
A Generic Approach to
Quantitative Verification

Habilitation à diriger des recherches
de l'Université Paris-Saclay

présentée et soutenue à Saclay,
le 10 mai 2022, par

Uli FAHRENBERG

Composition du jury

Christel BAIER
Professeur, Technische Universität
Dresden, Allemagne

Rapportrice

Paul-André MELLIÈS
Directeur de recherche, CNRS &
Université Paris Denis Diderot

Rapporteur

Rob VAN GLABBEEK
Conjoint Professor, The University
of New South Wales, Australia

Rapporteur

Nathalie BERTRAND
Directrice de recherche, Inria
Rennes - Bretagne Atlantique

Examinatrice

Patricia BOUYER-DECITRE
Directrice de recherche, CNRS &
ENS Paris-Saclay

Examinatrice

Georg STRUTH
Professeur, The University of
Sheffield, UK

Examinateur

H
a
b

il
it

a
ti

o
n

 à
 d

ir
ig

e
r

d
e
s

re
c
h

e
rc

h
e
s

ar
X

iv
:2

20
4.

11
30

2v
1

 [
cs

.L
O

]
 2

4
A

pr
 2

02
2

Titre : Une approche générique à la vérification quantitative

Mots clés : vérification quantitative, compositionnalité, incrémentalité, robustesse

Résumé : Ce mémoire porte sur la vérifica-
tion quantitative, c’est-à-dire la vérification des
propriétés quantitatives des systèmes quantitatifs.
Ces systèmes se retrouvent dans de nombreuses
applications, et leur vérification quantitative est
importante, mais aussi assez complexe. En par-
ticulier, étant donné que la plupart des systèmes
trouvés dans les applications sont plutôt larges, il
est alors essentiel que les méthodes soient compo-
sitionnelles et incrémentielles.
Afin d’assurer la robustesse de la vérification,
nous remplaçons les réponses booléennes de la
vérification standard par des distances. Selon le
contexte de l’application, de nombreux types de
distances différentes sont utilisées dans la vérifi-
cation quantitative. Par conséquent, il est néces-
saire d’avoir une théorie générale des distances de
systèmes qui puisse s’abstraire des distances con-
crètes, et de développer une vérification quanti-
tative qui est indépendante de la distance. Nous
sommes de l’avis que dans une théorie de la véri-
fication quantitative, les aspects quantitatifs de-
vraient être traités, tout autant que les aspects

qualitatifs, comme des éléments d’entrée d’un
problème de vérification.
Dans ce travail, nous développons de la sorte une
théorie générale de la vérification quantitative.
Nous supposons comme entrée une distance en-
tre traces, ou exécutions, puis utilisons la théorie
des jeux à objectifs quantitatifs pour définir des
distances entre systèmes quantitatifs. Différentes
versions du jeu de bisimulation (quantitatif) don-
nent lieu à différents types de distances : distance
de bisimulation, distance de simulation, distance
d’équivalence de trace, etc., permettant de con-
struire une généralisation quantitative du spec-
tre temps linéaire–temps de branchement de van
Glabbeek.
Nous étendons notre théorie générale de la véri-
fication quantitative à une théorie des spécifica-
tions quantitatives. Pour cela nous utilisons des
systèmes de transitions modaux, et nous dévelop-
pons les propriétés quantitatives des opérateurs
usuels pour les théories de spécifications. Tout
cela est indépendant de la distance concrète entre
les traces utilisée.

Title: A Generic Approach to Quantitative Verification

Keywords: quantitative verification, compositionality, incrementality, robustness

Abstract: This thesis is concerned with quan-
titative verification, that is, the verification of
quantitative properties of quantitative systems.
These systems are found in numerous applica-
tions, and their quantitative verification is impor-
tant, but also rather challenging. In particular,
given that most systems found in applications are
rather big, compositionality and incrementality of
verification methods are essential.
In order to ensure robustness of verification, we
replace the Boolean yes-no answers of standard
verification with distances. Depending on the
application context, many different types of dis-
tances are being employed in quantitative verifi-
cation. Consequently, there is a need for a general
theory of system distances which abstracts away
from the concrete distances and develops quan-
titative verification at a level independent of the
distance. It is our view that in a theory of quanti-
tative verification, the quantitative aspects should
be treated just as much as input to a verification

problem as the qualitative aspects are.
In this work we develop such a general theory
of quantitative verification. We assume as in-
put a distance between traces, or executions, and
then employ the theory of games with quantita-
tive objectives to define distances between quan-
titative systems. Different versions of the quan-
titative bisimulation game give rise to different
types of distances, viz. bisimulation distance, sim-
ulation distance, trace equivalence distance, etc.,
enabling us to construct a quantitative general-
ization of van Glabbeek’s linear-time–branching-
time spectrum.
We also extend our general theory of quantitative
verification to a theory of quantitative specifica-
tions. For this we use modal transition systems,
and we develop the quantitative properties of the
usual operators for behavioral specification theo-
ries. All this is independent of the concrete dis-
tance between traces which is utilized.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 8
1.3 Applications . 25
1.4 Conclusion and Perspectives . 28
1.5 About the Author . 31
1.6 Acknowledgments . 41

2 Quantitative Analysis of Weighted Transition Systems 43
2.1 Weighted transition systems . 43
2.2 Quantitative Analysis . 44
2.3 Properties of distances . 51
2.4 Conclusion . 53

3 A Quantitative Characterization of Weighted Kripke
Structures in Temporal Logic 55
3.1 Preliminaries . 55
3.2 Weighted CTL . 56
3.3 Bisimulation . 59
3.4 Characterization . 61
3.5 Conclusion . 64

4 Metrics for Weighted Transition Systems: Axiomatization 65
4.1 Simulation distances . 65
4.2 Axiomatizations for Finite Weighted Processes 68
4.3 Axiomatizations for Regular Weighted Processes 72

5 The Quantitative Linear-Time–Branching-Time Spectrum 77
5.1 Traces, Trace Distances, and Transition Systems 77
5.2 Examples of Trace Distances 78
5.3 Quantitative Ehrenfeucht-Fraïssé Games 79
5.4 General Properties . 82
5.5 The Distance Spectrum . 85
5.6 Recursive Characterizations . 90

i

Contents

5.7 Recursive Characterizations for Example Distances 97

6 Weighted Modal Transition Systems 101
6.1 Weighted Modal Transition Systems 101
6.2 Thorough and Modal Refinement Distances 103
6.3 Relaxation . 111
6.4 Limitations of the Quantitative Approach 113
6.5 Structural Composition and Quotient 116
6.6 Conclusion . 121

7 General Quantitative Specification Theories with Modal
Transition Systems 123
7.1 Structured Modal Transition Systems 123
7.2 Refinement Distances . 129
7.3 Structural Composition and Quotient 135
7.4 Conjunction . 143
7.5 Logical Characterizations . 148

8 Logical vs. Behavioral Specifications 151
8.1 Specification Formalisms . 151
8.2 Structural Equivalence . 157
8.3 Specification Theory . 167
8.4 Related Work . 183
8.5 Conclusion . 184

9 Compositionality for Quantitative Specifications 187
9.1 Structured Labels . 187
9.2 Specification Formalisms . 189
9.3 Specification theory . 194
9.4 Robust Specification Theories 200
9.5 Conclusion . 216

10 References 219

ii

1 Introduction

This thesis is concerned with quantitative verification, that is, the verification
of quantitative properties of quantitative systems. These systems are found
in numerous applications, and their quantitative verification is important, but
also rather challenging. In particular, given that most systems found in appli-
cations are rather big, compositionality and incrementality are essential. That
is, quantitative verification should be applied as much as possible to subsys-
tems and at as high a level as possible, and then verified partial specifications
should be composed and refined into an implementation.

Much work has been done in the area of compositional and incremental
design, but robust quantitative frameworks are lacking. This thesis presents
work published between 2009 and 2020 by the author and various co-authors
which attempts to introduce such a framework. Much remains to be done,
in particular in applications to real-time and hybrid systems, but we believe
that the foundations laid out here will be useful in this endeavor.

1.1 Motivation

1.1.1 Quantitative Verification

Motivated by applications in real-time systems, hybrid systems, embedded
systems, and other areas, formal verification has seen a trend towards modeling
and analyzing systems which contain quantitative information. Quantitative
information can thus be a variety of things: probabilities, time, tank pressure,
energy intake, etc.

A number of quantitative models have been developed: probabilistic au-
tomata [SL94]; stochastic process algebras [Hil96]; timed automata [AD94];
hybrid automata [ACH+95]; timed variants of Petri nets [MF76,Han93]; con-
tinuous-time Markov chains [Ste94]; etc. Similarly, there is a number of spec-
ification formalisms for expressing quantitative properties: timed computa-
tion tree logic [HNSY94]; probabilistic computation tree logic [HJ94]; metric
temporal logic [Koy90]; stochastic continuous logic [ASSB00]; etc. Quanti-
tative model checking, the verification of quantitative properties for quanti-
tative systems, has also seen rapid development: for probabilistic systems in
PRISM [KNP02] and PEPA [GH94]; for real-time systems in Uppaal [LPY97],

1

1. Introduction

x := 0 close

x ≥ 60 train

A

x := 0 close

x ≥ 58 train

B

x := 0 close

x ≥ 1 train

C

Figure 1.1: Three timed automata modeling a train crossing.

RED [WME93], TAPAAL [BJS09] and Romeo [GLMR05]; and for hybrid sys-
tems in HyTech [HHWT97], SpaceEx [FGD+11] and HySAT [FH07], to name
but a few.

Quantitative model checking has, however, a problem of robustness. When
the answers to model checking problems are Boolean—either a system meets
its specification or it does not—then small perturbations in the system’s pa-
rameters may invalidate the result. This means that, from a model checking
point of view, small, perhaps unimportant, deviations in quantities are indis-
tinguishable from larger ones which may be critical.

As an example, Figure 1.1 shows three simple timed-automaton models of
a train crossing, each modeling that once the gates are closed, some time will
pass before the train arrives. Now assume that the specification of the system
is

The gates have to be closed 60 seconds before the train arrives.

Model A does guarantee this property, hence satisfies the specification. Model
B only guarantees that the gates are closed 58 seconds before the train arrives,
and in model C, only one second may pass between the gates closing and the
train.

Neither model B or C satisfy the specification, so this is the result which
a model checker like for example Uppaal would output. What this does not
tell us, however, is that model C is dangerously far away from the specifica-
tion, whereas model B only violates it slightly and may be acceptable given
other engineering constraints, or may be more easily amenable to satisfy the
specification than model C.

In order to address the robustness problem, our approach is to replace
the Boolean yes-no answers of standard verification with distances. That is,
the Boolean co-domain of model checking is replaced by the non-negative real
numbers. In this setting, the Boolean true corresponds to a distance of zero,
and false corresponds to any non-zero number, so that quantitative model

2

1.1. Motivation

checking can now tell us not only that a specification is violated, but also
how much it is violated, or how far the system is from corresponding to its
specification.

In the example of Figure 1.1 and for a simple definition of system distances,
the distance from A to our specification would be 0, whereas the distances
from B and C to the specification would be 2 and 59, respectively. The
precise interpretation of distance values will be application-dependent; but in
any case, it is clear that C is much farther away from the specification than
B is.

1.1.2 Specification Theories

One of the major current challenges to rigorous design of software systems
is that these systems are becoming increasingly complex and difficult to rea-
son about [Sif11]. As an example, an integrated communication system in
a modern airplane can have more than 10900 distinct states [BBB+10], and
state-of-the-art tools offer no possibility to reason about, and model check,
the system as a whole. One promising approach to overcome such problems is
the one of compositional and incremental design. Here the reasoning is done
as much as possible at higher specification levels rather than with implementa-
tions; partial specifications are proven correct and then composed and refined
until one arrives at an implementation model. Practical experience indicates
that this is a viable approach [Str,SPE].

Specifications of system requirements are high-level finite abstractions of
possibly infinite sets of implementations. A model of a system is considered
an implementation of a given specification if the behavior defined by the im-
plementation is implied by the description provided by the specification.

Any practical specification formalism comes equipped with a number of
operations which permit compositional and incremental reasoning. The first
of these is a refinement relation which allows to successively distill specifi-
cations into more detailed ones and eventually into implementations. In an
implementation, all optional behavior defined in the specification has been
decided upon in compliance with the specification. Also needed is an opera-
tion of logical conjunction which allows to combine specifications so that the
systems which refine the conjunction of two specifications are precisely the
ones which satisfy both of them. Refinement and conjunction together permit
incremental reasoning as specifications are successively refined and conjoined.

For compositional reasoning, one needs another operation of structural
composition which allows to infer specifications from sub-specifications of in-
dependent requirements, mimicking at the implementation level for example
the interaction of components in a distributed system. A partial inverse of
this operation is given by a quotient operation which allows to synthesize a
specification of missing components from an overall specification and an im-
plementation which realizes a part of that specification.

3

1. Introduction

receive
deliver

check

deliver

Figure 1.2: Modal transition system modeling a simple email system, with
an optional behavior: Once an email is received it may e.g., be scanned for
containing viruses, or automatically decrypted, before it is delivered to the
receiver.

Over the years, there have been a series of advances on specification the-
ories [dAH05,CdAHM02,DLL+10,Del10,LT89,Nym08,Thr11]. The predom-
inant approaches are based on modal logics and process algebras but have
the drawback that they cannot naturally embed both logical and structural
composition within the same formalism [Lar89]. Hence such formalisms do
not permit to reason incrementally through refinement.

In order to leverage these problems, the concept of modal transition sys-
tems was introduced [Lar89]. In short, modal transition systems are labeled
transition systems equipped with two types of transitions: must transitions
which are mandatory for any implementation, and may transitions which are
optional for implementations. It is well established that modal transition
systems match all the requirements of a reasonable specification theory, and
much progress has been made in this area, see for example [Nym08,GLS08,
GHJ01, GLLS05] or [AHL+08] for an overview. Also, practical experience
shows that the formalism is expressive enough to handle complex industrial
problems [Str,SPE].

As an example, consider the modal transition system shown in Figure 1.2
which models the requirements of a simple email system in which emails are
first received and then delivered. Before delivering the email, the system
may check or process the email, for example for en- or decryption, filtering of
spam emails, or generating automatic answers using an auto-reply feature (see
also [Hal00]). Must transitions, representing obligatory behavior, are drawn as
solid arrows, whereas may transitions, modeling optional behavior, are shown
as dashed arrows: hence any implementation of this email system specification
must be able to receive and deliver email, and it may also be able to check
arriving email before delivering it. No other behavior is allowed.

Implementations can also be represented within the modal transition sys-
tem formalism, simply as specifications without may transitions. Here, any
implementation choice has been resolved, so that implementations are (isomor-
phic to) plain labeled transition systems. Formally, for a labeled transition
system to be an implementation of a given specification, we require that the
states of the two objects are related by a refinement relation with the prop-
erty that all behavior required by the specification has been implemented, and

4

1.1. Motivation

receive
deliver

check

check

deliver

deliver

Figure 1.3: An implementation of the simple email system in Figure 1.2 in
which we explicitly model two distinct types of email pre-processing.

receive, [1, 3]

deliver, [1, 4]

check, [0, 5]

deliver, [1, 2]

Figure 1.4: Specification of a simple email system, with integer intervals
modeling time constraints for performing the corresponding actions.

that any implementation behavior is permitted in the specification. Figure 1.3
shows an implementation of our email specification with two different checks,
leading to distinct processing states.

1.1.3 Quantitative Specification Theories

In recent work [JLS12, BJL+12a, BJL+12b, BKL+12], modal transition sys-
tems have been extended by adding richer information to the usual discrete
label set of transition systems, permitting to reason about quantitative as-
pects of models and specifications. These quantitative labels can be used to
model and analyze for example timing behavior [HMP05,DLL+10], resource
usage [RLS06,BJL+12b], or energy consumption [BFLM11,FJLS11].

In particular, [JLS12] extends modal transition systems with integer inter-
vals and introduces corresponding extensions of the above operations which
observe the added quantitative information, and [BJL+12a] generalizes this
theory to general structured labels. Both theories are, however, fragile in the
sense that they rely on Boolean notions of satisfaction and refinement: as
refinement either holds or does not, they are unable to quantify the impact of
small variations in quantities.

An example of a quantitative specification is shown in Figure 1.4. The
intuition is that any concrete implementation must be able to receive and
deliver email, within one to three and one to four time units, respectively; but
it also may be able to check incoming email, e.g., for viruses, before delivering

5

1. Introduction

receive, 2

deliver, 3

check, 1

(a)

receive, 4

deliver, 3

(b)

receive, 3

deliver, 3

check, 1

deliver, 3

(c)

receive, 2

deliver, 3

(d)

Figure 1.5: Four implementations of the simple email system in Figure 1.4.

it. No other behavior is permitted.
Figure 1.5 shows four different implementation candidates for the speci-

fication of Figure 1.4. The first candidate, in Figure 1.5(a), has an error in
the discrete structure: after receiving an email, it may check the email in-
definitely. Hence it does not satisfy the specification. The second candidate,
in Figure 1.5(b), is also problematic: not implementing the checking part of
the specification is entirely permissible, but it takes too long to receive email.
Thus, if the timing constraints are abstracted away, it is a perfectly good
implementation; but the quantitative timing constraints are off. The imple-
mentation candidate in Figure 1.5(c) has similar problems, as it takes too long
to deliver emails after checking them. The transition system in Figure 1.5(d)
is, finally, a true implementation of the specification.

An important observation is, now, that even though the systems in Figs.
1.5(b) and 1.5(c) strictly are not implementations of the email system spec-
ification, they conform much better to it than the system in Figure 1.5(a).
Intuitively, they “almost” comply with the specification; given some other
engineering constraints, they might indeed be considered “good enough” com-
pared to the specification. It is, then, this “almost” and “good enough” which
we shall attempt to formalize in this work.

Our point of view is, more generally speaking, that any quantitative spec-
ification formalism falls short with a Boolean notion of satisfaction and re-
finement. If the specification formalism is intended to model quantitative
properties, then it is of little use to know that a proposed implementation
does not precisely adhere to a specification; much more useful information
is obtained by knowing how well it implements the specification, or how far
it is deviating. Of course, the answer to this “how far” question might be
∞, due to discrete errors as in Figure 1.5(a); but in case it is finite, useful
knowledge may be gained, for example as to how much more implementation

6

1.1. Motivation

effort is needed, or whether one can satisfy oneself with this slightly imperfect
implementation. Our approach will hence again be to replace satisfaction and
refinement relations by satisfaction and refinement distances.

1.1.4 Related Work

The distance-based approach to quantitative verification has been developed
the furthest for probabilistic and stochastic systems. Panangaden and De-
sharnais et.al. have worked with distances for Markov processes in [DGJP04,
FPP05,DGJP99,DLT08,DJGP02,Pan09,LMP12,BBLM13] and other papers,
and van Breugel and Worrell et.al. have developed distances for probabilistic
transition systems in [vBW05,vBW01,vBW06]. De Alfaro and Stoelinga et.al.
have worked on distances between probabilistic systems and specifications
in [dAFH+05,dAHM03,dAMRS07,CdAF+06,CdAMR10,dAMRS08,dAFS04]
and other papers.

For real-time and hybrid systems, some explicit work on distances is avail-
able in [HMP05,CHP11,QFD11]. Otherwise, distances have been used in ap-
proaches to robust verification [LLTW11,BLM+11], and Girard et.al. have de-
veloped a theory of approximate bisimulation for robust control [ZG09,GP07].

Also general work on distances for quantitative systems where the precise
meaning of the quantities remains unspecified has been done. Van Breugel
has developed a general theory of behavioral pseudometrics [vB01,BvBR98,
vB96,vB05]. Henzinger et.al. have employed distances in a software engineer-
ing context in [ČHR12,ČHR10] and for abstraction refinement and synthesis
in [ČHR13,ČH11,ČCH+11,ČCHR14,CdAF+06].

Common to all the above distance-based approaches is that they introduce
distances between systems, or between systems and specifications, and then
employ these for approximate or quantitative verification. However, depend-
ing on the application context, a plethora of different distances are being used,
motivating the need for a general theory. This is a point of view which is also
argued in [ČHR13,CdAF+06].

To be more specific, most of the above approaches can be classified ac-
cording to the way they measure distances between executions, or system
traces. The perhaps easiest such way is the point-wise distance, which mea-
sures the greatest individual distance between corresponding points in the
traces. Theory for this specific distance has been developed in [dAFS09,
dAFH+05, dAFS04, BLM+11] and other papers. Sometimes discounting is
applied to diminish the influence of individual distances far in the future, for
example in [dAFS09,dAFH+05,dAFS04].

Another distance which has been used is the accumulating one, which
sums individual distances along executions. Two major types have been con-
sidered here: the discounted accumulating distance e.g., in [ČHR10,dAHM03,
AT11,dAFH+05] and the limit-average accumulating distance e.g., in [ČHR10,

7

1. Introduction

AT11]. Both are well-known from the theory of discounted and mean-payoff
games [EM79,ZP96].

For real-time systems, a useful distance is the maximum-lead distance
of [HMP05] which measures the maximum difference between accumulated
time delays along traces. For hybrid systems, things are more complicated,
as distances between hybrid traces have to take into account both spatial and
timing differences, see for example [QFD11,Gir10,ZG09,GP07].

1.1.5 A General Theory of Quantitative Verification
Depending on the application context, many different types of distances are
being employed in quantitative verification. Consequently, there is a need for
a general theory of system distances which abstracts away from the concrete
distances and develops quantitative verification at a level independent of the
distance. It is our view that in a theory of quantitative verification, the
quantitative aspects should be treated just as much as input to a verification
problem as the qualitative aspects are.

In this work we develop such a general theory of quantitative verifica-
tion. We assume as input a distance between traces, or executions, and then
employ the theory of games with quantitative objectives to define distances
between quantitative systems. Different versions of the (quantitative) bisimu-
lation game give rise to different types of distances, viz. bisimulation distance,
simulation distance, trace equivalence distance, etc., enabling us to construct
a quantitative generalization of the linear-time–branching-time spectrum.

We also extend our general theory of quantitative verification to a theory
of quantitative specifications. For this we use modal transition systems, and
we develop the quantitative properties of the usual operators for behavioral
specification theories. All this is independent of the concrete distance between
traces which is utilized.

1.2 Contributions
In the following chapters we present work based on eight papers, published
between 2009 and 2020 by the author of this thesis with different co-authors,
on quantitative verification and quantitative specification theories. The first
three, Chapters 2 to 4, are each concerned with properties of three specific sys-
tem distances: the point-wise distance, the discounted accumulating distance,
and the maximum-lead distance. The next Chapter 5 develops our general
theory of quantitative verification and shows basic properties. Chapters 6
and 7 then extend this theory to specification theories, first for the discounted
accumulating distance in Chapter 6 and then for the general setting in Chap-
ter 7. In Chapter 8 we take a break from the quantitative setting in order
to introduce an extension of modal transition systems and show that the so-
obtained specification theory is closely related to other popular specification

8

1.2. Contributions

formalisms. The final Chapter 9 extends these results to general quantitative
and develops their properties.

Compared to their sources, all chapters have been heavily redacted in
order to correct errors, unify notation, and smoothen the presentation. Any
remaining errors are the sole responsibility of the author of this thesis.

1.2.1 Geometric Preliminaries

Before we can give an overview of our contributions, we recall a few standard
notions from geometry and topology which we will use throughout. Let R≥0∪
{∞} denote the extended non-negative reals.

