left to right (Fig. 2c), starting from the pixel just
above the left most segment of the shape. When we
hit a pixel of the shape, we browse pixels vertically un-
til we find the last pixel, and then we add this pixel
to a list of candidates. We restart browsing the pix-
els horizontally, starting above the last detected pixel.
We stop when we reach the right boundary (or the top
of the bounding box). We show the process in Algo-
rithm 2. We do the same but starting above the right-
most segment. Again we do the same but from right to
left (Fig. 2d); Algorithm 2 must be adapted for these
cases.

This provides two lists of possible points (the blue
one and the magenta one) on the outline of the con-
vex hull, for the upper part of the shape. We do the
same with the lower part of the shape (Fig. 2c and 2d).
We get also two lists of possible extreme points. It is
important to notice that:

• these selected points may or may not belong to
the outline, we will have to filter out some of them
later,

• an ascending extremum detected from left to right
(in blue) cannot be on the right of an ascending
extremum detected from right to left (in magenta).
It can also have a gap between the last blue and
the first magenta. This remark is also valid for
descending extrema (as illustrated in Fig. 2d).

Note that we can improve the speed of this step:

• when searching magenta maxima, we are not
obliged to go to the left border; we can stop earlier,
when we reach the last blue maxima,

• when reaching the upper bound (the lower bound
respectively) of the bounding box, we can stop be-
cause this means that we have detected the higher
(respectively the lower) point.

In Fig. 2d, the two dotted arrows illustrate the tests
that can be simplified and avoided.

Algorithm 2: Find left-to-right upper extrema
cadidates
Data: p_upper, p_lower: Coordinates of the

lower left and upper right points of the
bounding rectangle of the shape. I: the
image. p_start: the upper point of the
left most segment of the shape.

Result: candidates_upper_lr: An array with
the potential extreme points.

p = (p_start.x, p_start.y + 1);
while p.x < p_upper.x do

p.x = p.x + 1;
if I[p] 6= background then

while I[p] 6= background do
p.y = p.y + 1;
// if (p.y>p_upper.y) break ;

end
candidates_upper_lr.append((p.x, p.y −
1));
// if (p.y>p_upper.y) break

end
end
returncandidates_upper_lr;
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(a) A binary shape. (b) Find the left and right
boundaries.

(c) Find, from left to right,
ascending and descending ex-
trema.

(d) Find, from right to left,
ascending and descending ex-
trema.

(e) Join extrema and discard
extrema not on the convex
hull.

(f) Join last left extrema with
last right extrema.

(g) Take the union of edges
detected in b/ e/ and f/.

(h) Fill in the polygon.

Figure 2: Step-by-step algorithm.

(a) First and last vertical
segments detection: The first
or the last vertical segments
may content holes.

(b) First and last vertical
segments detection.

Figure 3: Finding the first and the last vertical seg-
ments.

2.2.3 Linking successive ascending extrema
(respectively descending extrema)

The goal is to find the outline of the convex hull of
the shape (Fig. 2e and 2f). To do so, we have to
browse ascending and descending extrema and select
the ones that lie on the boundary and discard all the
others (Fig. 4). Let’s start with the first ascending
extrema (the blue ones). We start from the first as-
cending extremum (the leftmost blue upper extremum)
and try to join it with all the following ones in the first
list. We keep only the segment with the higher slope
(Fig. 4b). Then, we start from the linked extremum
and link it with all the remaining following extrema
(Fig. 4c). Again, we keep the segment with the higher
slope. We keep on processing extrema until reaching
the last extremum (Fig. 4d). We discard all unlinked
extrema. This process is exposed in Algorithm 3. You
have to do the same with ascending extrema detected
from right to left (the magenta ones) and also descend-
ing extrema (the blue ones and the magenta ones). To
finish, we have to link the last ascending extrema de-
tected from left to right (the rightmost blue ascending
extrema) with the last detected from right to left (the
leftmost magenta ascending extrema) (and respectively
the descending extrema) (Fig. 2f).