A hemimetric on a set X is a function d : X × X → R≥0 ∪ {∞} which
satisfies d(x, x) = 0 and d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality) for
all x, y, z ∈ X. The hemimetric is said to be symmetric if also d(x, y) = d(y, x)
for all x, y ∈ X; it is said to be separating if d(x, y) = 0 implies x = y.

A symmetric hemimetric is generally called a pseudometric, and a hemi-
metric which is both symmetric and separating is simply a metric. The tuple
(X, d) is called a (hemi/pseudo)metric space.

Note that our hemimetrics are extended in that they can take the value
∞. This is convenient for several reasons, cf. [Law73], one of them being that
it allows for a disjoint union, or coproduct, of hemimetric spaces: the disjoint
union of (X1, d1) and (X2, d2) is the hemimetric space (X1, d1)∪+ (X1, d2) =
(X1∪+X2, d) where points from different components are infinitely far away
from each other, i.e., with d defined by

d(x, y) =


d1(x, y) if x, y ∈ X1,

d2(x, y) if x, y ∈ X2,

∞ otherwise.

The product of two hemimetric spaces (X1, d1) and (X2, d2) is the hemimetric
space (X1, d1)× (X2, d2) = (X1×X2, d) with d given by d((x1, x2), (y1, y2)) =
max(d1(x1, y1), d2(x2, y2)).

The symmetrization of a hemimetric d on X is the symmetric hemimetric
d̄ : X × X → R≥0 ∪ {∞} defined by d̄(x, y) = max(d(x, y), d(y, x)); this is
the smallest among all pseudometrics d′ on X for which d ≤ d′. The topology
generated by a hemimetric d on X is defined to be the same as the one
generated by its symmetrization d̄; it has as open sets all unions of open balls
B(x; r) = {y ∈ X | d̄(x, y) < r}, for x ∈ X and r > 0.

A continuous function f : X → X on a pseudometric space (X, d) is called
a contraction if there exists 0 ≤ α < 1 (its Lipschitz constant) such that
d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X.

Two pseudometrics d1, d2 on X are said to be

9

1. Introduction

• topologically equivalent provided that for all x ∈ X and all ε ∈ R+,
there exists δ ∈ R+ such that d1(x, y) < δ implies d2(x, y) < ε and
d2(x, y) < δ implies d1(x, y) < ε for all y ∈ X,

• Lipschitz equivalent if there exist m,M ∈ R+ such that md1(x, y) ≤
d2(x, y) ≤Md1(x, y) for all x, y ∈ X.

Hemimetrics are topologically or Lipschitz equivalent if their symmetrizations
are.

Topological equivalence is the same as asking the identity function id :
(X, d1)→ (X, d2) to be a homeomorphism, and Lipschitz equivalence implies
topological equivalence.

Topological equivalence of d1 and d2 is also the same as requiring the
topologies generated by d1 and d2 to coincide. Topological equivalence hence
preserves topological notions such as convergence of sequences: If a sequence
(xj) of points in X converges in one pseudometric, then it also converges in
the other. As a consequence, topological equivalence of hemimetrics d1 and
d2 implies that for all x, y ∈ X, d1(x, y) = 0 if, and only if, d2(x, y) = 0.

Topological equivalence is the weakest of the common notions of equiva-
lence for metrics; it does not preserve geometric properties such as distances or
angles. We are hence mainly interested in topological equivalence as a tool for
showing negative properties; we will later prove a number of results on topo-
logical inequivalence of hemimetrics which imply that any other reasonable
metric equivalence, such as Lipschitz equivalence, also fails for these cases.

The Hausdorff hemimetric associated with a hemimetric d : X × X →
R≥0 ∪ {∞} is the function dH : 2X × 2X → R≥0 ∪ {∞} given for subsets
A,B ⊆ X by

dH(A,B) = sup
x∈A

inf
y∈B

d(x, y).

This is a well-known construction for metric spaces, cf. [Mun00,AB07]; there
it is usually symmetrized and defined only for closed subsets, in which case
it is a metric. The following alternative formulation follows straight from the
definition:

1.1 Proposition. For a hemimetric d on X, A,B ⊆ X, and ε ∈ R+, we have
d(A,B) ≤ ε if and only if for any x ∈ A there exists y ∈ B for which
d(x, y) ≤ ε.

A sequence (xj) in a metric space X is a Cauchy sequence if it holds that
for all ε > 0 there exist N ∈ N such that d(xm, xn) < ε for all n,m ≥ N . X
is said to be complete if every Cauchy sequence in X converges in X.

Finally, we recall the Banach fixed-point theorem: Any contraction on a
complete metric space has precisely one fixed point.

10

1.2. Contributions

1.2.2 Chapter 2, “Quantitative Analysis of Weighted Transition Systems”

In Chapter 2 we introduce the point-wise, accumulating and maximum-lead
trace distances, all in a discounted version which allows to diminish the in-
fluence of future differences. In a notation which is simpler than the one
used in Chapter 2 and follows the one of later chapters, these are given
as follows. Let K be a set of symbols together with an extended metric
dK : K×K→ R≥0 ∪ {∞}. A trace σ = (σ0, σ1, . . .) is an infinite sequence of
symbols in K. Let λ ∈ R≥0 with λ ≤ 1 be a discounting factor and σ and τ
traces.

• The point-wise trace distance between σ and τ is

dT
• (σ, τ) = sup

i≥0
λidK(σi, τi) .

• The accumulating trace distance between σ and τ is

dT
+(σ, τ) =

∑
i≥0

λidK(σi, τi) .

• The maximum-lead trace distance between σ and τ is

dT
±(σ, τ) = sup

i≥0
λi
∣∣∣ ∑
0≤j≤i

(σi − τi)
∣∣∣ .

Note that the definition of the last distance requires extra structure of addition
and subtraction on K; generally this is only used for K = Z or K = R.

We then use these trace distances to define point-wise, accumulating and
maximum-lead linear distances between states in weighted transition systems.
If dT is any of the above trace distances, then the linear distance between two
states s and t of a transition system is defined to be

dL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

dT(σ, τ) ,

where Tr(s) denotes the set of traces emanating from s, similarly for Tr(t).
This is thus the Hausdorff distance from Tr(s) to Tr(t); note that the definition
is independent of which particular trace distance is used.

1.2 Example. We show a computation of the different distances between the
states s1 and t1 in the transition system in Figure 1.6. Edges without specified
weight have weight 0, and the discounting factor is λ = .90.

It is easy to see that supremum trace distance is obtained for the path
from s1 which always turns left at s2, i.e., takes the transition s2

11−→ s4, and
then for the point-wise and accumulating trace distances, that the matching

11

1. Introduction

s1

s2

s5s4

3

511

t1

t2 t3

t4 t5

3 4

5 15

Figure 1.6: Two example transition systems

trace from t1 giving infimum trace distance in turn is obtained for the path
which always takes the transition t1 4−→ t3. Hence we can compute

dL
•(s1, t1) = sup

i

{
max(1, 4 · .90) · .903i} = 3.60 ,

dL
+(s1, t1) =

∑
i

(1 + 4 · .90) · .903i ≈ 17.0 .

For maximum-lead trace distance the situation is more involved. It can
be shown that for this distance, an infimum trace τ from t1 follows the path
which takes t1 4−→ t3, followed by t1 3−→ t2 three times, and then repeats t1 4−→ t3
indefinitely. Using this trace, we obtain

dL
±(s1, t1) = 13 · .9010 ≈ 4.53 . �

The definition of branching distance is not independent of which trace
distance is being used. We only give the definitions for the first two of our
example trace distances. They are defined as least fixed points to the following
equations:

dB
• (s, t) = sup

s
x−→s′

inf
t
y−→t′

max
(
dK(x, y), λ dB

• (s′, t′)
)

dB
+(s, t) = sup

s
x−→s′

inf
t
y−→t′

dK(x, y) + λ dB
• (s′, t′)

1.3 Example. Continuing the previous example, repeated application of the def-
inition yields the following fixed-point equation for dB

• (s1, t1) (note that there

12

1.2. Contributions

is only one transition from s1, t2 and t3, respectively):

dB
• (s1, t1) = inf

{
max

(
|3− 3|, .90 dB

• (s2, t2)
)

max
(
|3− 4|, .90 dB

• (s2, t3)
)

= inf
{

max
(
0, .90 |11− 5|, .902dB

• (s4, t4), .90 |5− 5|, .902dB
• (s5, t4)

)
max

(
1, .90 |11− 15|, .902dB

• (s4, t5), .90 |5− 15|, .902dB
• (s5, t5)

)
= inf

{
max

(
5.4, .903dB

• (s1, t1)
)

max
(
9, .903dB

• (s1, t1)
)

which has least fixed point dB
• (s1, t1) = 5.4. For the accumulating distance,

we calculate:

dB
+(s1, t1) = inf

{
|3− 3|+ .90 dB

+(s2, t2)
|3− 4|+ .90 dB

+(s2, t3)

= inf


.90 sup

{
|11− 5|+ .90 dB

+(s4, t4)
|5− 5|+ .90 dB

+(s5, t4)

1 + .90 sup
{
|11− 15|+ .90 dB

+(s4, t5)
|5− 15|+ .90 dB

+(s5, t5)

= inf


.90 sup

{
6 + .902dB

+(s1, t1)
.902dB

+(s1, t1)

1 + .90 sup
{

4 + .902dB
+(s1, t1)

10 + .902dB
+(s1, t1)

= inf
(
.90
(
6 + .902dB

+(s1, t1)
)
, 1 + .90

(
10 + .902dB

+(s1, t1)
))

= 5.4 + .903dB
+(s1, t1)

Hence dB
+(s1, t1) ≈ 19.9. �

Linear distances generalize trace inclusion for transition systems, whereas
branching distances generalize simulation. We show that the linear distance
between two states is always bounded above by the corresponding branching
distance (Theorem 2.13), a generalization of the fact that simulation implies
trace inclusion.

We also show that the point-wise linear and the point-wise branching dis-
tances are topologically inequivalent, that is, one may be zero while the other
is infinite. This is a quantitative generalization of the fact that trace inclusion
and simulation are not equivalent. We show the same topological inequiva-
lence for the accumulating and maximum-lead distances (Theorem 2.14).

When discounting is applied, then the point-wise, accumulating and max-
imum-lead linear distances are Lipschitz equivalent (Theorem 2.17); similarly,

13

1. Introduction

the three branching distances are Lipschitz equivalent (Theorem 2.18). With-
out discounting, the distances are topologically inequivalent. Lipschitz equiva-
lence means that one distance is bounded by the other, multiplied by a scaling
factor; hence properties of one distance may be transferred to the other.

Chapter 2 is based on work by the author’s PhD student Claus Thrane,
Kim G. Larsen, and the author, which has been presented at the 20th Nordic
Workshop on Programming Theory (NWPT) [TFL08] and subsequently pub-
lished in the Journal of Logic and Algebraic Programming (now the Journal
of Logical and Algebraic Methods in Programming) in 2010 [TFL10].

1.2.3 Chapter 3, “A Quantitative Characterization of Weighted Kripke Structures
in Temporal Logic”

In Chapter 3 we consider the discounted point-wise and accumulating dis-
tances and introduce corresponding semantics for weighted CTL. In these se-
mantics, the evaluation of a formula in a state is not a Boolean true or false,
but instead a non-negative real number (or infinity) which, intuitively, charac-
terizes how well the state satisfies the formula. Our syntax for WCTL extends
the one of CTL [CE81] as follows:

Φ ::= p | ¬p | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | EΨ | AΨ
Ψ ::= XcΦ | GcΦ | FcΦ | [Φ1UcΦ2]

Here, as usual, Φ generates state formulae whereas Ψ generates path formulae,
p is an atomic proposition, and c ∈ R≥0 is any non-negative real number.

Semantically, formulae are interpreted in states of a Kripke structure with
labels in K, and the result of such an interpretation is a non-negative real
number. First, the semantics of state formulae is given as follows:

JpK(s) =
{

0 if p ∈ L(s)
∞ otherwise

J¬pK(s) =
{

0 if p ∈ AP \ L(s)
∞ otherwise

Jϕ1 ∨ ϕ2K(s) = inf
{
Jϕ1K(s), Jϕ2K(s)

}
Jϕ1 ∧ ϕ2K(s) = sup

{
Jϕ1K(s), Jϕ2K(s)

}
JEψK(s) = inf

{
JψK(σ) | σ ∈ Tr(s)

}
JAψK(s) = sup

{
JψK(σ) | σ ∈ Tr(s)

}

In the last two formulae, JψK(σ) is the semantics of the trace σ with respect
to ψ, which depends on whether the point-wise or the accumulating distance

14

1.2. Contributions

is used. For example, the point-wise path semantics is given as follows:

JϕK(σ) = JϕK(σ0)

JXcϕK(σ) = max
(
dK(σ0, c), λJϕK(σ1)

}
JFcϕK(σ) = inf

k≥0

(
max

(
max

0≤j<k

(
λjdK(σj , c)

)
, λkJϕK(σk)

))
JGcϕK(σ) = sup

k≥0

(
max

(
max

0≤j<k

(
λjdK(σj , c)

)
, λkJϕK(σk)

))
Jϕ1Ucϕ2K(σ) = inf

k≥0

(
max

(
max

0≤j<k

(
λjdK(Jϕ1K(σj), c)

)
, λkJϕ2K(σk)

))
Here σk = (σk, σk+1, . . .) denotes the k-shift of the trace σ = (σ0, σ1, . . .).

We then show in Theorems 3.11 and 3.13 that with these semantics, WCTL
is adequate for the corresponding bisimulation distances. That is, the bisimu-
lation distance between two states is precisely the supremum, over all WCTL
formulae, of the absolute value of the difference of the formula’s evaluation in
these two states.

We also show, in Theorems 3.17 and 3.18, that with the corresponding
semantics, WCTL is expressive for the discounted point-wise and accumulating
distances. This means that given a state in a Kripke structure, there exists a
WCTL formula which characterizes the state in the sense that the bisimulation
distance to any other state is precisely the evaluation of the formula in that
state.

Our notions of adequacy and expressiveness are standard quantitative gen-
eralizations of Hennessy and Milner’s definitions from [HM85].

Chapter 3 is based on work by the author’s PhD student Claus Thrane,
Kim G. Larsen, and the author, which has been presented at the 5th Confer-
ence on Mathematical and Engineering Methods in Computer Science
(MEMICS; best paper award) [FLT09] and subsequently published in the
Journal of Computing and Informatics [FLT10].

1.2.4 Chapter 4, “Metrics for Weighted Transition Systems: Axiomatization”
In Chapter 4 we develop sound and complete axiomatizations of the point-wise
and the discounted accumulating distances for finite and for regular weighted
processes. In this context, a finite weighted process is given using the grammar

E ::= 0 | n.E | E + E | n ∈ K ,

where K is a finite set of weights, with a metric dK, and 0 denotes the empty
process. A regular weighted process is given using the grammar

E ::= U | X | n.E | E + E | µX.E n ∈ K, X ∈ V ,

where V is a set of variables, U is the universal process, and µX.E denotes a
minimal fixed point.

15

1. Introduction

(A1) 0 ./ r` [0, E] ./ r
(A2) ∞ ./ r

` [n.E,0] ./ r

` [E,F] ./ r1(R1•) max(dK(n,m), λr1) ./ r
` [n.E,m.F] ./ r

` [E,F] ./ r1(R1+) dK(n,m) + λr1 ./ r` [n.E,m.F] ./ r

` [E1, F] ./ r1 ` [E2, F] ./ r2(R2) max(r1, r2) ./ r
` [E1 + E2, F] ./ r

` [n.E, F1] ./ r1 ` [n.E, F2] ./ r2(R3) min(r1, r2) ./ r
` [n.E, F1 + F2] ./ r

Figure 1.7: Axiomatization of point-wise and discounted accumulating dis-
tance for finite weighted processes

We then give axiomatizations of the point-wise and the discounted ac-
cumulating distances for finite weighted processes, as shown in Figure 1.7.
These differ only in one proof rule: for the point-wise distance, rule (R1•)
applies, for the discounted accumulating distance, rule (R1+). We show the
axiomatizations to be sound and complete in Theorems 4.8, 4.9 and 4.10.

For regular weighted processes, we develop similar axiomatizations, which
we then show to be sound and ε-complete in Theorems 4.12, 4.16 and 4.17.
Here, ε-completeness means that a distance of d can be proven within an
interval [d− ε, d+ ε], for any positive real ε.

Chapter 4 is based on work by the author’s PhD student Claus Thrane,
Kim G. Larsen, and the author, which has been published in Theoretical
Computer Science [LFT11].

1.2.5 Chapter 5, “The Quantitative Linear-Time–Branching-Time Spectrum”

Chapter 5 presents a generalization of the work in Chapter 2 along several di-
rections. Instead of developing theory separately for different trace distances,
we treat the trace distance as an input and develop a general theory of linear
and branching distances pertaining to a given, but unspecified, trace distance.

Let again K be a set of symbols, and denote by K∞ = K
∗ ∪ Kω the

set of finite and infinite traces in K. A trace distance is, then, a function
d : K∞×K∞ → R≥0∪{∞} which satisfies d(σ, σ) = 0 and d(σ, τ) +d(τ, χ) ≥
d(σ, χ) for all σ, τ, χ ∈ K∞, and additionally, d(σ, τ) = ∞ if σ and τ have
different length.

16

1.2. Contributions

Given such a general trace distance d, we can define the linear distance
between two states s and t of a transition system by

d1-trace(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

d(σ, τ)

as before. As this generalizes the standard trace inclusion preorder, we now
call this the (1-nested) trace inclusion distance.

Using a quantitative Ehrenfeucht-Fraïssé game, we can then define a cor-
responding (1-nested) simulation distance d1-sim and show that d1-trace(s, t) ≤
d1-sim(s, t) for all states s, t. Similarly, we can define the (1-nested) trace
equivalence distance between s and t by

d1-trace-eq(s, t) = max
(

sup
σ∈Tr(s)

inf
τ∈Tr(t)

d(σ, τ), sup
τ∈Tr(t)

inf
σ∈Tr(s)

d(σ, τ)
)

and use a different quantitative Ehrenfeucht-Fraïssé game to define the bisim-
ulation distance dbisim, with the property that d1-trace-eq(s, t) ≤ dbisim(s, t) for
all s, t.

In Chapter 5, we generalize these considerations to define linear and branch-
ing distances for most of the preorders and equivalences in van Glabbeek’s
linear-time–branching-time spectrum [vG01]. Hence we can define nested
simulation distances, ready simulation distances, possible-futures distances,
readiness distances, and others, all parameterized by the given-but-unspecified
trace distance. The resulting quantitative linear-time–branching-time spec-
trum is depicted in Figure 1.8.

We also show that if the trace distance has a recursive characterization
in a lattice L above R≥0 ∪ {∞}, then all distances in the quantitative linear-
time–branching-time spectrum have a fixed-point characterization over L. As
an example, if d : K∞ ×K∞ → R≥0 ∪ {∞} is the point-wise distance, then

d(σ, τ) = F
(
σ0, τ0, d(σ1, τ1)

)
for all σ, τ ∈ K

∞ (recall that σ0 denotes the head of σ and σ1 its tail),
where F : K × K × (R≥0 ∪ {∞}) → R≥0 ∪ {∞} is given by F (x, y, α) =
max

(
dK(x, y), λα

)
. (In this case, the lattice L = R≥0 ∪ {∞}.)

The simulation distance is then the least fixed point to the equations

d1-sim(s, t) = sup
s
x−→s′

inf
t
y−→t′

F
(
x, y, d1-sim(s′, t′)

)
.

If, instead, d is the discounted accumulating distance, then the above equations
hold for F replaced by F (x, y, α) = dK(x, y) + λα.

Chapter 5 is based on work by the author’s PhD student Claus Thrane,
Kim G. Larsen, Axel Legay, and the author, which has been presented at the
9th Workshop on Quantitative Aspects of Programming Languages (QAPL)
[FTL11] and the 31st IARCS Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS) [FLT11] and subsequently
published in Theoretical Computer Science [FL14b].

17

1. Introduction

∞-nested trace equivalence

(k + 1)-nested ready inclusion

(k + 1)-nested trace equivalence

k-nested ready equivalence

(k + 1)-nested trace inclusion

k-nested ready inclusion

k-nested trace equivalence

2-nested ready inclusion

2-nested trace equivalence
possible-futures equivalence

1-nested ready equivalence
ready equivalence

2-nested trace inclusion
possible-futures inclusion

1-nested ready inclusion
ready inclusion

1-nested trace equivalence
trace equivalence

1-nested trace inclusion
trace inclusion

∞-nested simulation equivalence
bisimulation

(k + 1)-ready sim. equivalence

(k + 1)-nested sim.
equivalence

k-nested ready sim. equivalence

(k + 1)-nested simulation

k-nested ready simulation

k-nested sim. equivalence

2-nested ready simulation

2-nested sim. equivalence

1-nested ready sim. equivalence
ready simulation equivalence

2-nested simulation

1-nested ready simulation
ready simulation

1-nested sim. equivalence
simulation equivalence

1-nested simulation
simulation

Figure 1.8: The quantitative linear-time–branching-time spectrum. The
nodes are different system distances, and an edge d1 −→ d2 or d1 99K d2
indicates that d1(s, t) ≥ d2(s, t) for all states s, t, and that d1 and d2 in
general are topologically inequivalent.

18

1.2. Contributions

1.2.6 Chapter 6, “Weighted Modal Transition Systems”

Chapter 6 presents a lifting of our work on quantitative verification to quan-
titative specification theories. Fundamental to specification theories is the
refinement relation which permits to successively refine specifications until an
implementation is reached. Here implementations are the models with which
previous chapters were concerned, i.e., transition systems. In the context of
quantitative verification, we have in previous chapters replaced equivalence
relations and preorders between models by linear and branching distances.
Similarly in spirit, we replace in this chapter the refinement relation with a
refinement distance, in order to be able to reason quantitatively about quan-
titative specifications.

In Chapter 6 we treat a special case of quantitative specification theory,
using models which are transition systems whose transitions are labeled with
symbols from a discrete alphabet Σ and with integers. We also use one partic-
ular distance, the discounted accumulating one. In the following Chapter 7,
we generalize this setting to arbitrary models and specifications and arbitrary
distances.

In the specifications of Chapter 6, integer weights are relaxed to integer
intervals and, as usual in modal specifications, transitions can be of type must
or of type may. Hence we define a weighted modal transition system (WMTS)
to be a structure S = (S, s0, 99K,−→) consisting of a set of states S with an
initial state s0 ∈ S and transition relations −→, 99K ⊆ S× Spec×S such that
for every (s, k, s′) ∈ −→ there is (s, `, s′) ∈ 99K where k 4 `. Here

Spec = Σ×
{
[x, y]

∣∣ x ∈ Z ∪ {−∞}, y ∈ Z ∪ {∞}, x ≤ y}
is the set of (weighted) specification labels, and the partial order 4 on Spec is
defined by (a, I) 4 (a′, I ′) if a = a′ and I ⊆ I ′.

A WMTS S as above is an implementation if −→ = 99K ⊆ S × Imp × S,
where

Imp = Σ×
{
[x, x]

∣∣ x ∈ Z} ≈ Σ× Z

is the set of (weighted) implementation labels in Spec: the minimal elements
of Spec with respect to 4.