2.2.4 Filling the shape

Now, we have the correct list of the extreme points (in
practice, it is more or less, the concatenation of the
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(a) The collection of ex-
trema.

(b) We link the first extrema
with all the other and keep
the higher slope.

(c) Link the selected extrema
with all the following and
keep the higher slope.

(d) Loop until the last ex-
tremum is linked and discard
unlinked extrema.

Figure 4: Link extrema, example with left to right ascending extrema.

Algorithm 3: Linking, from left to right, suc-
cessive ascending extrema
Data: candiates_upper_lr: An array with the

potential extreme points.
Result: extrema_upper_lr: An array with the

extreme points.
extrema_upper_lr.append(candiates_upper_lr[0]);

i = 0;
j = i + 1;
while j < size(candiates_upper_lr) do

selected = j;
max_slope =
slope(candiates_upper_lr[i], candiates_upper_lr[j]);

for j = i + 2 to
size(extrema_upper_lr)− 1 do

current_slope =
slope(candiates_upper_lr[i], candiates_upper_lr[j])
if current_slope ≥ max_slope then

selected = j;
max_slope = current_slope;

end
end
extrema_upper_lr.append(
candiates_upper_lr[selected]);
i = selected;
j = i + 1;

end
returncandiates_upper_lr;

four arrays computed by the Algorithm 3). We then
have the outline of the shape (Fig. 2g) which is the
union of results of steps illustrated in Figs. 2b, 2e and
2f. It remains only to fill in the shape (Fig. 2h).

In our implementation, we keep a track (from previ-
ous steps), for each column, of the height of the pixel
on the lower outline and the height of the pixel on the
higher outline in two separate arrays. We only have to
draw a vertical line from the lower pixel to the higher
pixel, and we loop on every column.

Note that depending on the architecture, it may be
more efficient to draw lines horizontally instead of ver-
tically.

3 Evaluation
In this section, we evaluate our algorithm. To do so,
we have automatically extracted multiple shapes and
characters from images to create a database (Fig. 5).
To do so, we segment and label various pictures and
extract randomly some connected component. We
store individually each connected component in a file
(with only two colors, the shape and the background).
The created database contains 21 262 images, each
containing only one shape, (i.e., one connected com-
ponent). To perform a fine comparison, we classify
every shape of the database according to the area of
the input shape: as the complexity of most algorithms
depends on the area of the shape, we have split the
database into different subsets according to the area
of the shape. The maximum area in this dataset is
around 75000 pixels. We have split the image of the
database into five different categories:

Category Area (pixel)
1 < 100
2 ≥ 100 and < 500
3 ≥ 500 and < 1 000
4 ≥ 1 000 and < 1 500
5 ≥ 1 500

The database is openly available at
https://www.lrde.epita.fr/dload/papers/fabrizio.23.jrtip.tar.bz2
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Figure 5: Samples of the evaluation database.

On this database we measure the speed of our algo-
rithm, and we compare with multiple algorithms. We
compare our algorithm with the optimized implemen-
tation of Graham [26] provided in Pylene [35]. We
use various algorithms implemented in the CGAL li-
brary [1]: Andrew variant of Graham algorithm [10],
Bykat algorithm [14], Akl and Toussaint algorithm [8],
Melkman algorithm [30], Eddy [18] and Jarvis al-
gorithm [27]. We also compare with the algorithm
Torch presented in [25, 7] and with QHull presented
in [12] using the implementation provided in [5]. Fi-
nally, we compare with the implementation provided
by OpenCV [3]. For OpenCV, we follow the documen-
tation: we compute the contour of the shape, and we
compute the convex hull only on these points (how-
ever we use a morphological operator to find the inner
boundary instead of the suggestion of the documenta-
tion to use Canny as it is much faster). We measure
the time to process all shapes for every subset and pro-
vide the mean time per shape. We measure also the
total time (no matter the category), but this measure
must be taken very cautiously as our category are un-
balanced (it may vary according to the proportion of
each category and then depends on the final applica-
tion). Every time we rank a method, we compute a
statistical test between the method and the following
one in the ranking to measure the representativeness
of the ranking. When the probability is high, we can
consider the two following methods as joint. When
the probability is low, we can consider the ranking as
correct and representative.