Now in a standard modal refinement S1 ≤m S2, must-transitions in S2
must be preserved in S1, whereas may-transitions in S1 must correspond to
may-transitions in S2. Using the accumulating distance with a discounting
factor λ < 1, and our work in Chapter 5, we extend this to a modal refinement
distance which is defined as follows. First, a distance on specification labels
is introduced by dSpec((a, I), (a′, I ′)) =∞ if a 6= a′ and

dSpec
(
(a, [x, y]), (a, [x′, y′])

)
= sup

z∈[x,y]
inf

z′∈[x′,y′]
|z − z′|

= max(x′ − x, y − y′, 0) .

19

1. Introduction

The modal refinement distance between the states of weighted modal tran-
sition systems S1 = (S1, s

0
1, 99K1,−→1) and S2 = (S2, s

0
2, 99K2,−→2) is then

defined to be the least fixed point of the equations

dm(s1, s2) = max


sup

s1
k1
99K1t1

inf
s2

k2
99K2t2

dSpec(k1, k2) + λdm(t1, t2) ,

sup
s2

k2−→2t2

inf
s1

k1−→1t1

dSpec(k1, k2) + λdm(t1, t2) ,

and then dm(S1,S2) = dm(s0
1, s

0
2).

We show in Theorem 6.14 that the modal refinement distance bounds the
so-called thorough refinement distance: for any implementation I1 ≤m S1,
there is an implementation I2 ≤m S2 such that d(I1, I2) ≤ dm(S1,S2). Hence
the modal refinement distance between two specifications can serve as an over-
approximation of how far respective implementations can deviate from each
other.

Modal specifications come equipped with a logical operation of conjunc-
tion and with structural operations of composition and quotient. Conjunction
is the greatest lower bound in the modal refinement preorder. We show that
such a conjunction exists in our formalism, but that it does not satisfy a nat-
ural quantitative generalization of the greatest lower bound property; in fact,
Theorem 6.24 shows that there is no operation ∧ on WMTS which satisfies
that for any ε ≥ 0, there exist ε1, ε2 ≥ 0 such that whenever dm(S, S1) ≤ ε1
and dm(S, S2) ≤ ε2 for some WMTS S, S1, S2, then dm(S, S1 ∧ S2) ≤ ε. Con-
junction is thus, in this sense, discontinuous; we shall see in the following
Chapter 7 that this is a fundamental problem with any quantitative specifi-
cation theory.

For structural composition, we use CSP-style synchronization on labels
and addition of intervals. That is, synchronization (a, I) � (a′, I ′) on Spec is
undefined if a 6= a′, and otherwise

(a, [x, y])� (a, [x′, y′]) = (a, [x+ x′, y + y′]) .

Using this label operation, we show in Theorem 6.27 that there is a struc-
tural composition operator ‖ for WMTS which satisfies dm(S1‖S3,S2‖S4) ≤
dm(S1,S2)+dm(S3,S4) for all WMTS S1,S2,S3,S4. This property of indepen-
dent implementability ensures that composition preserves distances. We also
show in Theorem 6.29 that structural composition admits a partial inverse, a
quotient operation / such that dm(S3,S1/S2) = dm(S2‖S3,S1) for all WMTS
S1,S2,S3 whenever S2 is deterministic. The quotient operation can hence be
used to synthesize partial specifications also in this quantitative context.

Chapter 6 is based on work by Sebastian S. Bauer, Line Juhl, Claus
Thrane, Kim G. Larsen, Axel Legay, and the author, which has been pre-
sented at the 36th International Symposium on Mathematical Foundations of
Computer Science (MFCS) [BFJ+11] and subsequently published in Formal
Methods in System Design [BFJ+13].

20

1.2. Contributions

1.2.7 Chapter 7, “General Quantitative Specification Theories with Modal
Transition Systems”
In Chapter 7 we develop a general setting for quantitative specification the-
ories. Combining the work in Chapters 5 and 6, we work in a setting of
modal transition systems which are labeled with elements in a partially or-
dered set Spec of specification labels. The set of implementation labels is then
Imp = {k ∈ Spec | k′ 4 k ⇒ k′ = k}, and implementations are Imp-labeled
transition systems.

We assume given an abstract trace distance d : Spec∞×Spec∞ → L, where
L = (R≥0∪{∞})M , for an arbitrary set M , is the lattice of functions fromM
to R≥0 ∪ {∞}. We also assume that there exists a distance iterator function
F : Spec× Spec× L→ L such that d(σ, τ) = F (σ0, τ0, d(σ1, τ1)), similarly to
the recursive characterization developed in Chapter 5.

We can then introduce an abstract modal refinement distance between
the states of two such structured modal transition systems (or SMTS) S =
(S, s0, 99KS ,−→S) and T = (T, t0, 99KT ,−→T) to be the least fixed point, in
L, to the equations

dm(s, t) = max


sup

s
k
99KS s′

inf
t
`
99KT t′

F (k, `, dm(s′, t′)) ,

sup
t
`−→T t′

inf
s

k−→S s′

F (k, `, dm(s′, t′)) ,

and let dm(S, T) = dm(s0, t0).
For conjunction of SMTS, we introduce a property of conjunctive bound-

edness on labels in Spec which implies, cf. Theorem 7.33, that conjunction of
SMTS is uniformly bounded in the sense that the modal refinement distance
from an SMTS U to a conjunction S ∧T is bounded above by a uniform func-
tion of the distances dm(U ,S) and dm(U , T). Unfortunately, it turns out that
common label conjunction operators are not conjunctively bounded, hence
we propose another property of relaxed conjunctive boundedness which does
hold for common label operators, and show in Theorem 7.35 that it implies a
similar property for SMTS conjunctions.

For structural composition, we generalize the work in Chapter 6 by intro-
ducing an abstract notion of (partial) label composition � on Spec. Assuming
that this operator is recursively uniformly bounded in the sense that there
exists a function P : L× L→ L such that

F (k � k′, `� `′, P (α, α′)) vL P (F (k, `, α), F (k′, `′, α′))

for all k, `, k′, `′ ∈ Spec and α, α′ ∈ L for which k � k′ and `� `′ are defined,
we can then show in Theorem 7.23 that independent implementability holds,
viz.

dm(S‖S ′, T ‖T ′) vL P (dm(S, T), dm(S ′, T ′))

21

1. Introduction

for all SMTS S, T , S ′, T ′. In examples, we expose several different label
composition operators and show that they are uniformly bounded. We show
that the quotient operator / from Chapter 6 has a similar generalization to
SMTS.

We also show in Chapter 7 that quantitative refinement admits a logi-
cal characterization, generalizing the work in Chapter 3. We use standard
Hennessy-Milner logic, with formulae generated by the syntax

φ, φ1, φ2 := tt | ff | 〈`〉φ | [`]φ | φ1 ∧ φ2 | φ1 ∨ φ2 (` ∈ Spec)

and with quantitative semantics S → L, for an SMTS S = (S, s0, 99KS ,−→S)
given as follows:

JttKs = ⊥ JffKs = >
J(φ1 ∧ φ2)Ks = max(Jφ1Ks, JφK2s) J(φ1 ∨ φ2)Ks = min(Jφ1Ks, Jφ2Ks)

J〈`〉φKs = inf{F (k, `, JφKt) | s k−→ t, d(k, `) 6= >L}

J[`]φKs = sup{F (k, `, JφKt) | s k
99K t, d(k, `) 6= >L}

Writing JφKS = JφKs0, we can then show in Theorem 7.41 that this logic
is quantitatively sound for the modal refinement distance, in the sense that
JφKS vL JφKT �L dm(S, T) for all formulae φ and all SMTS S, T . For
disjunction-free formulae, we can show a complementary completeness result
in Theorem 7.42, namely that JφKS = supI∈JSKJφKI for all disjunction-free φ
and all SMTS S, where JSK denotes the set of implementations of S.

Chapter 7 is based on work by Sebastian S. Bauer, Claus Thrane, Axel
Legay, and the author, which has been presented at the 7th International
Computer Science Symposium in Russia (CSR) [BFLT12] and subsequently
published in Acta Informatica [FL14a].

1.2.8 Chapter 8, “Logical vs. Behavioral Specifications”
Chapter 8 departs from the quantitative setting of this thesis in order to
introduce a generalization of modal transition systems which turns out to
be somewhat more well-behaved both in a qualitative setting and also in
the quantitative setting of the subsequent Chapter 9. Extending Larsen and
Xinxin [LX90b], we define a disjunctive modal transition system (DMTS) to
be a structure D = (S, S0, 99K,−→) consisting of finite sets S ⊇ S0 of states
and initial states, a may-transition relation 99K ⊆ S×Σ×S, and a disjunctive
must-transition relation −→ ⊆ S × 2Σ×S .

DMTS hence generalize MTS in that they allow for multiple (or zero)
initial states and permit must transitions to branch to a disjunction of desti-
nation states. As an example, Figure 1.9 shows a DMTS expressing the CTL
property

AG(req⇒ AX(work AW grant))

22

1.2. Contributions

req
grant,work, idle

workgrant

Figure 1.9: DMTS corresponding to the CTL property AG(req ⇒ AX(work
AW grant))

(here “AW” denotes the weak-until operator): “at all time points after exe-
cuting req, no idle nor further requests but only work is allowed until grant
is executed”. The same property may be expressed as a recursive system of
equations in Hennessy-Milner logic [Lar90b] as

X = [grant, idle,work]X ∧ [req]Y
Y = (〈work〉Y ∨ 〈grant〉X) ∧ [idle, req]ff

where the solution is given by the maximal fixed point.
In Chapter 8 we exhibit an equivalence between DMTS and Hennessy-

Milner logic with maximal fixed points (the modal ν-calculus) and also with
a non-deterministic extension of the acceptance automata of [Hen85,Rac08].
This allows one to freely switch between formalisms and, more importantly, to
generalize the logical and structural operations on specifications and expose
their algebraic properties.

We thus show in Theorem 8.23 that DMTS (and hence also acceptance
automata and the modal ν-calculus) admit notions of conjunction and dis-
junction which are greatest lower, respectively least upper bounds, in the
modal refinement order. That is, DMTS form a bounded distributive lattice
up to modal equivalence.

We also generalize structural composition and quotient to DMTS and fur-
ther introduce quotients S1/S2 also for the cases where S2 is not deterministic.
Theorem 8.33 then shows that quotient is a residual to structural composition,
with defining property

S1‖S2 ≤m S3 =⇒ S2 ≤m S3/S1

as before, but now without any restrictions on the involved specifications.
Combining the four operations, DMTS form a commutative residuated lat-

tice [JT02] up to modal equivalence. As an example, this immediately entails
the following properties which may be used in a calculus of specifications:

S1‖(S2/S3) ≤m (S1‖S2)/S3 S1/S2 ≤m (S1‖S3)/(S2‖S3)
(S1/S2)‖(S2/S3) ≤m S1/S3 (S1/S2)/S3 ≡m (S1/S3)/S2

S1/(S2‖S3) ≡m (S1/S2)/S3 S‖(S/S) ≡m S

23

1. Introduction

Chapter 8 is based on work by Nikola Beneš, Jan Křetínský, Axel Legay,
Louis-Marie Traonouez, and the author, which has been presented at the 24th
International Conference on Concurrency Theory (CONCUR) [BDF+13] and
at the 11th International Colloquium on Theoretical Aspects of Computing
(ICTAC) [FLT14b] and subsequently published in Information and Computa-
tion [BFK+20].

1.2.9 Chapter 9, “Compositionality for Quantitative Specifications”
The final Chapter 9 combines the work of Chapters 7 and 8. It introduces gen-
eral quantitative specification theories based on disjunctive modal transition
systems [LX90b] and (non-deterministic) acceptance automata [Hen85,Rac08]
on the one hand and abstract trace distances on the other hand.

As in Chapter 7, specification labels are partially ordered by a label re-
finement relation �, and implementation labels are those specification labels
which cannot be further refined. We also assume partial conjunction and
synchronization operators on labels and work with specification-labeled dis-
junctive modal transition systems and acceptance automata.

Also as in Chapter 7, we assume given a recursively specified distance on
specification traces, which takes values in a commutative quantale: a com-
plete lattice L together with a commutative operation �L which distributes
over arbitrary suprema. We then generalize the translations between DMTS,
acceptance automata, and the modal ν-calculus from Chapter 8 to our gen-
eral setting and show in Theorem 9.20 that they respect modal refinement
distances: denoting the translations by da, dn etc.,

dm(D1,D2) = dm(da(D1), da(D2)),
dm(A1,A2) = dm(ad(A1), ad(A2)),
dm(D1,D2) = dm(dn(D1), dn(D2)),
dm(N1,N2) = dm(nd(N1),nd(N2)).

We then turn to the quantitative properties of the operations and show
in Theorem 9.26 that disjunction is quantitatively sound and complete in
the sense that dm(S1 ∨ S2,S3) = max(dm(S1,S3), dm(S2,S3)) for all specifi-
cations S1, S2 and S3. Conjunction on the other hand is only quantitatively
sound, for the same reasons as exposed in Chapter 6. Assuming a uniform
bound on label synchronization, we again derive a quantitative version of in-
dependent implementability in Theorem 9.28. We also show in Theorem 9.29
that with our new generalized definition of DMTS quotient, it holds that
dm(S1‖S2,S3) = dm(S2,S3/S1) for all specifications S1, S2 and S3.

Chapter 9 is based on work by Jan Křetínský, Axel Legay, Louis-Marie
Traonouez, and the author, which has been presented at the 11th International
Symposium on Formal Aspects of Component Software (FACS) [FKLT14] and
subsequently published in Soft Computing [FKLT18].

24

1.3. Applications

1.3 Applications

Our theory of quantitative specification and verification has found applications
in robustness of real-time systems, feature interactions in software product
lines, compatibility of service interfaces, text separation, and other areas. We
present four such applications here.

1.3.1 A Robust Specification Theory for Modal Event-Clock Automata

The paper [FL12], written by Axel Legay and the author and presented at
the Fourth Workshop on Foundations of Interface Technologies, contains an
application of the general quantitative framework of this thesis in the area
of real-time specifications. We define a notion of robustness for the modal
event-clock specifications (MECS) of [BLPR09,BLPR12].

We propose a new version of refinement for MECS which is adequate to
reason on MECS in a robust manner. We then proceed to exhibit the prop-
erties of the standard operations of specification theories: conjunction, struc-
tural composition and quotient, with respect to this quantitative refinement.
We show that structural composition and quotient have properties which are
useful generalizations of their standard Boolean properties, hence they can
be employed for robust reasoning on MECS. Conjunction, on the other hand,
is generally not robust, but together with the new operator of quantitative
widening can be used in a robust manner.

MECS are modal transition systems in which may- and must-transitions
are labeled with symbols from a set Σ and annotated with constraints which
are used to enable or disable transitions depending on the values of real vari-
ables. In the language of Section 1.2.7, their semantics is given as SMTS over
the set

Spec = (Σ× {[0, 0]}) ∪ ({δ} × I) ⊆ (Σ ∪ {δ})× I

of specification labels. Here I = {[x, y] | x ∈ R≥0, y ∈ R≥0 ∪ {∞}, x ≤ y}
is the set of closed extended non-negative real intervals, and δ /∈ Σ denotes a
special symbol which signifies passage of time.

The partial order on Spec is given by (a, [l, r]) 4 (a′, [l′, r′]) iff a = a′,
l ≥ l′, and r ≤ r′ (hence [l, r] ⊆ [l′, r′]). Thus the implementation labels are
Imp = Σ×{0}∪{δ}×R≥0, so that implementations are usual timed transition
systems with discrete transitions s a,0−→ s′ and delay transitions s δ,d−→ s′.

We use the maximum-lead distance to measure differences between timed
traces. For structural composition, we employ CSP-style label synchronization
and intersection of timing intervals; hence in a composition, the timing con-
straints are conjunctions of the components’ constraints. We then show that
structural composition is bounded and that conjunction is relaxed bounded;
the quotient operator is similarly well-behaved.

25

1. Introduction

1.3.2 Measuring Global Similarity between Texts
The paper [FBC+14], written by Fabrizio Biondi, Kevin Corre, Cyrille Jé-
gourel, Simon Kongshøj, Axel Legay, and the author and presented at the
Second International Conference on Statistical Language and Speech Process-
ing, contains an application of some of the theory presented here to a problem
in statistical natural-language processing. We introduce a new type of dis-
tance between texts and show that it can be used to separate different classes
in corpuses of scientific papers.

We measure the similarity of two texts using a discounted accumulating
distance. Given two texts A = (a1, a2, . . . , aNA) and B = (b1, b2, . . . , bNB),
seen as finite sequences of words (and hence stripped of punctuation), we first
define an indicator function δi,j , for i, j ≥ 0, by

δi,j =
{

0 if i ≤ NA, j ≤ NB and ai = bj ,

1 otherwise ,

and then
d(i, j, λ) =

∞∑
k=0

λkδi+k,j+k ,

for a discounting factor λ ∈ R≥0 with λ < 1. This measures how much the
texts A and B “look alike” when starting with the tokens ai in A and bj in B.
This position match distance is then summarized and symmetrized as follows:

d′(A,B, λ) = 1
NA

NA∑
i=1

min
j=1,...,NB

d(i, j, λ)

d(A,B, λ) = max(d′(A,B, λ), d′(B,A, λ))

We have implemented this computation and then used this implementa-
tion to statistically separate different types of scientific papers. In a first
experiment, we successfully separate 42 scientific papers from 8 automatically
generated “fake” scientific papers (using the tool SCIgen1). With very high
discounting, we also achieve a classification where papers which share au-
thors or are otherwise similar are classified as such. In a second experiment,
we compare 97 scientific papers with 100 “fake” ones generated by different
methods. Also here we achieve a complete classification. For high discounting
factors, our classifications are better than those achieved by other work using
bag-of-words distances.

1.3.3 Measuring Behavior Interactions between Product-Line Features
The paper [AFL15], written by Joanne M. Atlee, Axel Legay and the author
and presented at the 3rd IEEE/ACM FME Workshop on Formal Methods

1http://pdos.csail.mit.edu/scigen/

26

http://pdos.csail.mit.edu/scigen/

1.3. Applications

in Software Engineering, suggests a new method for measuring the degree to
which features interact in software product lines.

The paper first introduces a distance between labeled transition systems
which is similar to the (undiscounted) accumulating simulation distance, ex-
cept that every pair of states is only treated once. That is, the function
computing d(s, s′) tries to match every transition s a−→ t in the first system S
with a transition s′ a−→ t′ in the second system S ′. If no such exists, a missing
behavior is detected and 1 is added to the score; if there are transitions s′ a−→ t′,
then distance is recursively computed for the pair t, t′ with the best match.
Once a pair of states has been checked for behavior mismatches in this way,
it is added to a Passed list of states which need not be checked again.

We model software product lines using featured transition systems, which
are transition systems in which transitions are conditioned on the presence or
absence of distinct features. A product is then simply a set of features, and
a product p has a behavior interaction with a feature f in a given featured
transition system S if the projection onto p of S and the projection onto p of
the projection onto p ∪ {f} of S are not bisimilar.

We then generalize this notion to a behavior interaction distance, using
the above distance between transition systems. We give evidence that this is
a useful notion to assess the degree of feature interactions and show that it
can be efficiently computed on the given featured transition system, without
resorting to the projections.

1.3.4 Compatibility Flooding: Measuring Interaction of Behavioral Models

The paper [OFLS17], written by Meriem Ouederni, Axel Legay, Gwen Salaün,
and the author and presented at the 32nd ACM SIGAPP Symposium on
Applied Computing, deals with compatibility verification of service interfaces,
focusing on the interaction protocol level.

Checking the compatibility of interaction protocols is a tedious and hard
task, even though it is of utmost importance to avoid run-time errors, e.g., dead-
lock situations or unmatched messages. Most of the existing approaches re-
turn a “True” or “False” result to detect whether services are compatible or
not, but for many issues such a Boolean answer is not very helpful. In real
world situations, there will seldom be a perfect match, and when service pro-
tocols are not compatible, it is useful to differentiate between services that are
slightly incompatible and those that are totally incompatible. Our paper aims
at quantifying the compatibility degree of service interfaces, taking a semantic
point of view.

Incompatibilities are measured between transition systems modeling ser-
vice interfaces, using a version of discounted accumulating bisimulation dis-
tance where differences are propagated both forward and backwards. The
distance takes into account the compatibility of parameters and labels and is
defined for two different scenarios, one in which all sent and received messages

27

1. Introduction

must be matched, and an asymmetric one where one of the components may
send and receive other messages which are irrelevant for the composition.

1.4 Conclusion and Perspectives
We have developed a general theory of quantitative verification and quan-
titative specification theories. The theory is independent of how precisely
quantitative differences are measured and applicable to a large class of dis-
tances used in practice. The quantative spefication formalism introduced in
the last Chapter 9 is also rather robust, admitting translations between sev-
eral different specification formalisms, and has good algebraic and geometric
properties.

On a theoretical level, the above is motivation to concern oneself with
the question what precisely is a specification theory. While there is some
agreement to this at the qualitative / Boolean level, it is not clear how to
extend this to the quantitative world. This question is important not only
theoretically, but also in applications, given that the algebraic properties of a
formalism determine how precisely it can be used in practice.

Somewhat related to the question above is the problem of how to treat
silent or spontaneous transitions. In applications it is common to model
uncertainty or ambiguity with silent transitions, and these are rather well-
understood in the qualitative setting; but again it is unclear how to lift them
to the quantitative world.

Further, and taking a more applied view, it is somewhat problematic that
all the formalisms treated here are based on discrete transition systems. When
considering applications in real-time or hybrid systems, discreteness is not
sufficient and some treatment of continuous time is required. There is some
work on specification theories for real-time systems, but for hybrid systems
these are lacking, and in any case it is unclear how to relate them to the
quantitative specification theories we have exposed here.

Below we treat the questions and problems above in some more detail and
try to show some avenues for further work on these subjects.

1.4.1 Specification Theories
The work presented here has led to more fundamental questions as to what
precisely is, or should be, a specification theory. This is what we set out to
answer, together with Axel Legay, in [FL17], presented at the 43rd Interna-
tional Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM) and subsequently published in the Journal of Logical and
Algebraic Methods in Programming [FL20b], and in [FL20a], to be presented
at the 2021 ISoLA Symposium.

We propose here that a specification theory for a set of models M consists
of the following ingredients:

28

1.4. Conclusion and Perspectives

• a set S of specifications;

• a mapping χ : M→ S; and

• a refinement preorder ≤ on S which is an equivalence relation on the
image of χ in S.

It then follows that for allM ∈M, χ(M) is the characteristic formula [Pnu85]
for M .

Logical operations on specifications are then obtained by asserting that S
forms a bounded distributive lattice up to ≡, the equivalence on S defined by
S1 ≡ S2 iff S1 ≤ S2 and S2 ≤ S1. Structural composition and quotient are de-
fined by an extra operation ‖ on specifications which turns S into a (bounded
distributed) commutative residuated lattice. This puts specification theories
into a well-understood algebraic context, see for example [JT02], which also
appears in linear logic [Gir87] and other areas.

It is an open question how to transfer this algebraic point of view to the
quantitative setting. It is clear that the refinement order above should be
replaced by a hemimetric d on S, and also that d should be symmetric on the
image of χ in S; but we do not know how to correctly introduce characteristic
formulae into this setting.

1.4.2 Silent Transitions

Another open question is how to deal with silent transitions in the quantita-
tive setting. Van Glabbeek defines a linear-time–branching-time spectrum for
“processes with silent moves” in [vG93], but it is unclear how to translate this
into a game framework in order to replicate the work contained in Chapter 5.