We provide two different comparisons. Firstly, we
provide the comparison of the time to compute extreme
points of the convex hull. It is the natural output of
all these algorithms (except ours). Second, as our goal
is to compute the convex hull of a binary shape, we
also compare the time to compute the convex hull of
the binary shape. This means that we add the time to
draw to final convex polygon in the measure.

All the measures are performed on a 4.00GHz
Intel(R) Core(T M) i7-6700K CPU.

3.1 Time to detect extreme points
To compare the speed of all these algorithms, we com-
pare the time to compute the extrema. It is the initial
output of all compared algorithms; then, these algo-
rithms are used without any modification. On the con-

trary, our algorithm starts from the initial shape but
the output is also binary shape. Then, for this compar-
ison we only measure the time of our algorithm when
it reaches the step illustrated in Fig. 2e. At this point,
we are able to provide a correct list of extrema.

The results are exposed in Tables 1 and 2.
Firstly, we see that our method is faster than all

other methods except for very small shapes where Gra-
ham implementation in Pylene is faster. The statistical
tests validate the ranks of our method.

Second, we notice that our method is much less im-
pacted by the area of the shape. By design, contrary
to all others, our method is impacted by the width plus
the height of the bounding box of the shape but not
the area of the shape - which is a great advantage over
all other methods. There is no big difference in time
for very small shapes, but there is a gap for big shapes
(Table 1). Even more the speed of our method on very
big shapes competes with the speed of other methods
on very small shapes. It is validated by the standard
deviation on the whole database (Table 2). Note that
OpenCV is also less affected by the size of the shape
as on small shape it is ranked almost last, and on big
shapes it is ranked 3rd.

We see also that Melkman’s method reaches quickly
the second place. By design Bykat’s method is faster
than Eddy’s method; it is consistent with our evalua-
tion. Jarvis big difference in the time spent by Jarvis
march over small shapes and over big shapes. The
QHull implementation is a bit deceptive. Furthermore,
it is not able to manage shape with a simple horizon-
tal line or simple vertical line, so we were obliged to
manage this special case.

This first evaluation shows that our method out-
performs most other methods simply to find extreme
points of the binary shape.

3.2 Time to compute and draw the con-
vex hull

To goal of our method is to compute the convex hull
of a binary shape and to compute the binary shape
of the convex hull. Other compared methods are not
designed for and are not able to compute the final bi-
nary shape. To allow the comparison, we have added
a simple step: we fill in the convex polygon. Again, we
measure the time according to the area of the shapes.
All the measures are exposed in Table 3 and in Table 4.

We see that our method outperforms all other meth-
ods. The ranking remains globally the same with very
slight modifications. Our method reaches the first
place even for small regions. The difference with and
without drawing the convex hull is smaller for our algo-
rithm compared to Graham implementation by Pylene.
Even if the modification is very small, it is enough to
change the ranking. The explanation seems to be that
the drawing is easier with the extrema provided by
our algorithm (two lists of extrema, one for the lower
points and one for the higher points), compared to the
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Area of the Number Method Rank Cumulative Time per shape Student
shapes (pixels) of shapes time (s) in mean (ms) test

<
10

0

31
95

Graham (Pylene) 1 0.008075 0.002527 0.000000Our 2 0.008827 0.002763 0.000000Melkman (CGAL) 3 0.012397 0.003880 0.000000Akl Toussaint (CGAL) 4 0.014846 0.004647 0.000000Bykat (CGAL) 5 0.016659 0.005214 0.001089Graham Andrew (CGAL) 6 0.017180 0.005377 0.000000Torch 7 0.019386 0.006068 0.000000Eddy (CGAL) 8 0.024843 0.007775 0.000000Jarvis (CGAL) 9 0.030710 0.009612 0.000000OpenCV 10 0.048496 0.015179 0.000000QHull 11 0.113024 0.035375