Silent transitions are obtained whenever two processes synchronize on in-
ternal actions, so they are important from an application point of view. Re-
cent advances on coalgebraic approaches to silent transitions [Bre15] and on
codensity games [KKH+19] appear to provide a way forward.

1.4.3 Applications

Much work is to be done in order to apply our work to real-time, hybrid,
or embedded systems. Specification theories for real-time and probabilistic
systems do exist, see below, but they all have problems with robustness. For
hybrid systems, no work on compositional specification theories seems to be
available. Generally speaking, the problem with real-time and hybrid sys-
tems is that time itself provides an implicit synchronization mechanism, so
compositionality is difficult to achieve for real-time and hybrid systems.

29

1. Introduction

Modal event-clock specifications

We have already mentioned modal event-clock specifications (MECS) in Sec-
tion 1.3.1. Introduced in [BLPR09,BLPR12], these form a specification the-
ory for event-clock automata [AFH99], a determinizable subclass of timed
automata [AD94], under timed bisimilarity. Models and specifications are
assume to be deterministic, thus S1 ≤ S2 iff ModS1 ⊆ ModS2 in this case.

In [BLPR12] it is shown that MECS admit a conjunction, thus forming
a meet-semilattice up to ≡. The authors also introduce composition and
quotient; but computation of quotient incurs an exponential blow-up. Using
the maximum-lead distance to measure differences between timed traces, we
have shown in [FL12] how to develop a framework for robust quantitative
reasoning.

Timed input/output automata

[DLL+15,DLL+12a] introduce a specification theory based on a variant of the
timed input/output automata (TIOA) of [KLSV10, KLSV03]. Both models
and specifications are TIOA which are action-deterministic and input-enabled;
but models are further restricted using conditions of output urgency and inde-
pendent progress. The equivalence on models being specified is timed bisimi-
larity.

In [DLL+15] it is shown that TIOA admit a conjunction. The paper also
introduces a composition operation and a quotient, but the quotient is only
shown to satisfy the property that

S1‖M ≤ S3 ⇔M≤ S3/S1

for all specifications S1,S3 and all models M. No robust quantitative specifi-
cation theories for TIOA are available.

Abstract probabilistic automata

Abstract probabilistic automata (APA), introduced in [DKL+13, DFLL14],
form a specification theory for probabilistic automata [SL95] under proba-
bilistic bisimilarity. They build on earlier models of interval Markov chains
(IMC) [DLL+12b], see also [BDF+18,DLP16] for a related line of work.

In [DKL+13] it is shown that APA admit a conjunction, but that IMC
do not. Also a composition is introduced in [DKL+13], and it is shown that
composing two APA with interval constraints (hence, IMCs) may yield an
APA with polynomial constraints (not an IMC); but APA with polynomial
constraints are closed under composition. No robust quantitative specification
theories for APA are available.

30

1.5. About the Author

1.5 About the Author

Ulrich (Uli) Fahrenberg holds a PhD in mathematics from Aalborg University,
Denmark. For his thesis, which he defended in 2005, he worked in algebraic
topology and its applications in concurrency theory. His work was supervised
by Lisbeth Fajstrup and Martin Raussen, and his thesis bore the title “Higher-
Dimensional Automata from a Topological Viewpoint”.

After his PhD, Fahrenberg started a career in computer science as an as-
sistant professor at Aalborg University. During this time, he worked with
Kim G. Larsen and others on weighted timed automata and quantitative ver-
ification. The work reported in this thesis was started together with Kim
G. Larsen and Fahrenberg’s PhD student Claus Thrane while Fahrenberg was
at this position. In 2010, Fahrenberg passed his University Teacher Education
for Assistant Professors, the prerequisite for holding a permanent post at a
Danish university.

From 2010 to 2016, Fahrenberg has worked as a postdoc at Inria Rennes,
France, in the group of Axel Legay. During this time, he deepened his work
in quantitative analysis and verification and started his work in quantitative
specification theories. Between 2016 and 2021 Fahrenberg was a researcher
at the computer science lab at École polytechnique in Palaiseau, France, and
since 2021 he is associate professor at EPITA Rennes. His current research
centers on the theory of concurrent, distributed, and hybrid systems.

Since 2001, Fahrenberg has published 96 scientific contributions, among
which 24 papers in peer-reviewed international journals and 47 papers in peer-
reviewed international conference or workshop proceedings. He has been a
member of numerous program committees, and since 2016 he is a reviewer for
AMS Mathematical Reviews. He is a member of the Steering Committee of
the RAMiCS international conferences and has been PC co-chair of RAMiCS-
2020 and RAMiCS-2021.

Fahrenberg has been co-supervisor for one PhD student and three Masters
students. He has supervised two PhD students’ internships and two Masters
students’ internships and also taught a number of courses both in mathematics
and computer science.

Bibliography

Refereed Journal Papers

[1] Uli Fahrenberg, Christian Johansen, Christopher Trotter, and Krzysztof
Ziemiański. Domain semirings united. Acta Cybernetica, 2022.

[2] Giovanni Bacci, Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas
Markey, and Pierre-Alain Reynier. Optimal and robust controller syn-

31

1. Introduction

thesis using energy timed automata with uncertainty. Formal Aspects of
Computing, 33(1):3–25, 2021.

[3] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemi-
ański. Languages of higher-dimensional automata. Mathematical Struc-
tures in Computer Science, 31(5):575–613, 2021.

[4] Uli Fahrenberg, Christian Johansen, Christopher Trotter, and Krzysztof
Ziemiański. Sculptures in concurrency. Logical Methods in Computer
Science, 17(2), 2021.

[5] Nikola Beneš, Uli Fahrenberg, Jan Křetínský, Axel Legay, and Louis-
Marie Traonouez. Logical vs. behavioural specifications. Information
and Computation, 271:104487, 2020.

[6] Uli Fahrenberg and Axel Legay. A linear-time-branching-time spectrum
for behavioral specification theories. Journal of Logic and Algebraic Meth-
ods in Programming, 110, 2020.

[7] Uli Fahrenberg, Axel Legay, and Karin Quaas. Computing branching dis-
tances with quantitative games. Theoretical Computer Science, 847:134–
146, 2020.

[8] David Cachera, Uli Fahrenberg, and Axel Legay. An ω-algebra for real-
time energy problems. Logical Methods in Computer Science, 15(2), 2019.

[9] Uli Fahrenberg and Axel Legay. Quantitative properties of featured au-
tomata. International Journal on Software Tools for Technology Transfer,
21(6):667–677, 2019.

[10] Uli Fahrenberg, Jan Křetínský, Axel Legay, and Louis-Marie Traonouez.
Compositionality for quantitative specifications. Soft Computing,
22(4):1139–1158, 2018.

[11] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. An algebraic
approach to energy problems I: ∗-Continuous Kleene ω-algebras. Acta
Cybernetica, 23(1):203–228, 2017.

[12] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. An algebraic
approach to energy problems II: The algebra of energy functions. Acta
Cybernetica, 23(1):229–268, 2017.

[13] Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay.
Contract-based requirement modularization via synthesis of correct de-
compositions. ACM Transactions on Embedded Computing Systems,
15(2):33, 2016.

32

1.5. About the Author

[14] Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay.
A tag contract framework for modeling heterogeneous systems. Science
of Computer Programming, 115-116:225–246, 2016.

[15] Xavier Allamigeon, Uli Fahrenberg, Stéphane Gaubert, Ricardo D. Katz,
and Axel Legay. Tropical Fourier-Motzkin elimination, with an appli-
cation to real-time verification. International Journal of Algebra and
Computation, 24(5):569–608, 2014.

[16] Benoît Delahaye, Uli Fahrenberg, Kim G. Larsen, and Axel Legay. Re-
finement and difference for probabilistic automata. Logical Methods in
Computer Science, 10(3), 2014.

[17] Uli Fahrenberg and Axel Legay. General quantitative specification the-
ories with modal transition systems. Acta Informatica, 51(5):261–295,
2014.

[18] Uli Fahrenberg and Axel Legay. The quantitative linear-time–branching-
time spectrum. Theoretical Computer Science, 538:54–69, 2014.

[19] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen, Axel
Legay, and Claus Thrane. Weighted modal transition systems. Formal
Methods in System Design, 42(2):193–220, 2013.

[20] Qi Lu, Michael Madsen, Martin Milata, Søren Ravn, Uli Fahrenberg, and
Kim G. Larsen. Reachability analysis for timed automata using max-plus
algebra. Journal of Logic and Algebraic Programming, 81(3):298–313,
2012.

[21] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey.
Quantitative analysis of real-time systems using priced timed automata.
Communications of the ACM, 54(9):78–87, 2011.

[22] Kim G. Larsen, Uli Fahrenberg, and Claus Thrane. Metrics for weighted
transition systems: Axiomatization and complexity. Theoretical Com-
puter Science, 412(28):3358–3369, 2011.

[23] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A quantitative char-
acterization of weighted Kripke structures in temporal logic. Computing
and Informatics, 29(6+):1311–1324, 2010.

[24] Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative analysis
of weighted transition systems. Journal of Logic and Algebraic Program-
ming, 79(7):689–703, 2010.

[25] Uli Fahrenberg and Martin Raussen. Reparametrizations of continuous
paths. Journal of Homotopy and Related Structures, 2(2):93–117, 2007.

33

1. Introduction

Refereed Conference and Workshop Publications
[26] Cameron Calk, Uli Fahrenberg, Christian Johansen, Georg Struth, and

Krzysztof Ziemiański. `r-multisemigroups, modal quantales and the ori-
gin of locality. In Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and
Michael Winter, editors, RAMiCS, volume 13027 of Lecture Notes in
Computer Science, pages 90–107. Springer-Verlag, 2021.

[27] Uli Fahrenberg and Axel Legay. Featured games. In TASE, pages 167–
174. IEEE Computer Society, 2021.

[28] Uli Fahrenberg, Christian Johansen, Georg Struth, and Ratan Bahadur
Thapa. Generating posets beyond N. In Uli Fahrenberg, Peter Jipsen,
and Michael Winter, editors, RAMiCS, volume 12062 of Lecture Notes in
Computer Science, pages 82–99. Springer-Verlag, 2020.

[29] Uli Fahrenberg and Axel Legay. Behavioral specification theories: An
algebraic taxonomy. In Tiziana Margaria and Bernhard Steffen, editors,
ISoLA, volume 12476 of Lecture Notes in Computer Science, pages 262–
274. Springer-Verlag, 2020.

[30] Uli Fahrenberg, Axel Legay, and Karin Quaas. Computing branching
distances using quantitative games. In Robert M. Hierons and Mohamed
Mosbah, editors, Theoretical Aspects of Computing - ICTAC 2019, vol-
ume 11884 of Lecture Notes in Computer Science, pages 59–75. Springer-
Verlag, 2019.

[31] Giovanni Bacci, Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas
Markey, and Pierre-Alain Reynier. Optimal and robust controller synthe-
sis - using energy timed automata with uncertainty. In Klaus Havelund,
Jan Peleska, Bill Roscoe, and Erik P. de Vink, editors, FM, volume 10951
of Lecture Notes in Computer Science, pages 203–221. Springer-Verlag,
2018.

[32] Uli Fahrenberg. Higher-dimensional timed automata. In Alessandro
Abate, Antoine Girard, and Maurice Heemels, editors, ADHS, volume 51
of IFAC-PapersOnLine, pages 109–114. Elsevier, 2018.

[33] Uli Fahrenberg and Kim G. Larsen. Energiautomater, energifunktioner
og Kleene-algebra. In Ingrid Chieh Yu, Birgit Rognebakke Krogstie, and
Einar Broch Johnsen, editors, Norsk Informatikkonferanse, 2018.

[34] Rafael Olaechea, Joanne M. Atlee, Axel Legay, and Uli Fahrenberg. Trace
checking for dynamic software product lines. In Jesper Andersson and
Danny Weyns, editors, SEAMS@ICSE, pages 69–75. ACM, 2018.

[35] Uli Fahrenberg and Axel Legay. Featured weighted automata. In For-
maliSE@ICSE, pages 51–57. IEEE, 2017.

34

1.5. About the Author

[36] Uli Fahrenberg and Axel Legay. A linear-time-branching-time spectrum
of behavioral specification theories. In Bernhard Steffen, Christel Baier,
Mark van den Brand, Johann Eder, Mike Hinchey, and Tiziana Margaria,
editors, SOFSEM, volume 10139 of Lecture Notes in Computer Science,
pages 49–61. Springer-Verlag, 2017.

[37] Meriem Ouederni, Uli Fahrenberg, Axel Legay, and Gwen Salaün. Com-
patibility flooding: measuring interaction of services interfaces. In Ahmed
Seffah, Birgit Penzenstadler, Carina Alves, and Xin Peng, editors, SAC,
pages 1334–1340. ACM, 2017.

[38] Rafael Olaechea, Uli Fahrenberg, Joanne M. Atlee, and Axel Legay. Long-
term average cost in featured transition systems. In Hong Mei, editor,
SPLC, pages 109–118. ACM, 2016.

[39] Joanne M. Atlee, Sandy Beidu, Uli Fahrenberg, and Axel Legay. Merging
features in featured transition systems. In Michalis Famelis, Daniel Ratiu,
Martina Seidl, and Gehan M. K. Selim, editors, MoDeVVa@MoDELS,
volume 1514 of CEUR Workshop Proceedings, pages 38–43. CEUR-
WS.org, 2015.

[40] Joanne M. Atlee, Uli Fahrenberg, and Axel Legay. Measuring behaviour
interactions between product-line features. In FormaliSE, pages 20–25.
IEEE, 2015.

[41] David Cachera, Uli Fahrenberg, and Axel Legay. An ω-algebra for real-
time energy problems. In Prahladh Harsha and G. Ramalingam, editors,
FSTTCS, volume 45 of LIPIcs, pages 394–407. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015.

[42] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-
algebras for energy problems. In Ralph Matthes and Matteo Mio, editors,
FICS, volume 191 of Electr. Proc. Theor. Comput. Sci., pages 48–59,
2015.

[43] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-
algebras. In Igor Potapov, editor, DLT, volume 9168 of Lecture Notes in
Computer Science, pages 240–251. Springer-Verlag, 2015.

[44] Uli Fahrenberg and Axel Legay. Partial higher-dimensional automata.
In Lawrence S. Moss and Pawel Sobocinski, editors, CALCO, volume 35
of LIPIcs, pages 101–115. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2015.

[45] Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej Wąsowski.
Sound merging and differencing for class diagrams. In Stefania Gnesi and
Arend Rensink, editors, FASE, volume 8411 of Lecture Notes in Computer
Science, pages 63–78. Springer-Verlag, 2014.

35

1. Introduction

[46] Uli Fahrenberg, Fabrizio Biondi, Kevin Corre, Cyrille Jégourel, Simon
Kongshøj, and Axel Legay. Measuring global similarity between texts. In
Laurent Besacier, Adrian Horia Dediu, and Carlos Martín-Vide, editors,
SLSP, volume 8791 of Lecture Notes in Computer Science, pages 220–232.
Springer-Verlag, 2014.

[47] Uli Fahrenberg and Axel Legay. Configurable formal methods for extreme
modeling. In Davide Di Ruscio, Juan de Lara, and Alfonso Pierantonio,
editors, XM@MoDELS, volume 1239 of CEUR Workshop Proceedings,
pages 52–57. CEUR-WS.org, 2014.

[48] Uli Fahrenberg, Axel Legay, and Louis-Marie Traonouez. Structural re-
finement for the modal nu-calculus. In Gabriel Ciobanu and Dominique
Méry, editors, ICTAC, volume 8687 of Lecture Notes in Computer Sci-
ence, pages 169–187. Springer-Verlag, 2014.

[49] Ulrich Fahrenberg, Jan Křetínský, Axel Legay, and Louis-Marie
Traonouez. Compositionality for quantitative specifications. In Ivan
Lanese and Eric Madelaine, editors, FACS, volume 8997 of Lecture Notes
in Computer Science, pages 306–324. Springer-Verlag, 2014.

[50] Nikola Beneš, Benoît Delahaye, Uli Fahrenberg, Jan Křetínský, and Axel
Legay. Hennessy-Milner logic with greatest fixed points as a complete
behavioural specification theory. In Pedro R. D’Argenio and Hernán C.
Melgratti, editors, CONCUR, volume 8052 of Lecture Notes in Computer
Science, pages 76–90. Springer-Verlag, 2013.

[51] Benoît Delahaye, Uli Fahrenberg, Kim G. Larsen, and Axel Legay. Re-
finement and difference for probabilistic automata. In Kaustubh R.
Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio, ed-
itors, QEST, volume 8054 of Lecture Notes in Computer Science, pages
22–38. Springer-Verlag, 2013.

[52] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. Kleene al-
gebras and semimodules for energy problems. In Dang Van Hung and
Mizuhito Ogawa, editors, ATVA, volume 8172 of Lecture Notes in Com-
puter Science, pages 102–117. Springer-Verlag, 2013.

[53] Uli Fahrenberg and Axel Legay. Generalized quantitative analysis of
metric transition systems. In Chung-chieh Shan, editor, APLAS, volume
8301 of Lecture Notes in Computer Science, pages 192–208. Springer-
Verlag, 2013.

[54] Uli Fahrenberg and Axel Legay. History-preserving bisimilarity for
higher-dimensional automata via open maps. In MFPS, volume 298 of
Electronic Notes in Theoretical Computer Science, pages 165–178. Else-
vier, 2013.

36

1.5. About the Author

[55] Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay.
A tag contract framework for heterogeneous systems. In FOCLASA,
volume 393 of Communications in Computer and Information Science,
pages 204–217. Springer-Verlag, 2013.

[56] Thi Thieu Hoa Le, Roberto Passerone, Uli Fahrenberg, and Axel Legay.
Tag machines for modeling heterogeneous systems. In ACSD, pages 186–
195. IEEE, 2013.

[57] Sebastian S. Bauer, Uli Fahrenberg, Axel Legay, and Claus Thrane. Gen-
eral quantitative specification theories with modalities. In Edward A.
Hirsch, Juhani Karhumäki, Arto Lepistö, and Michail Prilutskii, editors,
CSR, volume 7353 of Lecture Notes in Computer Science, pages 18–30.
Springer-Verlag, 2012.

[58] Benoît Delahaye, Uli Fahrenberg, Thomas A. Henzinger, Axel Legay,
and Dejan Ničković. Synchronous interface theories and time trig-
gered scheduling. In Holger Giese and Grigore Rosu, editors,
FMOODS/FORTE, volume 7273 of Lecture Notes in Computer Science,
pages 203–218. Springer-Verlag, 2012.

[59] Uli Fahrenberg and Axel Legay. A robust specification theory for modal
event-clock automata. In Sebastian S. Bauer and Jean-Baptiste Raclet,
editors, FIT, volume 87 of Electr. Proc. Theor. Comput. Sci., pages 5–16,
2012.

[60] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen, Axel
Legay, and Claus Thrane. Quantitative refinement for weighted modal
transition systems. In Filip Murlak and Piotr Sankowski, editors,
MFCS, volume 6907 of Lecture Notes in Computer Science, pages 60–
71. Springer-Verlag, 2011.

[61] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jiří Srba. Energy games
in multiweighted automata. In Antonio Cerone and Pekka Pihlajasaari,
editors, ICTAC, volume 6916 of Lecture Notes in Computer Science, pages
95–115. Springer-Verlag, 2011.

[62] Uli Fahrenberg, Axel Legay, and Claus Thrane. The quantitative linear-
time–branching-time spectrum. In Supratik Chakraborty and Amit Ku-
mar, editors, FSTTCS, volume 13 of LIPIcs, pages 103–114. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[63] Uli Fahrenberg, Axel Legay, and Andrzej Wąsowski. Make a difference!
(Semantically). In Jon Whittle, Tony Clark, and Thomas Kühne, editors,
MoDELS, volume 6981 of Lecture Notes in Computer Science, pages 490–
500. Springer-Verlag, 2011.

37

1. Introduction

[64] Uli Fahrenberg, Claus Thrane, and Kim G. Larsen. Distances for weighted
transition systems: Games and properties. In Mieke Massink and Gethin
Norman, editors, QAPL, volume 57 of Electr. Proc. Theor. Comput. Sci.,
pages 134–147, 2011.

[65] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey.
Timed automata with observers under energy constraints. In Karl Henrik
Johansson and Wang Yi, editors, HSCC, pages 61–70. ACM, 2010.

[66] Uli Fahrenberg and Kim G. Larsen. Discounting in time. In QAPL,
volume 253 of Electronic Notes in Theoretical Computer Science, pages
25–31. Elsevier, 2009.

[67] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A quantitative char-
acterization of weighted Kripke structures in temporal logic. InMEMICS,
2009. Best paper award.

[68] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. Verification, perfor-
mance analysis and controller synthesis for real-time systems. In Farhad
Arbab and Marjan Sirjani, editors, FSEN, volume 5961 of Lecture Notes
in Computer Science, pages 34–61. Springer-Verlag, 2009.

[69] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jiří
Srba. Infinite runs in weighted timed automata with energy constraints.
In Franck Cassez and Claude Jard, editors, FORMATS, volume 5215 of
Lecture Notes in Computer Science, pages 33–47. Springer-Verlag, 2008.

[70] Uli Fahrenberg and Kim G. Larsen. Discount-optimal infinite runs in
priced timed automata. In INFINITY, volume 239 of Electronic Notes
in Theoretical Computer Science, pages 179–191. Elsevier, 2008.

[71] Ulrich Fahrenberg. A category of higher-dimensional automata. In
Vladimiro Sassone, editor, FOSSACS, volume 3441 of Lecture Notes in
Computer Science, pages 187–201. Springer-Verlag, 2005.

[72] Uli Fahrenberg. A dihomotopy double category of a po-space. In GETCO,
volume NS-04-2 of BRICS Notes Series, pages 75–80. BRICS, Aarhus,
2004.

[73] Uli Fahrenberg. Directed homology. In GETCO&CMCIM, volume 100
of Electronic Notes in Theoretical Computer Science, pages 111–125. El-
sevier, 2004.

[74] Uli Fahrenberg. The geometry of timed PV programs. In GETCO, vol-
ume 81 of Electronic Notes in Theoretical Computer Science, pages 1–14.
Elsevier, 2003.

38

1.5. About the Author

Conference Abstracts

[75] Uli Fahrenberg, Christian Johansen, Georg Struth, and Ratan Bahadur
Thapa. Posets with interfaces. In WATA, 2020.

[76] Uli Fahrenberg. Higher-dimensional timed automata. In NWPT, 2018.

[77] Uli Fahrenberg. Pomset languages of higher-dimensional automata. In
NWPT, 2016.

[78] Uli Fahrenberg. Star-continuous Kleene omega-algebras: Theory and
applications. In WATA, 2016.

[79] Uli Fahrenberg, Axel Legay, and Karin Quaas. Weighted reachability
games. In WATA, 2016.

[80] Uli Fahrenberg, Axel Legay, and Karin Quaas. Values and metrics for
weighted automata – towards some unification. In WATA, 2014.

[81] Uli Fahrenberg, Axel Legay, and Karin Quaas. Büchi conditions for gen-
eralized energy automata. In WATA, 2012.

[82] Jesper Dyhrberg, Qi Lu, Michael Madsen, Søren Ravn, and Uli Fahren-
berg. Computations on zones using max-plus algebra. In NWPT, 2010.