≥
10

0
an

d
<

50
0

11
03

1

Our 1 0.042670 0.003868 0.000000Graham (Pylene) 2 0.096971 0.008791 0.000000Melkman (CGAL) 3 0.117720 0.010672 0.000000Akl Toussaint (CGAL) 4 0.145559 0.013195 0.000000Bykat (CGAL) 5 0.166408 0.015085 0.000061Torch 6 0.174380 0.015808 0.000000Graham Andrew (CGAL) 7 0.210898 0.019119 0.000000Eddy (CGAL) 8 0.282300 0.025592 0.000044OpenCV 9 0.301670 0.027347 0.000000Jarvis (CGAL) 10 0.503573 0.045651 0.000000QHull 11 0.617158 0.055948

≥
50

0
an

d
<

10
00

34
63

Our 1 0.018028 0.005206 0.000000Graham (Pylene) 2 0.079673 0.023007 0.612507Melkman (CGAL) 3 0.080400 0.023217 0.000000Akl Toussaint (CGAL) 4 0.107172 0.030948 0.000000Bykat (CGAL) 5 0.116847 0.033742 0.011687Torch 6 0.120515 0.034801 0.000000OpenCV 7 0.166071 0.047956 0.201157Graham Andrew (CGAL) 8 0.170330 0.049186 0.000000Eddy (CGAL) 9 0.212502 0.061364 0.000000QHull 10 0.319649 0.092304 0.000000Jarvis (CGAL) 11 0.461119 0.133156

≥
10

00
an

d
<

15
00

13
31

Our 1 0.007140 0.005364 0.000000Melkman (CGAL) 2 0.048646 0.036548 0.000000Graham (Pylene) 3 0.054810 0.041179 0.000000Akl Toussaint (CGAL) 4 0.069883 0.052504 0.000051Bykat (CGAL) 5 0.072569 0.054522 0.000000Torch 6 0.074939 0.056303 0.000000OpenCV 7 0.086405 0.064917 0.000000Graham Andrew (CGAL) 8 0.113215 0.085060 0.000000Eddy (CGAL) 9 0.139875 0.105090 0.000000QHull 10 0.176440 0.132562 0.000000Jarvis (CGAL) 11 0.330541 0.248341

≥
15

00

22
42

Our 1 0.020787 0.009272 0.000000Melkman (CGAL) 2 0.242490 0.108158 0.000000OpenCV 3 0.341315 0.152237 0.566382Graham (Pylene) 4 0.348931 0.155634 0.157416Bykat (CGAL) 5 0.368778 0.164486 0.600380Akl Toussaint (CGAL) 6 0.376028 0.167720 0.232955Torch 7 0.394009 0.175740 0.000000Graham Andrew (CGAL) 8 0.666928 0.297470 0.000333Eddy (CGAL) 9 0.764354 0.340925 0.983669QHull 10 0.764884 0.341162 0.000000Jarvis (CGAL) 11 2.229410 0.994385

Table 1: Time comparison to compute the extreme points of the convex hull according to the size of the input
shape. The table provides the rank of the methods according to the speed. The last column provides a statistical
test between two rows to ensure that the comparison of successive mean times is relevant or not.
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Area of the Number Method Rank Cumulative Time per shape Standard Student
shapes (pixels) of shapes time (s) in mean (ms) deviation test

A
ll

21
26

2

Our 1 0.097452 0.004583 0.030156 0.000000Melkman (CGAL) 2 0.501653 0.023594 0.052811 0.000000Graham (Pylene) 3 0.588460 0.027677 0.086375 0.000000Akl Toussaint (CGAL) 4 0.713489 0.033557 0.086441 0.103929Bykat (CGAL) 5 0.741261 0.034863 0.079033 0.016195Torch 6 0.783229 0.036837 0.089893 0.000000OpenCV 7 0.943956 0.044396 0.076572 0.000000Graham Andrew (CGAL) 8 1.178551 0.055430 0.155563 0.000000Eddy (CGAL) 9 1.423874 0.066968 0.165871 0.000000QHull 10 1.991155 0.093649 0.147875 0.000000Jarvis (CGAL) 11 3.555353 0.167216 0.576035