[83] Uli Fahrenberg. How to pull back open maps along semantics functors.
In ACCAT, 2008.

[84] Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative simula-
tions of weighted transition systems. In NWPT, 2008.

[85] Uli Fahrenberg. Simulation of timed game automata. In NWPT, 2001.

Books

[86] Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter,
editors. Relational and Algebraic Methods in Computer Science - 19th
International Conference, RAMiCS 2021, volume 13027 of Lecture Notes
in Computer Science. Springer-Verlag, 2021.

[87] Uli Fahrenberg, Peter Jipsen, and Michael Winter, editors. Relational
and Algebraic Methods in Computer Science - 18th International Confer-
ence, RAMiCS 2020, volume 12062 of Lecture Notes in Computer Science.
Springer-Verlag, 2020.

[88] Uli Fahrenberg, Axel Legay, and Claus R. Thrane, editors. Proceedings
Quantities in Formal Methods, volume 103 of Electr. Proc. Theor. Comput.
Sci., 2012.

39

1. Introduction

[89] Uli Fahrenberg and Stavros Tripakis, editors. Formal Modeling and Ana-
lysis of Timed Systems - 9th International Conference, volume 6919 of
Lecture Notes in Computer Science. Springer-Verlag, 2011.

[90] Uli Fahrenberg, Eric Goubault, Thomas T. Hildebrandt, and Alexander
Kurz, editors. GETCO&CMCIM, volume 100 of Electronic Notes in The-
oretical Computer Science. Elsevier, 2004.

Book Chapters
[91] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, Joël

Ouaknine, and James Worrell. Model checking real-time systems. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking., pages 1001–1046. Springer-
Verlag, 2018.

[92] Kim G. Larsen, Uli Fahrenberg, and Axel Legay. From timed automata to
stochastic hybrid games model checking, synthesis, performance analysis
and machine learning. In Dependable Software Systems Engineering, pages
60–103. IOS Press, 2017.

[93] Uli Fahrenberg, Kim G. Larsen, Axel Legay, and Louis-Marie Traonouez.
Parametric and quantitative extensions of modal transition systems. In
Saddek Bensalem and Axel Legay, editors, From Programs to Systems,
volume 8415 of Lecture Notes in Computer Science. Springer-Verlag, 2014.

[94] Uli Fahrenberg, Axel Legay, and Louis-Marie Traonouez. Specification
theories for probabilistic and real-time systems. In Saddek Bensalem and
Axel Legay, editors, From Programs to Systems, volume 8415 of Lecture
Notes in Computer Science. Springer-Verlag, 2014.

[95] Uli Fahrenberg, Kim G. Larsen, and Axel Legay. Model-based verifi-
cation, optimization, synthesis and performance evaluation of real-time
systems. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Uni-
fying Theories of Programming and Formal Engineering Methods, volume
8050 of Lecture Notes in Computer Science, pages 67–108. Springer-Verlag,
2013.

[96] Uli Fahrenberg, Kim G. Larsen, Axel Legay, and Claus Thrane. Model-
based verification, optimization, synthesis and performance evaluation of
real-time systems. In Manfred Broy, Doron Peled, and Georg Kalus, edi-
tors, Engineering Dependable Software Systems, volume 34 of NATO Sci-
ence for Peace and Security Series – D: Information and Communication
Security, pages 235–273. IOS Press, 2013.

[97] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. Model-based ver-
ification and analysis for real-time systems. In Manfred Broy, Christian

40

1.6. Acknowledgments

Leuxner, and Tony Hoare, editors, Software and Systems Safety - Specifica-
tion and Verification, volume 30 of NATO Science for Peace and Security
Series - D: Information and Communication Security, pages 231–259. IOS
Press, 2011.

[98] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. Verification, perfor-
mance analysis and controller synthesis for real-time systems. In Manfred
Broy, Wassiou Sitou, and Tony Hoare, editors, Engineering Methods and
Tools for Software Safety and Security, volume 22 of NATO Science for
Peace and Security Series – D: Information and Communication Security.
IOS Press, 2009.

Theses
[99] Uli Fahrenberg. Higher-Dimensional Automata from a Topological View-

point. PhD thesis, Aalborg University, 2005.

[100] Uli Fahrenberg. Towards an efficient algorithm for detecting unsafe
states in timed concurrent systems. Master’s thesis, Aalborg University,
2002.

1.6 Acknowledgments
The author would like to thank all coauthors involved in the papers which form
the basis for this thesis. In alphabetical order, these are Sebastian S. Bauer,
Munich, Germany; Nikola Beneš, Brno, Czechia; Line Juhl, Aalborg, Den-
mark; Jan Křetínský, Munich, Germany; Kim G. Larsen, Aalborg, Denmark;
Axel Legay, Louvain-la-Neuve, Belgium; Claus Thrane, Copenhagen, Den-
mark; Louis-Marie Traonouez, Rennes, France.

41

2 Quantitative Analysis of Weighted
Transition Systems1

This chapter introduces a notion of weighted transition system (WTS), es-
sentially an extension of the standard concept of (labeled) transition sys-
tem [Plo81] which has been used to introduce operational semantics for a
wide range of systems. It then proceeds to define what is meant by linear
and branching distances between such WTS, and introduces three examples
of such distances: the point-wise, accumulated, and maximum-lead distances.
Finally, it is shown that linear distances are bounded by branching distances,
and some results on topological inequivalence are provided.

2.1 Weighted transition systems
The intention of WTS is to describe a system’s behavior as well as quantitative
properties in terms of transition weights. Recall that a transition system is a
quadruple (S, s0,Σ, R) consisting of a set S of states with initial state s0 ∈ S,
a finite set Σ of labels, and a set of transitions R ⊆ S × Σ× S.

2.1 Definition. A weighted transition system is a tuple (S, s0,Σ, R,w), where

• (S, s0,Σ, R) is a transition system, and

• w : R→ R≥0 assigns weights to transitions.

We write s α,w−−→ s′ whenever (s, α, s′) ∈ R and w(s, α, s′) = w, and s 6→ if
there is no transition (s, α, s′) in R for any α and s′.

We lift the standard notions of path and trace to WTS:

2.2 Definition. Let S = (S, s0,Σ, R,w) be a WTS and s ∈ S. A path from
s in S is a (possibly infinite) sequence ((s0, α0, s1), (s1α1, s2), . . .) of transi-
tions (si, αi, si+1) ∈ R with s0 = s. A (weighted) trace from s is a sequence
((α0, w0), (α1, w1), . . .) of pairs (αi, wi) ∈ Σ × R≥0 for which there exists a
path ((s0, α0, s1), (s1α1, s2), . . .) from s for which wi = w(si, αi, si+1).

1This chapter is based on the journal paper [TFL10] published in the Journal of Logic
and Algebraic Programming.

43

2. Quantitative Analysis of Weighted Transition Systems

The set of traces from a state s is denoted Tr(s). Given a trace σ, we denote
by U(σ) ∈ Σω its label sequence (i.e., the associated unweighted trace), and
by σi its i’th label-weight pair.

2.2 Quantitative Analysis
In this section we introduce our quantitative analysis of WTS, both in a linear
and in a branching setting. For ease of exposition we concentrate on trace
inclusion and simulation here and defer treatment of both trace equivalence
and bisimulation to other work. We shall introduce three different quantitative
notions of trace inclusion and of simulation, all filling in the gap between the
unweighted and the weighted relations, which we recall below:

2.3 Definition. Let (S, s0,Σ, R,w) be a WTS. A relation R ⊆ S × S is

• an unweighted simulation provided that for all (s, t) ∈ R and s α,c−−→ s′,
also t α,d−−→ t′ for some d ∈ R≥0 and (s′, t′) ∈ R,

• a (weighted) simulation provided that for all (s, t) ∈ R and s
α,c−−→ s′,

also t α,c−−→ t′ for some (s′, t′) ∈ R.

We write

• s 4u t if (s, t) ∈ R for some unweighted simulation R,

• s 4 t if (s, t) ∈ R for some weighted simulation R.

Also, we write

• s ≤u t if U(Tr(s)) ⊆ U(Tr(t)),

• s ≤ t if Tr(s) ⊆ Tr(t).

We shall fill in the gap between unweighted and weighted relations using
(asymmetric) distance functions d : S×S → R≥0∪{∞}. Any of the distances
defined below will obey the properties given in the following definition.

2.4 Definition. A hemimetric d : S × S → R≥0 ∪ {∞} defined on the states of a
WTS (S, s0,Σ, R,w) is called

• a linear distance if s ≤ t implies d(s, t) = 0 and s 6≤u t implies d(s, t) =
∞,

• a branching distance if s 4 t implies d(s, t) = 0 and s 64u t implies
d(s, t) =∞.

44

2.2. Quantitative Analysis

As usual, we can generalize distances between states of a single WTS to
distances between two different WTS by taking their disjoint union.

Our distance functions are essentially based on three different metrics on
the set of sequences of real numbers. Throughout this work, these are referred
to as point-wise (2.1), accumulated (2.2), and maximum-lead (2.3) distances,
respectively. For sequences a = (ai), b = (bi) these are defined as follows:

d•(a, b) = sup
i

{
|ai − bi|

}
(2.1)

d+(a, b) =
∑
i

|ai − bi| (2.2)

d±(a, b) = sup
i

{∣∣∣ i∑
j=0

aj −
i∑

j=0
bj
∣∣∣} (2.3)

The intuition behind these metrics is that d• measures the largest individ-
ual difference of sequence entries, d+ measures the accumulated sum of (the
absolute values of) the entries’ differences, and d± measures the largest lead
of one sequence over the other, i.e., the maximum difference in accumulated
values. Hence the maximum-lead distance of two sequences is the same as the
point-wise distance of their partial-sum sequences.

Besides the above three, other metrics on sequences of reals are also of
interest, and we will see in Chapter 5 that linear and branching distances of
WTS based on these other metrics can be developed similarly to the ones we
introduce in this chapter.

In the following we will consider discounted distances, where the contribu-
tion of each step is decreased exponentially over time. To this end, we fix a
discounting factor λ ∈ [0, 1]; as extreme cases, λ = 1 means that the future is
undiscounted, and λ = 0 means that only the present is considered.

Also, we fix a WTS S = (S, s0,Σ, R,w).

2.2.1 Linear distances

We will now introduce our quantitative trace distances.

2.5 Definition. For traces σ, τ , the point-wise, accumulating, and maximum-lead
trace distances are given by dT

• (σ, τ) = dT
+(σ, τ) = dT

±(σ, τ) = ∞ if U(σ) 6=
U(τ), and for U(σ) = U(τ),

dT
• (σ, τ) = sup

i

{
λi |w(σi)− w(τi)|

}
,

dT
+(σ, τ) =

∑
i

λi |w(σi)− w(τi)| ,

dT
±(σ, τ) = sup

i

{
λi
∣∣∣ i∑
j=0

w(σj)−
i∑

j=0
w(τj)

∣∣∣} .
45

2. Quantitative Analysis of Weighted Transition Systems

tea

out

bo
il
4

m
ix

4 cl
ea
n
1

re
se
t
4

(a) MT

tea

out

cof

out

bo
il
6

m
ix

4 cl
ea
n
1

re
se
t
2

bo
il
7

m
ix

2

(b) MTC

tea

out

choc

out

cof

out

bo
il
6

m
ix

4 cl
ea
n
3

re
se
t
1

bo
il
10

m
ix

2

bo
il
10

m
ix

8

(c) MTCC

Figure 2.1: Three beverage machines

Observe that the above distances on traces are symmetric; they are indeed
metrics on the set of traces. This is not the case when lifted to states:

2.6 Definition. For states s, t ∈ S, the point-wise, accumulating and maximum-
lead linear distances are given as follows:

dL
•(s, t) = sup

σ∈Tr(s)
inf

τ∈Tr(t)
dT
• (σ, τ)

dL
+(s, t) = sup

σ∈Tr(s)
inf

τ∈Tr(t)
dT

+(σ, τ)

dL
±(s, t) = sup

σ∈Tr(s)
inf

τ∈Tr(t)
dT
±(σ, τ)

Note that this is precisely the Hausdorff-hemimetric construction, hence it
can be generalized to other distances between traces. Also, it is quite natural,
cf. Proposition 1.1. It can easily be shown that the distances defined above
are indeed linear distances in the sense of Definition 2.4.

2.7 Example. To illustrate differences between the three linear distances intro-
duced above, consider the three WTS models of beverage machines depicted
in Figure 2.1; a Tea maker MT, a Tea and Coffee maker MTC and a Tea, Coffee
and Chocolate maker MTCC. In the figure, edges without specified weight have
weight 0.

The production of a beverage consists of six operations: Selecting the
drink, boiling the water, mixing the beverage, outputting the finished product,
self cleaning, and resetting. Each operation consumes a certain amount of
power depending on its implementation by electrical components. Weights
thus model power consumption, and are given in such a way that in more

46

2.2. Quantitative Analysis

powerful machines, some operations, for example boiling, require more power,
whereas some other, for example resetting, require less.

By design of the beverage machines, there are unweighted trace inclusions
MT ≤u MTC ≤u MTCC; any behavior of a “lesser” machine can be emulated
qualitatively by a “better” one. What is less obvious is how they compare in
power consumption.

Noting that any infinite behavior in the beverage machines consists of loops
of width 6, we can introduce some ad-hoc notation to simplify calculations.
Let dL

•(MT,MTC)6 denote point-wise distance from MT to MTC when only
traces of length at most 6 are considered, and similarly for the other machines
and distances. For a (realistic) discounting factor of λ = .90, the point-wise
distances can be computed as follows:

dL
•(MT,MTC) = sup

i

{
dL
•(MT,MTC)6 · λ6i} = dL

•(MT,MTC)6 = 1.80

dL
•(MT,MTCC) = sup

i

{
dL
•(MT,MTCC)6 · λ6i} = dL

•(MT,MTCC)6 = 1.80

dL
•(MTC,MTCC) = sup

i

{
dL
•(MTC,MTCC)6 · λ6i} = dL

•(MTC,MTCC)6 = 2.70

For the accumulating distances:

dL
+(MT,MTC) =

∑
i

dL
•(MT,MTC)6 · λ6i = dL

•(MT,MTC)6 1
1− λ6 ≈ 2.52

dL
+(MT,MTCC) =

∑
i

dL
•(MT,MTCC)6 · λ6i = dL

•(MT,MTCC)6 1
1− λ6 ≈ 8.80

dL
+(MTC,MTCC) =

∑
i

dL
•(MTC,MTCC)6 · λ6i = dL

•(MTC,MTCC)6 1
1− λ6 ≈ 7.41

Similarly, the maximum-lead distances can be computed as follows:

dL
±(MT,MTC) ≈ 1.62

dL
±(MT,MTCC) ≈ 2.62

dL
±(MTC,MTCC) ≈ 3.34 �

The following lemma provides recursive bounds on linear distances and
will be useful as motivation for the definition of branching distance below.
For the bound on the maximum-lead distance, we introduce a generalization
of dL

± by

dL
±(s, t)(δ) = sup

σ∈Tr(s)
inf

τ∈Tr(t)
dL
±(σ, τ)(δ) ,

dL
±(σ, τ)(δ) = sup

i

{
λi
∣∣∣δ +

i∑
j=0

w(σj)−
i∑

j=0
w(τj)

∣∣∣} .
Here δ ∈ R is the lead which σ has already acquired over τ ; hence dL

±(σ, τ)(0) =
dL
±(σ, τ) and dL

±(s, t)(0) = dL
±(s, t).

47

2. Quantitative Analysis of Weighted Transition Systems

2.8 Lemma. For states s, t ∈ S,

dL
•(s, t) ≤ sup

s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|c− d|, λ dL

•(s′, t′)
)
,

dL
+(s, t) ≤ sup

s
α,c−−→s′

inf
t
α,d−−→t′

|c− d|+ λ dL
+(s′, t′) ,

dL
±(s, t)(δ) ≤ sup

s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|δ|, λ dL

±(s′, t′)
(
δ+c−d
λ

))
.

Proof: We only show the proof for accumulated distance; the others are sim-
ilar. If Tr(s) = ∅, then dL

+(s, t) = 0 and we are done. Otherwise, let σ ∈ Tr(s);
we need to show that

inf
τ∈Tr(t)

dL
+(σ, τ) ≤ sup

s
α,c−−→s′

inf
t
α,d−−→t′

|c− d|+ λ dL
+(s′, t′) .

Let π be a path from s which realizes σ, write π = s
α1,c1−−−→ s1 → . . . , and

let σ1 be the trace generated by the suffix of π starting in s1. If t 6 α1−→, then
the infimum on the right hand side of the equation is ∞, and we are done.

Assume that the infimum is finite and let ε ∈ R+. There exists t α1,d1−−−→ t1
for which

|c1 − d1|+ λ dL
+(s1, t1) ≤ inf

t
α1,d−−→t′

|c1 − d|+ λ dL
+(s1, t

′) + ε
2 .

Let τ1 ∈ Tr(t1) be such that dL
+(σ1, τ1) ≤ dL

+(s1, t1) + ε
2 . Let τ = (α1, d1).τ1,

the concatenation, then

dL
+(σ, τ) = |c1 − d1|+ λ dL

+(σ1, τ1)
≤ |c1 − d1|+ λ dL

+(s1, t1) + ε
2

≤ inf
t
α1,d−−→t′

|c1 − d|+ λ dL
+(s1, t

′) + ε . (2.4)

We have shown that for all ε ∈ R+, there exists τ ∈ Tr(t) for which
Equation (2.4) holds, hence

inf
τ∈Tr(t)

dL
+(σ, τ) ≤ inf

t
α1,d−−→t′

|c1 − d|+ λ dL
+(s1, t

′)

and the claim follows. �

2.2.2 Simulation distances
In the following we use parametrized families {Rε ⊆ S×S} and {Rε,δ ⊆ S×S},
i.e., functions R≥0 → 2S×S and R≥0 × R≥0 → 2S×S , respectively; we shall
show how these give rise to distances in Section 2.2.3.

48

2.2. Quantitative Analysis

2.9 Definition. A family of relations R = {Rε ⊆ S × S | ε ≥ 0} is

• a point-wise simulation family provided that for all (s, t) ∈ Rε ∈ R
and s

α,c−−→ s′, also t
α,d−−→ t′ with |c − d| ≤ ε for some d ∈ R≥0 and

(s′, t′) ∈ R′ε ∈ R with ε′ ≤ ε
λ ,

• an accumulating simulation family provided that for all (s, t) ∈ Rε ∈ R
and s

α,c−−→ s′, also t
α,d−−→ t′ with |c − d| ≤ ε for some d ∈ R≥0 and

(s′, t′) ∈ R′ε ∈ R with ε′ ≤ ε−|c−d|
λ .

A family of relations R = {Rε,δ ⊆ S × S | ε ≥ 0,−ε ≤ δ ≤ ε} is

• a maximum-lead simulation family provided that for all (s, t) ∈ Rε,δ ∈ R
and s α,c−−→ s′, also t α,d−−→ t′ with |δ + c − d| ≤ ε for some d ∈ R≥0 and
(s′, t′) ∈ Rε′,δ′ ∈ R with ε′ ≤ ε

λ and δ′ ≤ δ+c−d
λ .

We write

• s 4•ε t if (s, t) ∈ Rε ∈ R for some point-wise simulation family R,

• s 4+
ε t if (s, t) ∈ Rε ∈ R for some accumulating simulation family R,

• s 4±ε t if (s, t) ∈ Rε,0 ∈ R for some maximum-lead simulation family R.

Note that the relations defined in the last part above again can be collected
into families 4• = {4•ε| ε ≥ 0}, 4+ = {4+

ε | ε ≥ 0}, and 4± = {4±ε,δ| ε, δ ≥ 0}.
Some explanatory remarks regarding these definitions are in order. For

point-wise simulation, (s, t) ∈ Rε means that any computation from s can be
matched by one from t with the same labels and a point-wise weight difference
of at most ε. Hence the requirement that s α,c−−→ s′ imply t α,d−−→ t′ with weight
difference |c − d| ≤ ε, and that computations from the target states s′, t′ be
matched with some (inversely) discounted point-wise distance ε′ ≤ ε

λ .
For accumulated simulation, (s, t) ∈ Rε is interpreted so that any com-

putation from s can be matched by one from t with the same labels and
accumulated absolute-value weight difference at most ε. Hence we again re-
quire that |c−d| ≤ ε, but now computations from the target states have to be
matched by what is left of ε after |c−d| has been used (and inverse discounting
applied).

Maximum-lead simulation is slightly more complicated, because we need
to keep track of the lead δ which one computation has accomplished over the
other. Hence (s, t) ∈ Rε,δ is to mean that any computation from s which
starts with a lead of δ over t can be matched by a computation from t with
accumulated weight difference at most ε. Thus we require that lead plus
weight difference, δ + c − d, be in-between −ε and ε, and the new lead for
computations from the target states is set to that value (again with inverse
discounting applied).

49

2. Quantitative Analysis of Weighted Transition Systems

For later use we collect the following easy facts about the above simula-
tions:

2.10 Lemma.

1. The families 4•, 4+ and 4± are the largest respective simulation fami-
lies.

2. For ε ≤ ε′ and Rε, R
′
ε ∈ R a point-wise or accumulating simulation

family, Rε ⊆ R′ε. For ε ≤ ε′, −ε ≤ δ ≤ ε and Rε,δ, Rε′,δ ∈ R a
maximum-lead simulation family, Rε,δ ⊆ Rε′,δ.

3. For states s, t ∈ S and ε ≤ ε′, s 4•ε t implies s 4•ε′ t, s 4+
ε t implies

s 4+
ε′ t, and s 4±ε t implies s 4±ε′ t.

4. For states s, t ∈ S, s 4 t implies s 4•0 t, s 4+
0 t, and s 4±0 t.

5. For states s, t ∈ S, s 64u t implies s 64•ε t, s 64+
ε t, and s 64±ε t for any ε.

2.2.3 Branching distances
We present an alternative characterization of the above simulation relations in
form of recursive equations; note that these closely resemble the inequalities
of Lemma 2.8:

2.11 Definition. For states s, t ∈ S, the point-wise, accumulated, and maximum-
lead branching distances are the respective minimal fixed points to the follow-
ing recursive equations:

dB
• (s, t) = sup

s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|c− d|, λ dB

• (s′, t′)
)

dB
+(s, t) = sup

s
α,c−−→s′

inf
t
α,d−−→t′

|c− d|+ λ dB
+(s′, t′)

dB
±(s, t) = dB

±(s, t)(0)

with dB
±(s, t)(δ) = sup

s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|δ|, λ dB

±(s′, t′)
(
δ+c−d
λ

))

Again, some remarks regarding these definitions will be in order. First note
that sup and inf are taken over the complete lattice R≥0 ∪ {∞} here, whence
inf ∅ = ∞ and sup ∅ = 0. Thus dB

• (s, t) = 0 in case s 6→ and dB
• (s, t) = ∞ in

case s α,c−−→ but t 6 α−→ for some α, and similarly for the other distances.
The functionals defined by the first two equations above are endofunctions

on the complete lattice of functions S×S → R≥0∪{∞}; they are easily shown
to be monotone, hence the minimal fixed points exist. For the last equation,
the functional is an endofunction on the complete lattice R →

(
S × S →

R≥0 ∪ {∞}
)
, mapping each lead δ ∈ R to a function dB

±(·, ·)(δ). Also this

50

2.3. Properties of distances

functional can be shown to be monotone and hence to have a minimal fixed
point.