Table 2: Time comparison to compute the extreme points of the convex hull. The table provides the rank of
the methods according to the speed. The last column provides a statistical test between two rows to ensure
that the comparison of successive mean times is relevant or not.

counterclockwise list of extrema.
Again, as for previous results (Table 1), results ex-

posed in Table 3 show that the area of the input
shape impacts the speed of all other algorithms (it is
consistent with the complexity of these algorithms).
OpenCV is less affected and again for small shapes it
is ranked almost last and for big shapes, it is ranked
3rd. Our algorithm is also not so much affected. It is
a great advantage in favor of our algorithm.

Furthermore, if we compare results from Table 1 and
Table 4 we notice that our method is faster to compute
the final binary shape than other methods to compute
only extreme points. This proves that the common
strategy that consists in providing the list of the points
of the shape and applying a generic algorithm to com-
pute the convex hull can be substituted by a much
better, specific strategy - as the one we propose in this
article.

3.3 Overall comparison
The evaluation shows that our method is:

• much faster than others,

• much more stable according to the area of the in-
put shape.

The order of magnitude of the time spent is lower with
our method than with other algorithms and popular
libraries (like with the reference library OpenCV). The
explanation is quite simple.

• Firstly, other methods are obliged to browse all
the pixels, while we browse only a very small sub-
set of the pixels of the bounding rectangle of the
shape. Exactly, if the dimension of the bounding
rectangle is wi×he, we browse at most 4he + 4wi
pixels (Algorithm 1 needs 2he at most: he for the
first vertical line, and again he for the last vertical
line, and Algorithm 2 and variations need at most
2he + 4wi: one instance need to browse the shape
horizontally (wi) and in mean half of the height of
the shape (he

2 ). So, 2he+4
(
wi + he

2
)

= 4he+4wi,
while others browse he× wi pixels. With the im-
provements suggested in Sect. 2.2.2, we can even

decrease the maximum number of browsed pixels
to 4he + 2wi (because one instance browses only
he
2 + wi

2 pixels in mean).

• Second, the other methods have to find the ex-
treme points in the complete sets of pixels of the
shape: even if the algorithm to find these extreme
points have an acceptable complexity (for exam-
ple, O(n log n) with n the number of input points
in the shape for the Graham’s algorithm), when
the size of the shape increase, it is rapidly penal-
izing. On the contrary, we search for the extreme
points in a very tiny subset of the boundary pix-
els of the shape. Then, even if the Algorithm 3
requires roughly O(m2) for the selection of these
extreme points (Sect. 2.2.3; Fig. 4), the research
is not penalizing because m, the number of candi-
date pixels, is very low. Furthermore, this subset
is split into four subsets, reducing again the size
of the data to process leading to around 4

(
m
4

)2

instead of m2 (usually with m � wi but in the
worst case m = 2wi).

The improvement brought by our algorithm is a ma-
jor improvement in terms of speed. But it is not the
only one. Our method also saves memory because, for
big shapes we do not need to list all the points in a
separate data structure, and we avoid the data dupli-
cation. For small shapes, the difference is negligible but
for big shapes it is a waste of memory. It is another
advantage of our method.

The limitation of our method is that the method is
designed to compute the convex hull of one connected
component. It is then difficult to compute the con-
vex hull of a set of unconnected shapes. The reason is
the way you search for extreme points (Sect. 2.2.2). If
they are some holes, we may miss some points when we
browse horizontally the pixels. It is possible to over-
come this limitation: we could draw lines from one
point of the first shape to all other shapes of the set.
With the Bresenham’s line algorithm, it is not costly.
But it is not always possible. We could also modify the
way we found the possible extreme points (Sect. 2.2.2)
using a strategy similar to the way we found the left
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and right boundaries (Sect. 2.2.1). But it is a bit more
time consuming.

Another limitation is that it is not easy to imple-
ment the search for extreme points in parallel. You
can split the search for the candidates and the selec-
tion among the candidates into four different process
easily but if you want to use more thread, it is more
difficult (obviously the drawing is not a problem).

Finally, there are lot of possible improvements (we
have already listed some in the description). For exam-
ple, we may process the shape horizontally or vertically
depending on the width and the height of the shape or
depending on the architecture of the memory.

4 Conclusion
In this article, we have proposed a new algorithm to
compute the convex hull of a binary shape. We have
shown that the development and the use of a specific
algorithm to compute the convex hull of a binary shape
save a lot of time. Using a non-specific algorithm, even
if the algorithm is efficient (with a good complexity),
may waste a part of the time browsing all the pix-
els. Unfortunately, it is the current usage in famous
libraries (scikit-image, OpenCV, MATLAB, etc.) to
rely on a non-specific algorithm. With our algorithm,
we are able to consider only a subset of edge points,
and we even avoid computing the edge of the shape,
and we are able to focus directly on a very small sub-
set of them (which is much faster).

In our evaluation, we have proven that our algo-
rithm is much faster than other libraries and algo-
rithms. We defeat other libraries (like the reference
tools OpenCV). We have also shown that the impact
of the area of the shape is high on all other algo-
rithms while our executing time remains low even on
big shapes. Our algorithm is then very stable against
the area of the shape. Our algorithm is then perfectly
compatible with a real-time application.

Furthermore, the list of extreme points is ordered in
a clever way, facilitating the polygon filling step as we
have the ordered list of lower extrema and the ordered
list of higher extrema, which simplifies the final draw-
ing. Substituting the current strategy for computing
the convex hull of binary shape in the common tools
with this new one would save a lot of time in many ap-
plications. The only restriction of this strategy is that
it is expected to have only one connected component
in the binary shape (if they are not aligned).

This algorithm has been successfully used in differ-
ent applications: for skew estimation in [19] and text
detection in [20, 21].

This article is the opportunity to encourage library
maintainers to use dedicated algorithms for convex hull
of a binary shape. Even if our algorithm is somewhat
naive, we do believe, and we have proven that substi-
tuting common algorithms with our algorithm in fre-
quently used and popular libraries would have a great
impact on the efficiency of these libraries and then on

a lot of software programs.
The computation of the convex hull of a binary shape

is important. We have improved this computation, but
with the growing usage of GPUs it is now important
to work on a GPU implementation of such algorithm
(i.e., an algorithm dedicated to binary shape, able to
focus on a subset of outer pixels) on a GPU. Also, we
have to be able to manage efficiently shapes split in
multiple connected components.
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Area of the Number Method Rank Cumulative Time per shape Student
shapes (pixels) of shapes time (s) in mean (ms) test

<
10

0

31
95

Our 1 0.008573 0.002683 0.000000Graham (Pylene) 2 0.010530 0.003296 0.000000Melkman (CGAL) 3 0.015161 0.004745 0.000000Graham Andrew (CGAL) 4 0.019004 0.005948 0.814418Bykat (CGAL) 5 0.019043 0.005960 0.299884Akl Toussaint (CGAL) 6 0.019217 0.006015 0.000000Torch 7 0.022776 0.007129 0.000000Eddy (CGAL) 8 0.027531 0.008617 0.000000Jarvis (CGAL) 9 0.033126 0.010368 0.000000OpenCV 10 0.052473 0.016424 0.000000QHull 11 0.123898 0.038779

≥
10

0
an

d
<

50
0

11
03

1

Our 1 0.052781 0.004785 0.000000Graham (Pylene) 2 0.116287 0.010542 0.000000Melkman (CGAL) 3 0.139475 0.012644 0.000000Bykat (CGAL) 4 0.183351 0.016621 0.612101Akl Toussaint (CGAL) 5 0.184146 0.016693 0.753503Graham Andrew (CGAL) 6 0.184810 0.016754 0.000000Torch 7 0.200652 0.018190 0.000000Eddy (CGAL) 8 0.302518 0.027424 0.000086OpenCV 9 0.320546 0.029059 0.000000Jarvis (CGAL) 10 0.520799 0.047212 0.000000QHull 11 0.678900 0.061545