It is not difficult to see that the distances defined above are branching
distances in the sense of Definition 2.4. Below we show that they are closely
related to the simulations of Definition 2.9:

2.12 Proposition. For states s, t ∈ S and ε ∈ R≥0, we have

• s 4•ε t if and only if dB
• (s, t) ≤ ε,

• s 4+
ε t if and only if dB

+(s, t) ≤ ε,

• s 4±ε t if and only if dB
±(s, t) ≤ ε.

Proof: Each of the six implications involved can be shown using standard
structural-induction arguments. �

2.3 Properties of distances
In this section we present a number of properties of the six distances intro-
duced above.

2.3.1 Branching versus linear distance

For the qualitative relations, simulation implies trace inclusion, i.e., s 4u t
implies s ≤u t, and s 4 t implies s ≤ t. Below we show a natural generalization
of this to our quantitative setting, where implications translate to inequalities;
note that an equivalent statement of the theorem is that for any ε, dB(s, t) ≤ ε
implies dL(s, t) ≤ ε for all three distances considered.

2.13 Theorem. For all states s, t ∈ S, we have

dL
•(s, t) ≤ dB

• (s, t) , dL
+(s, t) ≤ dB

+(s, t) , dL
±(s, t) ≤ dB

±(s, t) .

Proof: This follows from Lemma 2.8 by an easy structural-induction argu-
ment. �

Note that Example 1.2 shows that indeed, all distances in the equations
above can be finite. Other, standard examples show however that WTS exist
for which s 64 t and yet s ≤ t, hence dB(s, t) =∞ and dL(s, t) = 0 for all three
distances, showing the following theorem:

2.14 Theorem. The distances dL
• and dB

• are topologically inequivalent. Similarly,
dL

+ and dB
+, and also dL

± and dB
±, are topologically inequivalent.

51

2. Quantitative Analysis of Weighted Transition Systems

2.3.2 Relationship between distances
The theorems below sum up the relationship between our three linear dis-
tances; note that the results depend heavily on whether or not discounting is
applied. The following lemma is useful and easily shown:

2.15 Lemma. For states s, t ∈ S, we have

dL
•(s, t) ≤ dL

+(s, t) dL
±(s, t) ≤ dL

+(s, t) dL
•(s, t) ≤ 2 dL

±(s, t)
dB
• (s, t) ≤ dB

+(s, t) dB
±(s, t) ≤ dB

+(s, t) dB
• (s, t) ≤ 2 dB

±(s, t)

The restrictions on traces mentioned below are understood to be applied
to the sets Tr(s), Tr(t) in Definition 2.6.

2.16 Theorem. Assume the discounting factor λ = 1.

1. When restricted to traces of bounded length, the three linear distances
dL
•, dL

+ and dL
± are Lipschitz equivalent.

2. For traces of unbounded length, the linear distances are mutually topo-
logically inequivalent.

Proof: If the length of traces is bounded above by N ∈ N, then dL
+(s, t) ≤

NdL
•(s, t) for all s, t ∈ S, and the result follows with Lemma 2.15.
For traces of unbounded length, topological inequivalence of dL

• and dL
+,

and of dL
• and dL

±, can be shown by the following infinite WTS:

s s1 s2
· · ·

sn
· · ·0 1

2
1
4

1
2n

Here we have dL
+(s, sn) = dL

±(s, sn) = ∞ for all n, but for any δ ∈ R+
there is an n for which dL

•(s, sn) < δ. Similarly, topological inequivalence of
dL

+ and dL
± is shown by the infinite WTS below:

s s1 s2 sn

s′ s′1 s′2

· · ·

s′n

· · ·0 1
2

1
4

1
2n1 1− 1

2 1− 1
4 1− 1

2n

�

2.17 Theorem. For discounting factor λ < 1, the three linear distances dL
•, dL

+
and dL

± are Lipschitz equivalent.

Proof: This is similar to the first claim of the previous theorem: For all
states s, t ∈ S, we have dL

+(s, t) ≤ 1
1−λd

L
•(s, t), and the result follows with

Lemma 2.15. �

52

2.4. Conclusion

2.18 Theorem. For discounting factor λ = 1, the three branching distances dB
• , dB

+
and dB

± are mutually topologically inequivalent. For λ < 1, they are Lipschitz
equivalent.

Proof: The first claim can be shown using the same example WTS as for the
second part of the proof of Theorem 2.16, and for the second claim we have
dB

+(s, t) ≤ 1
1−λd

B
• (s, t) and can apply Lemma 2.15. �

2.4 Conclusion
We have argued above that our proposed extension of the qualitative notion
of trace inclusion and simulation to a quantitative setting is reasonable.

For the three types of distances considered in this chapter, we have seen
that linear distances can easily be introduced, whereas definition of branching
distances requires more work and involves fixed-point computations. Our
Lemma 2.8 remedies some of these difficulties, and we expect this remedy
to also be applicable for other interesting trace distances. We will show in
Chapter 5 that a general procedure for obtaining branching distances from
linear distances is available.

We have shown that all our three linear distances are topologically inequiv-
alent to their corresponding branching distance, thus measure inherently dif-
ferent properties. Still, and analogously to the qualitative setting, the branch-
ing distance can be used as an over-approximation of the linear distance. Also,
and perhaps more surprisingly, whether different linear or branching distances
are mutually equivalent depends on the usage of discounting. We expect most
of these results to also hold for other kinds of trace distances, see again Chap-
ter 5.

We have mentioned earlier that in this work we concentrate on trace inclu-
sion and simulation (asymmetric) distances, and of course similar treatment
should be given to trace equivalence and bisimulation distances. Symmetric
linear distances are easily defined as symmetrizations of the linear distances
introduced here, but for the branching distances there are subtle differences
between symmetrized simulation distances on the one hand and bisimulation
distances on the other hand. The next chapter will be concerned with bisim-
ulation distances.

53

3 A Quantitative Characterization of
Weighted Kripke Structures in
Temporal Logic1

This chapter is concerned with weighted Kripke structures (WKS), which rep-
resent a straight-forward extension of Kripke structures with a weighted tran-
sition relation labeling each transition. It then proceeds to define a weighted
version of Computation Tree Logic (WCTL) together with two different se-
mantics which mirror the point-wise and accumulating distances of the previ-
ous chapter. It is then shown that WCTL is adequate and expressive for the
corresponding bisimulation distances.

3.1 Preliminaries
As in Chapter 2, the results presented in this chapter are based on metrics on
sequences of real numbers. Let a = (ai) and b = (bi) be such sequences, we
then define for λ ∈]0, 1[the following basic distances:

d+(a, b) =
∑
i

λi|ai − bi| (3.1)

d•(a, b) = sup
i
{λi|ai − bi|} (3.2)

Throughout the chapter we will refer to (3.1) and (3.2), as well other distances
based on these, as an accumulating distance and as a point-wise distance,
respectively. For the remainder of this chapter we fix a discounting factor λ ∈
]0, 1[; note that contrary to the previous chapter, we here assume 0 < λ < 1.

We proceed to introduce WKS. A natural interpretation is to view the
labellings as the cost of taking transitions in the structure. This extension is
similar to the one presented in Chapter 2 for labeled transition systems, thus
the results presented in the previous chapter are transferable to the current
setting.

1This chapter is based on the journal paper [FLT10] published in Computing and Infor-
matics.

55

3. Weighted Kripke Structures

3.1 Definition. For a finite set AP of atomic propositions, a weighted Kripke
structure is a quadruple M = (S, T, L,w) where

• S is a finite set of states,

• T ⊆ S × S is a transition relation

• L : S → 2AP is the proposition labeling, and

• w : T → R≥0 assigns positive real-valued weights to transitions.

We write s→ s′ instead of (s, s′) ∈ T and s w−→ s′ to indicate w(s, s′) = w.

A (weighted) path in a WKS M = (S, T, L,w) is a (possibly infinite) se-
quence σ = ((s0, w0), (s1, w1), (s2, w2), . . .) with (si, wi) ∈ S ×R≥0 and such
that si → si+1 and wi = w(si, si+1) for all i. We denote by Tr(s) the set of
paths in M starting at state s, and by Tr(M) the set of all paths in M . Given
a path σ, we write σ(i) = (σ(i)s, σ(i)w) for its i’th state-weight pair, and σi
for the suffix starting at σ(i).

Notice that we have restricted ourselves to finite weighted Kripke struc-
tures here, i.e., structures with a finite set of states and finitely many atomic
propositions. Our characterization results in Section 3.4 only hold for such
finite structures.

3.2 Example. Figure 3.1 gives a model of a simple printer as a WKS which we
shall come back to again later. Resource usage is modeled as atomic propo-
sitions, and transition weights model the combined cost of the operations.
Turning on the machine, it moves from the state Off to Ready, from where
it can Suspend and wake up at a much lower cost. Input is processed in the
Receiving state, and the chosen output form incurs different costs related to
resource usage, clean-up and reset.

3.2 Weighted CTL
We now consider two interpretations of weighted CTL (WCTL), based on
(3.1) and (3.2), which will encompass quantitative information by two means.
First, as with TCTL and PCTL, a syntactic extension of path operators, by
annotation with real weights, models requirements on path weights (the exact
meaning of these are deferred to the choice of semantics). Second, satisfaction
of a formula by a system is no longer interpreted in the Boolean domain
{>,⊥}, but rather assigns to a state a truth value in the domain R≥0 ∪ {∞}.
We will interpret 0 as an exact match, whereas∞ indicates an incompatibility
between the system and the specified atomic propositions of a formula. Any
intermediate value is interpreted as a distance from an exact match. That is, a
smaller distance means a closer (better) match of the specified weights in the

56

3.2. Weighted CTL

Off
Power/off

Ready
Power/on

Suspended
Power/on

Receiving
Power/on
Running PostScript

Printing
Power/on
A4

Color
Power/on
A4

Faxing
Power/on
Phone-line

Large
Power/on
A3

100 0.5

0 25

10

30
50

4
35

40

0.5
0.50.7

0.2

Figure 3.1: The behavior and cost and resource usage of a simple printer.

formula. We denote by JϕK(s) ∈ R≥0 ∪ {∞} the value obtained by evaluating
formula ϕ at state s.

From here on, we fix a setAP of atomic propositions and aWKS (S, T, L,w).
All definitions and results below will be given for the states of one single WKS,
but we note that to relate states of different WKS, one can simply form the
disjoint union.

3.3 Definition. For p ∈ AP, Φ generates the set of state formulae, and Ψ the set
of path formulae, annotated by weights c ∈ R≥0, according to the following
abstract syntax:

Φ ::= p | ¬p | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | EΨ | AΨ
Ψ ::= XcΦ | GcΦ | FcΦ | [Φ1UcΦ2]

The logic WCTL is the set of state formulae, written Lw(AP) or simply Lw.

Before presenting the formal semantics, let us consider the usual meaning
of the CTL modalities, as well as how these may be generalized to ensure
adherence to bisimulation variants considered in the following section:

Given CTL propositions of the form M, s |= Eψ and M, s |= Aψ, we may
interpret these as infinite existential, respectively universal, quantifications
over paths in M from s satisfying ψ. Similarly, M,σ |= Fϕ and M,σ |= Gϕ
may be interpreted as an infinite disjunction, respectively conjunction, over
propositions on the form M, si |= ϕ for i ≥ 0, where si is a state on σ.

This observation is in line with some arguments given in [KP04], and
we expect that a generic approach to defining quantitative (or multi-valued)
semantics for WCTL over the truth domain R≥0 ∪ {∞} is obtainable. To
this end, the standard sup and inf operators are reasonable generalization of
E, A, F and G (interpreted as disjunction and conjunction over the standard
Boolean domain) to the complete lattice R≥0 ∪ {∞}.

57

3. Weighted Kripke Structures

Furthermore, this approach requires only modification to the evaluation
(i.e., semantics) of path formulae. Our semantics specializes to the usual one
in two different ways: either by mapping to the designated set of truth values
(i.e., to >), all ε <∞ and ∞ to ⊥, or by mapping only 0 to > and all ε > 0
to ⊥.

3.2.1 Semantics
In the following we present two discounted semantics, derived from the dis-
tances d+ from (3.1), and d• from (3.2) where weights of transition are ac-
cumulated or considered point-wise, respectively. Formally, the semantics of
ϕ ∈ Lw defines a map from the set of states S to the set R≥0 ∪ {∞}. The
first definition gives a general weighted semantics to state formulae:

3.4 Definition (State semantics). The semantics of state formulae is defined
inductively as follows:

JpK(s) =
{

0 if p ∈ L(s)
∞ otherwise

J¬pK(s) =
{

0 if p ∈ AP \ L(s)
∞ otherwise

Jϕ1 ∨ ϕ2K(s) = inf
{
Jϕ1K(s), Jϕ2K(s)

}
Jϕ1 ∧ ϕ2K(s) = sup

{
Jϕ1K(s), Jϕ2K(s)

}
JEψK(s) = inf

{
JψK(σ) | σ ∈ Tr(s)

}
JAψK(s) = sup

{
JψK(σ) | σ ∈ Tr(s)

}
In the last two formulae, JψK(σ) is the accumulating or point-wise semantics
of σ with respect to ψ as appropriate, see below.

In the next definition, we give the two different weighted semantics to path
formulae; an accumulated and a point-wise one. Note that the only difference
between the two is an interchange of maximum and sum, which supports the
findings in [KP04, LLM05] which advocate abstracting away from concrete
operators and interpreting the semantics over general algebraic structures.

3.5 Definition (Path semantics). The accumulating semantics of path formu-
lae is defined inductively as follows:

JϕK+(σ) = JϕK(σ(0)s)

JXcϕK+(σ) = |σ(0)w − c|+ λJϕK+(σ1)

JFcϕK+(σ) = inf
k

(k−1∑
j=0

λj
∣∣∣σ(j)w − c

∣∣∣+ λkJϕK+(σk)
)

JGcϕK+(σ) = sup
k

(k−1∑
j=0

λj
∣∣∣σ(j)w − c

∣∣∣+ λkJϕK+(σk)
)

Jϕ1Ucϕ2K+(σ) = inf
k

(k−1∑
j=0

λj
∣∣∣Jϕ1K+(σj)− c

∣∣∣+ λkJϕ2K+(σk)
)

58

3.3. Bisimulation

The point-wise semantics of path formulae is defined inductively as follows:

JϕK•(σ) = JϕK(σ(0)s)

JXcϕK•(σ) = max
{
|σ(0)w − c|, λJϕK•(σ1)

}
JFcϕK•(σ) = inf

k

(
max

{
max

0≤j<k

{
λj |σ(j)w − c|

}
, λkJϕK•(σk)

})
JGcϕK•(σ) = sup

k

(
max

{
max

0≤j<k

{
λj |σ(j)w − c|

}
, λkJϕK•(σk)

})
Jϕ1Ucϕ2K•(σ) = inf

k

(
max

{
max

0≤j<k

{
λj
∣∣Jϕ1K•(σj)− c

∣∣}, λkJϕ2K•(σk)
})

Note that as usual, Fc can also be derived from Uc by Fcϕ , ttUcϕ (where
tt is some tautology).

Compared to, for example, TCTL, the annotated operators specify an
expected value, hence Xcϕ evaluated on σ means that c is expected of the first
transition in σ. The difference is then added to (or the maximum is taken of
it and) the value of ϕ over the remaining path σ1.

3.6 Example. In the context of the example from Figure 3.1 we consider a useful
property of printers, that of having received a job, the printer cannot suspend
before completing the job. The formula ϕ = A(¬Suspended U10 Ready)
formalizes this qualitative property and also states that we expect to reach
the Ready state using transitions with cost 10. With λ = .9, the point-wise
interpretation JϕK•(Receiving) = 40 is the cost (minus 10) of the transition
in the computation tree which is furthest from 10. In the accumulating inter-
pretation, JϕK+(Receiving) = 48.37 yields the sum of all such differences.

3.3 Bisimulation
We now consider extensions of strong bisimulation [Mil89] over WKS, based
on (3.1) and (3.2). These are filling the gap between unweighted and weighted
strong bisimulation as defined below; cf. also Def. 2.3.

3.7 Definition. Let (S, T, L,w) be a WKS on a set AP of atomic propositions.
A relation R ⊆ S × S is

• an unweighted bisimulation provided that for all (s, t) ∈ R, L(s) = L(t)
and

– if s→ s′, then also t→ t′ and (s′, t′) ∈ R for some t′ ∈ S′,
– if t→ t′, then also s→ s′ and (s′, t′) ∈ R for some s′ ∈ S;

• a (weighted) bisimulation provided that for all (s, t) ∈ R, L(s) = L(t)
and

59

3. Weighted Kripke Structures

– if s c−→ s′, then also t c−→ t′ and (s′, t′) ∈ R for some t′ ∈ S′,
– if t c−→ t′, then also s c−→ s′ and (s′, t′) ∈ R for some s′ ∈ S.

We write s ∼u t if (s, t) ∈ R for some unweighted bisimulation R, and s ∼ t if
(s, t) ∈ R for some weighted bisimulation R.

The motivation for the variants defined below is that, in order to relate
structures, we do not always need perfect matching of transition weights;
rather we would like to know how accurately weights are matched. As with
the simulation distances of Chapter 2, we call a bisimulation distance any
pseudometric on the states of a WKS which mediates between unweighted
and weighted bisimilarity:

3.8 Definition. A bisimulation distance on a WKS (S, T, L,w) is a function d :
S × S → R≥0 ∪ {∞} which satisfies the following for all s1, s2, s3 ∈ S:

• d(s1, s1) = 0,

• d(s1, s2) + d(s2, s3) ≥ d(s1, s3),

• d(s1, s2) = d(s2, s1),

• s1 ∼ s2 implies d(s1, s2) = 0 and

• d(s1, s2) 6=∞ implies s1 ∼u s2

Our distances are based on distances of (infinite) sequences of real
numbers, which is appropriate, as for (s, t) in ∼u (or in ∼), any path
(s, a, s1, a1, s2, . . .) ∈ Tr(s) must be matched by an equal-length path
(t, b, t1, b1, t2, . . .) ∈ Tr(t) with (si, ti) in ∼u (respectively ∼).

By extending bisimulation with the d+ and d• distances, we collect a family
of relations {Rε ⊆ S×S} (i.e., a map R≥0 → 2S×S) since, due to discounting,
for each step the distance between each successor pair may grow:

3.9 Definition. A family of relations R = {Rε ⊆ S × S | ε > 0} is

• an accumulating bisimulation family provided that for all (s, t) ∈ Rε ∈
R, L(s) = L(t) and

– if s c−→ s′, then also t d−→ t′ with |c − d| ≤ ε for some d ∈ R≥0 and
(s′, t′) ∈ Rε′ ∈ R with ε′λ ≤ ε− |c− d|, and

– if t c−→ t′, then also s d−→ s′ with |c − d| ≤ ε for some d ∈ R≥0 and
(s′, t′) ∈ Rε′ ∈ R with ε′λ ≤ ε− |c− d|.

• a point-wise bisimulation family provided that for all (s, t) ∈ Rε ∈ R,
L(s) = L(t) and

60

3.4. Characterization

– if s c−→ s′, then also t d−→ t′ with |c − d| ≤ ε for some d ∈ R≥0 and
(s′, t′) ∈ Rε′ ∈ R with ε′λ ≤ ε, and

– if t c−→ t′, then also s d−→ s′ with |c − d| ≤ ε for some d ∈ R≥0 and
(s′, t′) ∈ Rε′ ∈ R with ε′λ ≤ ε .

We write s ∼+
ε t and s ∼•ε t, if (s, t) ∈ Rε ∈ R for an accumulating, respec-

tively point-wise, bisimulation family R.

Both variants of bisimulation families give raise to a bisimulation distance
in the sense of Definition 3.8 by d+(s, t) = inf{ε | s ∼+

ε t} and d•(s, t) =
inf{ε | s ∼•ε t}. Observe the following easy facts:

3.10 Lemma.

1. For ε ≤ ε′ and members Rε, Rε′ ∈ R of an accumulating or point-wise
bisimulation family, Rε ⊆ Rε′.

2. Given s ∼+
ε t, then every path σ = (s0, w0, s1, w1s2, . . .) ∈ Tr(s) has a

corresponding path σ′ = (t0, w′0, t1, w′1t2, . . .) ∈ Tr(t) such that ε = ε0
and si ∼+

εi ti for all i, where εi+1λ = εi − |wi − w′i|.

3. Given s ∼•ε t, then every path σ = (s0, w0, s1, w1s2, . . .) ∈ Tr(s) has a
corresponding path σ′ = (t0, w′0, t1, w′1t2, . . .) ∈ Tr(t) such that ε = ε0
and si ∼•εi ti for all i, where εi+1λ = εi.

Note that as we only consider finite WKS, all Rε relations are finite. Also,
we shall speak of corresponding paths when referring to the second and third
properties of the above lemma.

3.4 Characterization
In this section we show that the presented WCTL interpretations are adequate
and expressive with respect to the appropriate bisimilarity variant.

3.4.1 Adequacy
The link between accumulating bisimilarity and our accumulating semantics
for WCTL is as follows:

3.11 Theorem. For s, t ∈ S, s ∼+
ε t iff ∀ϕ ∈ Lw :

∣∣JϕK+(s)− JϕK+(t)
∣∣ ≤ ε.

The proof follows from Lemmas 3.15 and 3.16 below. Observe that this
provides us with the following corollary which is precisely the standard notion
of adequacy, see [HM85]:

3.12 Corollary. For s, t ∈ S, s ∼+
0 t iff JϕK+(s) = JϕK+(t) for all ϕ ∈ Lw.

61

3. Weighted Kripke Structures

We obtain an equivalent result for the point-wise semantics:

3.13 Theorem. For s, t ∈ S, s ∼•ε t iff ∀ϕ ∈ Lw :
∣∣JϕK•(s)− JϕK•(t)∣∣ ≤ ε.

3.14 Example. We consider again the printer from Figure 3.1. When ignoring
Color and Printing as atomic propositions, we have Color ∼+

.2 Printing,
as the two initial transition are the only difference. As a formula which realizes
this bisimulation distance one can take ϕ = power/on∧A4∧AX0.5Ready; then
JϕK+(Printing) = 0 and JϕK+(Color) = .2.

The proofs of adequacy, and also of expressivity below, for the accumulat-
ing and point-wise cases are similar, hence we concentrate on the accumulat-
ing case. In the proof we will repeatedly make use of the lesser-known little
brother of the triangle inequality∣∣|x− y| − |x− z|∣∣ ≤ ∣∣y − z∣∣ .

3.15 Lemma. Let s, t ∈ S with s ∼+
ε t, and let σ = (s, u, s1, u1, . . .) ∈ Tr(s), τ =

(t, v, t1, v1, . . .) ∈ Tr(t) be corresponding paths. Then
∣∣JϕK+(s) − JϕK+(t)

∣∣ ≤ ε
for all state formulae ϕ, and

∣∣JϕK+(σ)− JϕK+(τ)
∣∣ ≤ ε for all path formulae ϕ.