≥
50

0
an

d
<

10
00

34
63

Our 1 0.025994 0.007506 0.000000Graham (Pylene) 2 0.091312 0.026368 0.306697Melkman (CGAL) 3 0.093238 0.026924 0.000000Bykat (CGAL) 4 0.126536 0.036539 0.974724Akl Toussaint (CGAL) 5 0.126572 0.036550 0.269309Graham Andrew (CGAL) 6 0.128301 0.037049 0.000054Torch 7 0.135977 0.039266 0.000000OpenCV 8 0.173518 0.050106 0.000000Eddy (CGAL) 9 0.226117 0.065295 0.000000QHull 10 0.347952 0.100477 0.000000Jarvis (CGAL) 11 0.470653 0.135909

≥
10

00
an

d
<

15
00

13
31

Our 1 0.012065 0.009064 0.000000Melkman (CGAL) 2 0.055846 0.041958 0.000000Graham (Pylene) 3 0.060791 0.045673 0.000000Bykat (CGAL) 4 0.078072 0.058657 0.766640Akl Toussaint (CGAL) 5 0.078206 0.058757 0.250616Graham Andrew (CGAL) 6 0.078726 0.059148 0.000000Torch 7 0.083490 0.062728 0.000000OpenCV 8 0.089761 0.067439 0.000000Eddy (CGAL) 9 0.147521 0.110835 0.000000QHull 10 0.190199 0.142899 0.000000Jarvis (CGAL) 11 0.335468 0.252042

≥
15

00

22
42

Our 1 0.044210 0.019719 0.000000Melkman (CGAL) 2 0.272068 0.121351 0.000000OpenCV 3 0.348798 0.155575 0.045627Graham (Pylene) 4 0.375958 0.167689 0.392168Bykat (CGAL) 5 0.388438 0.173255 0.957988Akl Toussaint (CGAL) 6 0.389142 0.173569 0.667959Graham Andrew (CGAL) 7 0.394949 0.176159 0.012750Torch 8 0.432974 0.193119 0.000000Eddy (CGAL) 9 0.795824 0.354962 0.581521QHull 10 0.810618 0.361560 0.000000Jarvis (CGAL) 11 2.247249 1.002341

Table 3: Time comparison to compute the binary shape of the convex hull according to the size of the input
shape. The table provides the rank of the methods according to the speed. The last column provides a statistical
test between two rows to ensure that the comparison of successive mean times is relevant or not.
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Area of the Number Method Rank Cumulative Time per shape Standard Student
shapes (pixels) of shapes time (s) in mean (ms) deviation test

A
ll

21
26

2

Our 1 0.143623 0.006755 0.031462 0.000000Melkman (CGAL) 2 0.575787 0.027081 0.058348 0.000001Graham (Pylene) 3 0.654878 0.030800 0.091449 0.000000Bykat (CGAL) 4 0.795440 0.037411 0.081442 0.912755Akl Toussaint (CGAL) 5 0.797283 0.037498 0.081674 0.618605Graham Andrew (CGAL) 6 0.805790 0.037898 0.084040 0.000207Torch 7 0.875869 0.041194 0.098539 0.000000OpenCV 8 0.985096 0.046331 0.075707 0.000000Eddy (CGAL) 9 1.499512 0.070525 0.171304 0.000000QHull 10 2.151566 0.101193 0.155653 0.000000Jarvis (CGAL) 11 3.607296 0.169659 0.578666

Table 4: Time comparison to compute the binary shape of the convex hull. The table provides the rank of the
methods according to the speed. The last column provides a statistical test between two rows to ensure that
the comparison of successive mean times is relevant or not.
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