Proof: We prove the lemma by structural induction in ϕ. The induction
base is clear, as s ∼+

ε t implies that p ∈ L(s) if and only if p ∈ L(t), hence
JϕK+(s) = JϕK+(t) for ϕ = p or ϕ = ¬p. For the inductive step, we examine
each syntactic construction in turn:

1. ϕ = ϕ1 ∨ ϕ2

There are four cases to consider, corresponding to whether Jϕ1K+(s) ≤
Jϕ2K+(s) or Jϕ1K+(s) > Jϕ2K+(s) and similarly for Jϕ1K+(t) and Jϕ2K+(t).
We show the proof for one of the “mixed” cases; the other three are
similar or easier:
Assume Jϕ1K+(s) ≤ Jϕ2K+(s) and Jϕ1K+(t) > Jϕ2K+(t). Then Jϕ1 ∨
ϕ2K+(s)−Jϕ1∨ϕ2K+(t) = Jϕ1K+(s)−Jϕ2K+(t), and Jϕ1K+(s)−Jϕ1K+(t) ≤
Jϕ1K+(s)−Jϕ2K+(t) ≤ Jϕ2K+(s)−Jϕ2K+(t), and by induction hypothesis,
−ε ≤ Jϕ1K+(s)− Jϕ1K+(t) and Jϕ2K+(s)− Jϕ2K+(t) ≤ ε.

2. ϕ = ϕ1 ∧ ϕ2. This is similar to the previous case.

3. ϕ = Eϕ1

By definition of JEϕ1K+ there is a path σ ∈ Tr(s) for which Jϕ1K+(σ) =
JϕK+(s). By Lemma 3.10 there is a corresponding path τ ∈ Tr(t), and
from the induction hypothesis we know that |Jϕ1K+(σ)− Jϕ1K+(τ)| ≤ ε.
Thus |JϕK+(s)− JϕK+(t)| ≤ ε.

4. ϕ = Aϕ1. This is similar to the previous case.

62

3.4. Characterization

5. ϕ = Xcϕ1

By definition, JϕK+(σ) = λJϕ1K+(σ1)+|c−u| and JϕK+(τ) = λJϕ1K+(τ1)+
|c−v|, where σ = s

u−→ σ1 and τ = t
v−→ τ1. Since s ∼+

ε t and σ and τ cor-
respond, we have σ(1) ∼+

ε′ τ(1) with ε′λ ≤ ε− |u− v|, and by induction
hypothesis |Jϕ1K+(σ1) − Jϕ1K+(τ1)| ≤ ε′. Hence

∣∣JϕK+(σ) − JϕK+(τ)
∣∣ ≤∣∣|c− u| − |c− v|∣∣+ λ

∣∣Jϕ1K+(σ1)− Jϕ2K+(τ1)
∣∣ ≤ |u− v|+ ε− |u− v| = ε.

6. ϕ = Fcϕ1

Pick any δ > 0, then there is k ∈ N for which Sk = ∑k−1
j=0 λ

j |σ(j)w −
c| + λkJφK+(σk) ≤ JφK+(σ) + δ. As the paths σ and τ correspond, we
also have Tk = ∑k−1

j=0 λ
j |τ(j)w − c| + λkJφK+(τk) ≤ JφK+(τ) + δ. Re-

peated use of the definition of ∼+
ε yields σ(k) ∼+

ε′ τ(k) with ε′λk ≤
ε−

∑k−1
j=0 λ

j
∣∣σ(j)w− τ(j)w

∣∣, hence by induction hypothesis,
∣∣JφK+(σk)−

JφK+(τk)
∣∣ ≤ ε′. Thus ∣∣JφK+(σ)−JφK+(τ)

∣∣ ≤ ∣∣Sk−Tk∣∣+δ ≤∑k−1
j=0 λ

j
∣∣|σ(j)w−

c| − |τ(j)w − c|
∣∣+ λk

∣∣JφK+(σk)− JφK+(τk)
∣∣+ δ ≤ ε+ δ. As these consid-

erations hold for any δ > 0, we must have
∣∣JφK+(σ)− JφK+(τ)

∣∣ ≤ ε.
7. ϕ = Gcϕ1; ϕ = ϕ1Ucϕ2. These are similar to the previous case. �

3.16 Lemma. Let s, t ∈ S and assume that
∣∣JϕK+(s) − JϕK+(t)

∣∣ ≤ ε for all state
formulae ϕ ∈ Lw. Then s ∼+

ε t.

Proof: This follows directly from Theorem 3.17 below, but one can also ob-
serve that the accumulating family R = {Rε} defined by

Rε =
{
(s, t) | s, t ∈ S, ∀ϕ ∈ Lw :

∣∣JϕK+(s)− JϕK+(t)
∣∣ ≤ ε}

is indeed an accumulating bisimulation in terms of Definition 3.9. �

3.4.2 Expressivity
We show that WCTL with accumulating semantics is expressive with respect
to accumulating bisimulation in the following sense:

3.17 Theorem. For each s ∈ S and every γ ∈ R+, there exists a state formula
ϕsγ ∈ Lw, interpreted over the accumulating semantics, which characterizes s
up to accumulating bisimulation and up to γ, i.e., such that for all s′ ∈ S,
s ∼+

ε s
′ if and only if JϕsγK+(s′) ∈ [ε− γ, ε+ γ] for all γ.

Proof: We define characteristic formulae of unfoldings, as follows: For each
s ∈ S and n ∈ N, denote L(s) = {p1, . . . , pk} and AP \ L(s) = {q1, . . . , q`}
and let ϕ(s, n) be the WCTL formula defined inductively as follows:

ϕ(s, 0) = (p1 ∧ · · · ∧ pk) ∧ (¬q1 ∧ · · · ∧ ¬q`)

ϕ(s, n+ 1) =
∧

s
w−→s′

EXwϕ(s′, n) ∧
∧

w:s
w−→s′

AXw
(∨
s
w−→s′

ϕ(s′, n)
)
∧ ϕ(s, 0)

63

3. Weighted Kripke Structures

It is easy to see that Jϕ(s, n)K+(s) = 0 for all n.
To complete the proof, one observes that for each γ > 0, there is n(γ) ∈ N

such that ϕ(s, n(γ)) can play the role of φsγ in the theorem. Intuitively this
is due to discounting: The further the unfolding in ϕ(s, n), the higher are the
weights discounted, hence from some n(γ) on, maximum weight difference is
below γ. �

3.18 Theorem. For each s ∈ S and every γ ∈ R+, there exists a state formula
ϕsγ ∈ Lw, interpreted over the point-wise semantics, which characterizes s up
to point-wise bisimulation and up to γ, i.e., such that for all s′ ∈ S, s ∼•ε s′ if
and only if JϕsγK•(s′) ∈ [ε− γ, ε+ γ] for all γ.

3.5 Conclusion
We have shown in this chapter that weighted CTL with an accumulating se-
mantics is adequate and expressive for accumulating bisimulation for weighted
Kripke structures. We have also seen that the same holds for the point-wise
semantics for WCTL with respect to point-wise bisimulation.

We will see in Chapter 5 that these results can be lifted to a common ab-
stract framework which also encompasses other weighted bisimulations such
as the maximum-lead bisimulation of [HMP05] presented in the previous chap-
ter.

64

4 Metrics for Weighted Transition
Systems: Axiomatization1

In this chapter we turn to axiomatizations of the point-wise and accumulating
simulation distances. We first present axiomatizations for finite processes and
then for regular processes. We then show that the axiomatizations for finite
processes are sound and complete, whereas the ones for regular processes are
sound and ε-complete.

4.1 Simulation distances
Throughout this chapter we fix a finite metric spaceK of weights with a metric
dK : K ×K → R. We also fix a discounting factor λ with 0 ≤ λ < 1, which
will be used in the definition of accumulating distance below.

4.1 Definition. A weighted transition system is a tuple (S, T), where S is a finite
set of states and T ⊆ S ×K× S is a set of (weighted) transitions.

Note that all transition systems in this chapter are indeed assumed finite,
hence requiring finiteness of the metric spaceK does not add extra restrictions.

We fix a weighted transition system (S, T) and introduce simulation dis-
tance between states in (S, T). We concentrate on two types here, accumulat-
ing and point-wise distance, but other kinds may indeed be defined.

4.1.1 Accumulating distance
4.2 Definition. For states s, t ∈ S, the accumulating simulation distance from s

to t is defined to be the least fixed point to the set of equations

d+(s, t) = max
s
n−→s′

min
t
m−→t′

(
dK(n,m) + λd+(s′, t′)

)
. (4.1)

To justify this definition, we need to show that the equations (4.1) indeed
have a least solution. To this end, write S = {s1, . . . , sp} and assume for

1This chapter is based on the journal paper [LFT11] published in Theoretical Computer
Science.

65

4. Axiomatization

the moment that the transition system (S, T) is non-blocking such that every
si ∈ S has an outgoing transition si n−→ sk for some sk ∈ S. Define a function
F : Rp×p

≥0 → R
p×p
≥0 by

F (x)i,j = max
si

n−→sk

min
sj

m−→s`

(
dK(n,m) + λxk,`

)
.

Here we are using the standard linear-algebra notation Rp×p
≥0 for p×p-matrices

with entries in R≥0 and xk,` for the entry in their k’th row and `’th column.

4.3 Lemma. With metric on Rp×p
≥0 defined by d(x, y) = maxpi,j=1 |xi,j −yi,j |, F is

a contraction with Lipschitz constant λ.

Proof: (Cf. also the proof of [ZP96, Thm. 5.1].) We can partition Rp×p
≥0 into

finitely many (indeed at most 2p2q2 with q = |K|) closed polyhedral regions
Ri,j (some of which may be unbounded) such that for x, y ∈ Ri,j in a common
region, the p2 max-min equations get resolved to the same transitions. In
more precise terms, there are mappings n,m, k, ` : {1, . . . , p} × {1, . . . , p} →
{1, . . . , p} such that F (x)i,j = dK(n(i, j),m(i, j))+λxk(i,j),`(i,j) for all x ∈ Ri,j .

Now if x, y ∈ Ri,j are in a common region, then

d(F (x), F (y)) ≤ λmax
i,j
|xk(i,j),`(i,j) − yk(i,j),`(i,j)|

≤ λmax
i,j
|xi,j − yi,j | = λd(x, y) .

If x ∈ Ri1,j1 , y ∈ Ri2,j2 are in different regions, a bit more work is needed.
The straight line segment between x and y admits finitely many intersection
points with the regions Ri,j ; denote these x = z0, . . . , zq = y. We have

d(F (x), F (y)) ≤ d(F (z0), F (z1)) + · · ·+ d(F (zq−1, zq))
≤ λ

(
d(z0, z1) + · · ·+ d(zq−1, zq)

)
= λd(x, y) .

Note that the last equality only holds because all zi are on a straight line. �

Using the Banach fixed-point theorem and completeness of Rp×p
≥0 we can

hence conclude that F has a unique fixed point. In the general case, where
(S, T) may not be non-blocking, F is a function [0,∞] → [0,∞] with (extra)
fixed point [∞, . . . ,∞]. Hence as a function [0,∞] → [0,∞], F has at most

66

4.1. Simulation distances

two fixed points. Now we can write the equation set from the definition as


d+(s1, s1) d+(s1, s2) · · · d+(s1, sp)
d+(s2, s1) d+(s2, s2) · · · d+(s2, sp)

...
...

d+(sp, s1) d+(sp, s2) · · · d+(sp, sp)



= F


d+(s1, s1) d+(s1, s2) · · · d+(s1, sp)
d+(s2, s1) d+(s2, s2) · · · d+(s2, sp)

...
...

d+(sp, s1) d+(sp, s2) · · · d+(sp, sp)

 ,

hence (4.1) has indeed a unique least fixed point.

4.1.2 Point-wise distance

For point-wise simulation distance we follow a lattice-theoretic rather than a
contraction approach.

4.4 Definition. For states s, t ∈ S, the point-wise simulation distance from s to
t is defined to be the least fixed point to the set of equations

d•(s, t) = max
s
n−→s′

min
t
m−→t′

max
(
dK(n,m), d•(s′, t′)

)
.

Note that in this chapter, the point-wise distance is undiscounted.
Let G : [0,∞]p×p → [0,∞]p×p be the function defined by

G(x)i,j = max
si

n−→sk

min
sj

m−→s`

max
(
dK(n,m), xk,`

)
.

4.5 Lemma. With partial order on [0,∞]p×p defined by x ≤ y iff xi,j ≤ yi,j for
all i, j, G is (weakly) increasing.

Proof: Trivial. �

Now the Tarski fixed-point theorem allows us to conclude that G has a
unique least fixed point, hence the above definition is justified.

4.1.3 Properties

4.6 Proposition. The functions d+ and d• are hemimetrics on S.

67

4. Axiomatization

Proof: To show that d+(s, s) = d•(s, s) = 0 is trivial. The triangle inequal-
ities can be shown inductively; we prove the one for d+: For s, t, u ∈ S, we
have

d+(s, t) + d+(t, u) = max
s
n−→s′

min
t
m−→t′

(
dK(n,m) + λd+(s′, t′)

)
+ max
t
m−→t′

min
u
z−→u′

(
dK(m, z) + λd+(t′, u′)

)
≥ max

s
n−→s′

min
t
m−→t′

min
u
z−→u′

(
dK(n,m) + dK(m, z)

+ λ
(
d+(s′, t′) + d+(t′, u′)

))
≥ max

s
n−→s′

min
u
z−→u′

(
dK(n, z) + λd+(s′, u′)

)
= d+(s, u)

assuming the triangle inequality has been proven for the triple (s′, t′, u′). �

In the next proposition we take the standard liberty of comparing different
(weighted) transition systems by considering their disjoint union.

4.7 Proposition. The weighted transition systems 0 and U given as 0 = ({s1}, ∅)
and U = ({s1}, {(s1, n, s1) | n ∈ K}) are respectively minimal and maximal
elements with respect to both d+(·, ·) and d•(·, ·), that is, d+(0, A) = d•(0, A) =
d+(A,U) = d•(A,U) = 0 for any WTS A.

Proof: For d+(0, A) and d•(0, A), the maximum maxs1 n−→s′1
is taken over the

empty set and hence is 0. For d+(A,U) and d•(A,U), any transition s n−→ s′

in A can be matched by s1
n−→ s1 in U, hence the distance is again 0. �

4.2 Axiomatizations for Finite Weighted Processes

We now turn to a setting where our weighted transition systems are generated
by finite or regular (weighted) process expressions. We construct a sound and
complete axiomatization of simulation distance in a setting without recursion
first and show afterwards how this may be extended to a setting with recursion.

Let P be the set of process expressions generated by the following gram-
mar:

E ::= 0 | n.E | E + E | n ∈ K

Here 0 is used to denote the empty process, cf. Proposition 4.7.
The semantics of finite process expressions is a weighted transition system

generated by the following standard SOS rules:

n.E
n−→ E

E1
n−→ E′1

E1 + E2
n−→ E′1

E2
n−→ E′2

E1 + E2
n−→ E′2

68

4.2. Axiomatizations for Finite Weighted Processes

(A1) 0 ./ r` [0, E] ./ r
(A2) ∞ ./ r

` [n.E,0] ./ r

` [E,F] ./ r1(R1) dK(n,m) + λr1 ./ r` [n.E,m.F] ./ r

` [E1, F] ./ r1 ` [E2, F] ./ r2(R2) max(r1, r2) ./ r
` [E1 + E2, F] ./ r

` [n.E, F1] ./ r1 ` [n.E, F2] ./ r2(R3) min(r1, r2) ./ r
` [n.E, F1 + F2] ./ r

Figure 4.1: The F proof system.

We can immediately get the following equalities

d+(E + 0, E) = 0
d+(n.E,m.F) = dK(n,m) + λ d+(E,F) (4.2)

d+(E1 + E2, F) = max(d+(E1, F), d+(E2, F))
d+(n.E, F1 + F2) = min(d+(n.E, F1), d+(n.E, F2)) (4.3)

For the point-wise distance, we again need only exchange (4.2) with

d•(n.E,m.F) = max(dK(n,m), d•(E,F))

In order to show for example (4.3) we simply need to apply the definitions:

d+(n.E, F1 + F2) = inf
F1+F2

m−→F ′
dK(n,m) + λ d+(E,F ′)

= min

inf
F1

m−→F ′
dK(n,m) + λ d+(E,F ′)

inf
F2

m−→F ′
dK(n,m) + λ d+(E,F ′)

= min
(
d+(n.E, F1), d+(n.E, F2)

)
For (4.2), the sup-inf expression ranges over singleton sets, hence the result is
easy; the remaining equalities may shown in a similar way.

The inference system F as given in Figure 4.1 axiomatizes accumulating
simulation distance for finite processes, as we shall prove below. Its sentences
are inequalities of the form [E,F] ./ r where ./ ∈ {=,≤,≥} and 0 ≤ r ≤ ∞.
Whenever [E,F] ./ r may be concluded from F, we write `F [E,F] ./ r.

In addition to reflexivity and transitivity, we will need the following stan-
dard properties of ./ in latter proofs of soundness and completeness: Whenever
a ./ b then, for all c: a+ c ./ b+ c, a · c ./ b · c, and max{a, c} ./ max{b, c}.

69

4. Axiomatization

We also remark that the left process indeed needs to be guarded in rule
(R3) above, i.e., the following proposed rule (R3′) leads to an unsound infer-
ence system:

` [E,F1] ./ r1 ` [E,F2] ./ r2(R3′) min(r1, r2) ./ r
` [E,F1 + F2] ./ r

Indeed, using this rule we can derive the following (incomplete) proof tree
with a contradictory conclusion; the reason behind is that with E = E1 + E2
non-deterministic as below, both F1 and F2 may be needed to answer the
challenge posed by E:

` [1.0, 1.0] ≥ 0 ` [2.0, 1.0] ≥ 1
` [1.0 + 2.0, 1.0] ≥ 1

` [1.0, 2.0] ≥ 1 ` [2.0, 2.0] ≥ 0
` [1.0 + 2.0, 2.0] ≥ 1

` [1.0 + 2.0, 1.0 + 2.0] ≥ 1

4.8 Theorem (Soundness). If `F [E,F] ./ r, then d+(E,F) ./ r.

Proof: By an easy induction in the proof tree for `F [E,F] ./ r, with a case
analysis for the applied proof rule:

(A1) follows from d+(0, E) = 0.

(A2) follows from d+(n.E,0) =∞ which is clear by the definition of d+.

(R1) By induction hypothesis we have d+(E,F) ./ r1, and as d+(n.E,m.F) =
dK(n,m) + λd+(E,F), it follows that d+(n.E,m.F) = dK(n,m) + λr1.

(R2) By induction hypothesis, d+(E1, F) ./ r1 and d+(E2, F) ./ r2, hence
d+(E1 + E2, F) = max(d+(E1, F),max{E2, F}) ./ max(r1, r2).

(R3) By induction hypothesis, d+(n.E, F1) ./ r1 and d+(n.E, F2) ./ r2, hence
d+(n.E, F1 + F2) = min(d+(n.E, F1), d+(n.E, F2)) ./ min(r1, r2). �

4.9 Theorem (Completeness). If d+(E,F) ./ r, then `F [E,F] ./ r.

Proof: By an easy structural induction on E:

(E = 0) We have d+(0, F) = 0 ./ r. By Axiom (A1), also ` [0, F] = 0.

(E = n.E′) We use an inner induction on F :

Case F = 0: Here d+(E,F) = d+(n.E′,0) =∞ ./ r. By Axiom (A2),
also ` [n.E′,0] =∞.

70

4.2. Axiomatizations for Finite Weighted Processes

Case F = m.F ′: Here d+(E,F) = d+(n.E′,m.F ′) = dK(n,m) +
λd+(E′, F ′) ./ r, hence with r′ = λ−1(r − dK(, nm)), d+(E′, F ′) ./ r′.
By induction hypothesis it follows that ` [E′, F ′] ./ r′, and we can use
Axiom (R1) to conclude that ` [E,F] ./ r.

Case F = F1 + F2: Using (4.3), we have d+(E,F) = d+(n.E′, F1 +
F2) = min

(
d+(n.E′, F1), d+(n.E′, F2)

)
. Let d+(n.E′, F1) ./ r1 and

d+(n.E′, F2) ./ r2. By the previous case, we know ` [n.E′, F1] ./ r1.
As min{r1, r2} ./ r it follows using (R3) that `F [n.E, F1 + F2] ./ r.

(E = E1 +E2) By an argument similar to the one in the preceding subcase,
we have d+(E,F) = max

(
d+(E1, F), d+(E2, F)

)
. If d+(E1, F) ./ r1

and d+(E2, F) ./ r2 with max(r1, r2) ./ r, we can use the induction
hypothesis to conclude ` [E1, F] ./ r1 and ` [E1, F] ./ r1, whence
` [E,F] ./ r by Axiom (R2). �

4.2.1 Point-wise distance

We can devise a sound and complete inference system F• for point-wise dis-
tance (instead of accumulating) by replacing inference rule (R1) in System F
by the rule

` [E,F] ./ r1(R1•) max(dK(n,m), λr1) ./ r
` [n.E,m.F] ./ r

As before, we write `F• [E,F] ./ r if [E,F] ./ r can be proven by F•.

4.10 Theorem (Soundness & Completeness). `F• [E,F] ./ r if and only if
d•(E,F) ./ r

Proof: The proof is similar to the one for F. �

4.2.2 Simulation distance zero

We show here that for distance zero, our inference system F specializes to a
sound and complete inference system for simulation. The inference system F0
is displayed in Figure 4.2.

4.11 Theorem (Soundness & Completeness). `F0 E 4 F if and only if E 4
F .

Proof: Soundness follows immediately from the soundness of Proof system
F, and for completeness we note that the arguments one uses in the inductive
proof of Theorem 4.9 all specialize to distance zero. �

71

4. Axiomatization

(A10) ` 0 4 E

` E 4 F(R10) ` n.E 4 n.F

` E1 4 F ` E2 4 F(R20) ` E1 + E2 4 F

` n.E 4 F1(R3′0) ` n.E 4 F1 + F2

` n.E 4 F2(R30) ` n.E 4 F1 + F2

Figure 4.2: The F0 proof system

We remark that, contrary to the situation for general distance above, we
may indeed replace the guarded process n.E in (R3′0) and (R30) by a plain E
without invalidating the rules. Note also that F0 may similarly be obtained
as a specialization F•0 of the axiomatization F• of point-wise distance above.

4.3 Axiomatizations for Regular Weighted Processes
Let N = max{dK(n,m) | n,m ∈ K}; by finiteness of K, N ∈ R. Let V be a
fixed set of variables, then PR is the set of process expressions generated by
the following grammar:

E ::= U | X | n.E | E + E | µX.E n ∈ K, X ∈ V

Here we use U to denote the universal process recursively offering any weight
in K, cf. Proposition 4.7. Note that we do not incorporate the empty process
0. Semantically this will mean that all processes in PR are non-terminating,
and that the accumulating distance between any pair of processes is finite. The
reason for the exchange of 0 with U is precisely this last property; specifically,
completeness of our axiomatization (Theorem 4.16) can only be shown if all
accumulating distances are finite.

The semantics of processes in PR is given as weighted transition systems
which are generated by the following standard SOS rules:

n.E
n−→ E U n−→ U

E1
n−→ E′1

E1 + E2
n−→ E′1

E2
n−→ E′2

E1 + E2
n−→ E′2

E[µX.E/X] n−→ F

µX.E
n−→ F

72

4.3. Axiomatizations for Regular Weighted Processes

As usual we say that a variable X is guarded in an expression E if any
occurrence of X in E is within a subexpression n.E′. Formally, we define the
guarding depth gd(E,X) of variable X in expression E recursively by

gd(U, X) =∞
gd(X,X) = 0

gd(n.E,X) = 1 + gd(E,X)
gd(E1 + E2, X) = min

(
gd(E1, X), gd(E2, X)

)
gd(µX.E, Y) =

{
gd(E,X) if X 6= Y

∞ if X = Y

and we say that X is guarded in E if gd(E,X) ≥ 1.
Also as usual, we denote by E[F/X] the expression derived from E by

substituting all free occurrences of variable X in E by F , and given tuples F̄ =
(F1, . . . , Fk), X̄ = (X1, . . . , Xk), we write E[F̄ /X̄] = E[F1/X1, . . . , Fk/Xk] for
the simultaneous substitution.

Our inference system for regular processes consists of the set of rules R as
shown in Figure 4.3; whenever [E,F] ./ r may be concluded from R, we write
`R [E,F] ./ r.

Compared to inference system F for finite processes, we note that we have
to include the triangle inequality (R4) as an inference rule. Also, the precon-
gruence property of simulation distance is expressed by rules (R1), (R5), and
(R6). We will need all those extra rules in the proof of Lemma 4.13 which
again is necessary for showing completeness.

4.12 Theorem (Soundness). For closed expressions E,F ∈ PR we have that
`R [E,F] ./ r implies d+(E,F) ./ r.

Proof: By an easy induction in the proof tree for `R [E,F] ./ r, using
the definition of d+(·, ·). In relation to Axiom (A3), we note that N =
max{dK(n,m) | n,m ∈ K} implies d+(E,F) ≤∑∞i=0 λ

iN = N
1−λ . �

Our completeness result for regular processes will be based on the following
lemmas; here we call an expression E ∈ PR non-recursive if it does not contain
any subexpressions µX.E′:

4.13 Lemma. For all E ∈ PR and k ∈ N there exist a non-recursive expression F
and tuples Ē = (E1, . . . , Ek), X̄ = (X1, . . . , Xk) for which gd(F,Xi) ≥ k for
all i and

`R [E,F [Ē/X̄]] = 0 , `R [F [Ē/X̄], E] = 0 .

Proof: Repeated use of the unfolding axioms (A6) and (A7), the congruence
rules (R1), (R5), and (R6) with r = 0 and of the triangle inequality (R4). �

73

4. Axiomatization

(A3) N
1−λ ≤ r` [E,F] ≤ r

(A4)
` [U,

∑
n∈K n.U] = 0

(A5)
` [∑n∈K n.U,U] = 0

(A6)
` [µX.E,E[µX.E/X]] = 0

(A7)
` [E[µX.E/X], µX.E] = 0

(A8)
` [E,U] = 0

` [E,F] ./ r1(R1) dK(n,m) + λr1 ./ r` [n.E,m.F] ./ r

` [E1, F] ./ r1 ` [E2, F] ./ r2(R2) max(r1, r2) ./ r
` [E1 + E2, F] ./ r

` [n.E, F1] ./ r1 ` [n.E, F2] ./ r2(R3) min(r1, r2) ./ r
` [n.E, F1 + F2] ./ r

` [E,F] ≤ r1 ` [F,G] ≤ r2(R4) r1 + r2 ≤ r` [E,G] ≤ r

` [E,F] ≤ r
(R5)

` [E +G,F +G] ≤ r
` [E,F] ≤ r

(R6)
` [G+ E,G+ F] ≤ r

Figure 4.3: The R proof system

4.14 Lemma. Let F be a non-recursive expression and Ē = (E1, . . . , Ek), X̄ =
(X1, . . . , Xk) tuples for which gd(F,Xi) ≥ k for all i. Then

`R [F [Ē/X̄], F [Ū/X̄]] = 0 , `R [F [Ū/X̄], F [Ē/X̄]] = λk N
1−λ .

Proof: Repeated use of Axioms (A3) and (A8) together with the congruence
rules (R1), (R5), and (R6) with r = 0. �

4.15 Lemma. For closed non-recursive expressions E, F , d+(E,F) ./ r implies
`R [E,F] ./ r.

Proof: By structural induction similar to the proof of Theorem 4.9. �

74

4.3. Axiomatizations for Regular Weighted Processes

We are now in a position to state our completeness result which enables
arbitrary ε-close proofs in the sense below. The proof uses unfoldings of
recursive expressions as in Lemma 4.13, and as these unfoldings are finite
non-recursive processes, we cannot expect exact completeness.

4.16 Theorem (Completeness up to ε). Let E and F be closed expressions of
PR and ε > 0. Then d+(E,F) = r implies `R [E,F] ≤ r+ ε and `R [E,F] ≥
r − ε.

Proof: Assume d+(E,F) = r, and choose k ∈ N such that 2λk N
1−λ ≤ ε. By

Lemma 4.13 we have non-recursive expressions E′, F ′ and tuples Ē, F̄ , X̄,
and Ȳ for which gd(E′, Xi) ≥ k and gd(F ′, Yi) ≥ k for all i, and such that

`R [E,E′[Ē/X̄]] = 0 , `R [E′[Ē/X̄], E] = 0 ,
`R [F, F ′[F̄ /Ȳ]] = 0 , `R [F ′[F̄ /Ȳ], F] = 0 .

From Lemma 4.14 it follows that

`R [E′[Ē/X̄], E′[Ū/X̄]] = 0 ,
`R [E′[Ū/X̄], E′[Ē/X̄]] ≤ λk N

1−λ = ε
2 ,

`R [F ′[F̄ /Ȳ], F ′[Ū/Ȳ]] = 0 ,
`R [F ′[Ū/Ȳ], F ′[F̄ /Ȳ]] ≤ λk N

1−λ = ε
2 .

Using the triangle inequality and Theorem 4.12 we now have

d+(E′[Ū/X̄], F ′[Ū/X̄]) ≤ d+(E′[Ū/X̄], E′[Ē/X̄]) + d+(E′[Ē/X̄], E)
+ d+(E,F) + d+(F, F ′[F̄ /Ȳ])
+ d+(F ′[F̄ /Ȳ], F ′[Ū/Ȳ])
≤ ε

2 + 0 + r + 0 + 0 = r + ε
2 .

Only non-recursive expressions are involved here, so that we can invoke Lemma 4.15
to conclude

`R [E′[Ū/X̄], F ′[Ū/X̄]] ≤ r + ε
2 .

Now we can use the triangle inequality axiom (R4) together with the eight
equations above to arrive at

`R [E,F] ≤ r + ε .

Similar arguments show that also `R [E,F] ≥ r − ε, �

75

4. Axiomatization

4.3.1 Point-wise distance
Again we can easily convert our proof systemR into one for point-wise (instead
of accumulating) distance. In this case, we obtain R• by replacing inference
rule (R1) by (R1•) as we did for Proof system F, and (A3) needs to be replaced
by

(A3•)
` [E,F] ≤ N

With these replacements we have a sound and ε-complete axiomatization of
point-wise simulation distance for recursive weighted processes:

4.17 Theorem (Soundness & Completeness up to ε). Let E and F be closed
expressions of PR, then `R• [E,F] ./ r implies d•(E,F) ./ r, and d•(E,F) =
r implies `R• [E,F] ≤ r + ε and `R• [E,F] ≥ r − ε for any ε > 0.

Proof: The proof is similar to that for accumulated distance. �

76

5 The Quantitative
Linear-Time–Branching-Time
Spectrum1

This chapter generalizes the work presented so far in several ways and devel-
ops a general theory of linear and branching distances depending on a given,
but unspecified, trace distance. It introduces quantitative Ehrenfeucht-Fraïssé
games as a central tool for this generalization and then proceeds to define a
spectrum of linear and branching distances which generalizes the one of van
Glabbeek [vG01].

5.1 Traces, Trace Distances, and Transition Systems

For a finite non-empty sequence a = (a0, . . . , an), we write last(a) = an and
len(a) = n+1 for the length of a; for an infinite sequence a we let len(a) =∞.
Concatenation of finite sequences a and b is denoted a · b. We denote by
ak = (ak, ak+1, . . .) the k-shift and by ai the (i + 1)st element of a (finite or
infinite) sequence, and by ε the empty sequence.

Throughout this chapter we fix a setK of labels, and we letK∞ = K
∗∪Kω

denote the set of finite and infinite traces (i.e., sequences) in K. A hemimetric
dT : K∞×K∞ → R≥0∪{∞} is called a trace distance if len(σ) 6= len(τ) implies
dT(σ, τ) =∞.

A labeled transition system (LTS) is a pair (S, T) consisting of states S
and transitions T ⊆ S×K×S. We often write s x−→ t to signify that (s, x, t) ∈
T . Given e = (s, x, t) ∈ T , we write src(e) = s and tgt(e) = t for the
source and target of e. A path in (S, T) is a finite or infinite sequence π =
((s0, x0, t0), (s1, x1, t1), . . .) of transitions (sj , xj , tj) ∈ T which satisfy tj =
sj+1 for all j. We denote by tr(π) = (x0, x1, . . .) the trace induced by such a
path π. For s ∈ S we denote by Pa(s) the set of (finite or infinite) paths from
s and by Tr(s) = {tr(π) | π ∈ Pa(s)} the set of traces from s.

1This chapter is based on the journal paper [FL14b] published in Theoretical Computer
Science.

77

5. The Quantitative Linear-Time–Branching-Time Spectrum

5.2 Examples of Trace Distances
We give a systematic treatment of trace distances with which our quantitative
framework can be instantiated. Some of them have appeared in previous
chapters; some others are new, but have been used elsewhere in the literature.

Most of the trace distances one finds in the literature are defined by giving
a hemimetric d on K and a method to combine the so-defined distances on
individual symbols to a distance on traces. Three general methods are used
for this combination:

• The point-wise trace distance: PWλ(d)(σ, τ) = supj λjd(σj , τj);

• the accumulating trace distance: ACλ(d)(σ, τ) = ∑
j λ

jd(σj , τj);

• The limit-average trace distance: AV(d)(σ, τ) = lim infj 1
j+1

∑j
i=0d(σi, τi).

Note that the trace distances are parametrized by the label distance d : K×
K → R≥0 ∪ {∞}. Also, λ is a discounting factor with 0 < λ ≤ 1, and
we assume that the involved traces have equal length; otherwise any trace
distance has value∞. The point-wise distance thus measures the (discounted)
greatest individual symbol distance in the traces, whereas accumulating and
limit-average distance accumulate these individual distances along the traces.

If the distance on K is the discrete distance given by ddisc(x, x) = 0 and
ddisc(x, y) =∞ for x 6= y, then all trace distances above agree, for any λ. This
defines the discrete trace distance dT

disc = PWλ(ddisc) = ACλ(ddisc) = AV(ddisc)
given by dT

disc(σ, τ) = 0 if σ = τ and ∞ otherwise. We will show below that
for the discrete trace distance, our quantitative linear-time–branching-time
spectrum specializes to the qualitative one of [vG01].

If one lets d(x, x) = 0 and d(x, y) = 1 for x 6= y instead, then AC1(d) is
Hamming distance [Ham50] for finite traces, and ACλ(d) with λ < 1 and
AV(d) are two sensible ways to define Hamming distance also for infinite
traces. PW1(d) is topologically equivalent to the discrete distance; indeed,
PW1(d)(σ, τ) = 1 iff dT

disc(σ, τ) =∞.
A generalization of the above distances may be obtained by equipping K

with a preorder � ⊆ K×K indicating that a label x ∈ K may be replaced by
any y ∈ K with x � y, as for example in [Tho87]. If we define d(x, y) = 0 if
x � y and d(x, y) =∞ otherwise (note that this is a hemimetric which is not
necessarily symmetric), then again PWλ(d) = ACλ(d) = AV(d) for any λ.

Point-wise and accumulating distances have been studied in a number of
papers [dAFS09,ČHR12,CDH10, vB05] and in previous chapters. PW1(d) is
the point-wise distance from [dAFS09,DLT08], and PWλ(d) for λ < 1 is the
discounted distance from [dAFS09,dAHM03]. Accumulating distance ACλ(d)
has been studied in [dAFS09], and AV(d) in [CDH10,ČHR12]. Both ACλ(d)
and AV(d) are well-known from the theory of discounted and mean-payoff
games [EM79,ZP96].

78

5.3. Quantitative Ehrenfeucht-Fraïssé Games

All distances above were obtained from distances on individual symbols
in K. A trace distance for which this is not the case is the maximum-lead
distance from [HMP05] defined for K ⊆ Σ × R, where Σ is an alphabet.
Writing x ∈ K as x = (x`, xw), it is given by

dT
±(σ, τ) =

{
supj

∣∣∑j
i=0 σ

w
i −

∑j
i=0 τ

w
i

∣∣ if σ`j = τ `j for all j,
∞ otherwise.

As this measures differences of accumulated labels along runs, it is especially
useful for real-time systems, cf. [HMP05,FL12].

As a last example of a trace distance we mention the Cantor distance given
by dT

C(σ, τ) = (1 + inf{j | σj 6= τj})−1. Cantor distance hence measures the
(inverse of the) length of the common prefix of the sequences and has been
used for verification e.g., in [DHLN10]. Both Hamming and Cantor distance
have applications in information theory and pattern matching.

We will return to our example trace distances in Section 5.7 to show how
our framework may be applied to yield concrete formulations of distances in
the linear-time–branching-time spectrum relative to these.

5.3 Quantitative Ehrenfeucht-Fraïssé Games
To lift the linear-time–branching-time spectrum to the quantitative setting,
we define below a quantitative Ehrenfeucht-Fraïssé game [Ehr61,Fra54] which
is similar to the well-known bisimulation game of [Sti95].

Let (S, T) be a LTS and dT : K∞ ×K∞ → R≥0 ∪ {∞} a trace distance.
The intuition of the game is as follows: The two players, with Player 1

starting the game, alternate to choose transitions, or moves, in T , starting
with transitions from given start states s and t and continuing their choices
from the targets of the transitions chosen in the previous step. At each of
his turns, Player 1 also makes a choice whether to choose a transition from
the target of his own previous choice, or from the target of his opponent’s
previous choice (to “switch paths”). We use a switch counter to keep track of
how often Player 1 has chosen to switch paths. Player 2 has then to respond
with a transition from the remaining target. This game is played for an infinite
number of rounds, or until one player runs out of choices, thus building two
finite or infinite paths. The value of the game is then the trace distance of the
traces of these two paths.

We proceed to formalize the above intuition. A Player-1 configuration
of the game is a tuple (π, ρ,m) ∈ Tn × Tn × N, for n ∈ N, such that for
all i ∈ {0, . . . , n − 2}, either src(πi+1) = tgt(πi) and src(ρi+1) = tgt(ρi), or
src(πi+1) = tgt(ρi) and src(ρi+1) = tgt(πi). Similarly, a Player-2 configuration
is a tuple (π, ρ,m) ∈ Tn+1 × Tn × N such that for all i ∈ {0, . . . , n − 2},
either src(πi+1) = tgt(πi) and src(ρi+1) = tgt(ρi), or src(πi+1) = tgt(ρi) and

79

5. The Quantitative Linear-Time–Branching-Time Spectrum

src(ρi+1) = tgt(πi); and src(πn) = tgt(πn−1) or src(πn) = tgt(ρn−1). The set
of all Player-i configurations is denoted Confi.

Intuitively, the configuration (π, ρ,m) keeps track of the history of the
game; π stores the choices of Player 1, ρ the choices of Player 2, and m is the
switch counter. Hence π and ρ are sequences of transitions in T which can
be arranged by suitable swapping to form two paths (π̄,ρ̄). How exactly these
sequences are constructed is determined by a pair of strategies which specify
for each player which edge to play from any configuration.

A Player-1 strategy is hence a partial mapping θ1 : Conf1 ⇀ T ×N such
that for all (π, ρ,m) ∈ Conf1 for which θ1(π, ρ,m) = (e′,m′) is defined,

• src(e′) = tgt(last(π)) and m′ = m or m′ = m+ 1, or

• src(e′) = tgt(last(ρ)) and m′ = m+ 1.

A Player-2 strategy is a partial mapping θ2 : Conf2 ⇀ T ×N such that for all
(π · e, ρ,m) ∈ Conf2 for which θ2(π · e, ρ,m) = (e′,m′) is defined, m′ = m, and
src(e′) = tgt(last(ρ)) if src(e) = tgt(last(π)), src(e′) = tgt(last(π)) if src(e) =
tgt(last(ρ)). The sets of Player-1 and Player-2 strategies are denoted Θ1 and
Θ2.

Note that if Player 1 chooses a transition from the end of the previous
choice of Player 2 (case src(e′) = tgt(last(ρ)) above), then the switch counter
is increased; but Player 1 may also choose to increase the switch counter
without switching paths. Player 2 does not touch the switch counter.

We can now define what it means to update a configuration according
to a strategy: For θ1 ∈ Θ1 and (π, ρ,m) ∈ Conf1, updθ1(π, ρ,m) is defined
if θ1(π, ρ,m) = (e′,m′) is defined, and then updθ1(π, ρ,m) = (π · e′, ρ,m′).
Similarly, for θ2 ∈ Θ2 and (π · e, ρ,m) ∈ Conf2, updθ2(π · e, ρ,m) is defined if
θ2(π ·e, ρ,m) = (e′,m′) is defined, and then updθ2(π ·e, ρ,m) = (π ·e, ρ ·e′,m′).

For any pair of states (s, t) ∈ S ×S, a pair of strategies (θ1, θ2) ∈ Θ1×Θ2
inductively determines a sequence (πj , ρj ,mj) of configurations, by

(π0, ρ0,m0) = (s, t, 0);

(π2j+1, ρ2j+1,m2j+1) =
{
undef. if updθ1(π2j , ρ2j ,m2j) is undefined,
updθ1(π2j , ρ2j ,m2j) otherwise;

(π2j , ρ2j ,m2j) =


undef. if updθ2(π2j−1, ρ2j−1,m2j−1)

is undefined,
updθ2(π2j−1, ρ2j−1,m2j−1) otherwise.

Note that indeed, we are updating configurations by alternating between the
two strategies θ1, θ2.

The configurations in this sequence satisfy πj ≤p πj+1 and ρj ≤p ρj+1 for
all j, where ≤p denotes prefix ordering, hence the direct limits π = lim−→πj , ρ =

80

5.3. Quantitative Ehrenfeucht-Fraïssé Games

lim−→ ρj exist (as finite or infinite paths). By our conditions on configurations,
the pair (π, ρ) in turn determines a pair (π̄, ρ̄) of paths in S, as follows:

(π̄1, ρ̄1) =
{

(π1, ρ1) if src(π1) = s

(ρ1, π1) if src(π1) = t

(π̄j , ρ̄j) =
{

(πj , ρj) if src(πj) = tgt(π̄j−1)
(ρj , πj) if src(πj) = tgt(ρ̄j−1)

The outcome of the game when played from (s, t) according to a strategy
pair (θ1, θ2) is defined to be out(θ1, θ2)(s, t) = (π̄, ρ̄), and its utility is defined
by util(θ1, θ2)(s, t) = dT(tr(out(θ1, θ2)(s, t))) = dT(tr(π̄), tr(ρ̄)).

Recall that dT is given as a parameter to the game; if we want to make
explicit the parametrization on the trace distance dT on which utility depends,
we write utildT(θ1, θ2)(s, t).

Note that util(θ1, θ2)(s, t) is defined both in case the paths π̄ and ρ̄ are
finite and in case they are infinite (the case where one is finite and the other is
infinite cannot occur). Also, if the paths are finite because θ1(πj , ρj ,mj) was
undefined for some configuration (πj , ρj ,mj) in the sequence, then len(π̄) =
len(ρ̄); if on the other hand the reason is that θ2(πj , ρj ,mj) was undefined,
then len(π̄) = len(ρ̄)± 1, and util(θ1, θ2)(s, t) =∞. Hence if the game reaches
a configuration in which Player 2 has no moves available, the utility is ∞.

The objective of Player 1 in the game is to maximize utility, whereas
Player 2 wants to minimize it. Hence we define the value of the game from
(s, t) to be

v(s, t) = sup
θ1∈Θ1

inf
θ2∈Θ2

util(θ1, θ2)(s, t) .

For a given subset Θ′1 ⊆ Θ1 we will write

v(Θ′1)(s, t) = sup
θ1∈Θ′1

inf
θ2∈Θ2

util(θ1, θ2)(s, t) ,

and if we need to emphasize dependency of the value on the given trace dis-
tance, we write v(dT,Θ′1). The following lemma states the immediate fact
that if Player 1 has fewer strategies available, the game value decreases.

5.1 Lemma. For all Θ′1 ⊆ Θ′′1 ⊆ Θ1 and all s, t ∈ S, v(Θ′1)(s, t) ≤ v(Θ′′1)(s, t).

The above definition of strategies is slightly too general in that whether
or not a strategy is defined in a given configuration should only depend on
the actual part of the configuration on which the strategy has an effect. We
hence define a notion of uniformity which we will assume from now:

5.2 Definition. A strategy θ1 ∈ Θ1 is uniform if it holds for all configurations
(π, ρ,m), (π, ρ̃,m), (π̃, ρ,m) ∈ Conf1 that whenever θ1(π, ρ,m) = (e′,m′) is
defined,

81

5. The Quantitative Linear-Time–Branching-Time Spectrum

• if src(e′) = tgt(last(π)), then also θ1(π, ρ̃,m) is defined, and

• if src(e′) = tgt(last(ρ)), then also θ1(π̃, ρ,m) is defined.

A strategy θ2 ∈ Θ2 is uniform if it holds for all configurations (π · e, ρ,m), (π̃ ·
ẽ, ρ,m), (π · e, ρ̃,m) ∈ Conf2 that whenever θ2(π · e, ρ,m) = (e′,m′) is defined,

• if src(e′) = tgt(last(ρ)), then also θ2(π̃ · ẽ, ρ,m) is defined, and

• if src(e′) = tgt(last(π)), then also θ2(π · e, ρ̃,m) is defined.

A subset Θ′1 ⊆ Θ1 is uniform if all strategies in Θ′1 are uniform. Uniformity
of strategies is used to combine paths built from different starting states in the
proof of Proposition 5.5 below, and it allows us to show a minimax theorem
for our setting.

The concrete strategy subsets we will consider in later sections will all be
uniform, so from now on we only consider the subsets of Θ1 and Θ2 consisting
of uniform strategies. Abusing notation, we will also denote these by Θ1
and Θ2.

5.3 Lemma. For any uniform Θ′1 ⊆ Θ1 and all s, t ∈ S,

sup
θ1∈Θ′1

inf
θ2∈Θ2

util(θ1, θ2)(s, t) = inf
θ2∈Θ2

sup
θ1∈Θ′1

util(θ1, θ2)(s, t) .

Proof: By uniformity, neither of the two players has any possibility to in-
fluence the configurations reachable by the other’s strategies. Hence it is
immaterial which player gets to choose strategy first. �

5.4 General Properties
We show here that under the uniformity condition, the game value is indeed a
distance, and that results concerning inequalities in the qualitative dimension
can be transfered to topological inequivalences in the quantitative setting. Say
that a Player-1 strategy θ1 ∈ Θ1 is non-switching if it holds for all (π, ρ,m)
for which θ1(π, ρ,m) = (e′,m′) is defined that m = m′, and let Θ0

1 be the set
of non-switching Player-1 strategies. We first show a lemma which shows that
any pair of traces can be generated by a non-switching strategy:

5.4 Lemma. For all s, t ∈ S and all σ ∈ Tr(s), τ ∈ Tr(t) there exist θ1 ∈ Θ0
1 and

θ2 ∈ Θ2 for which util(θ1, θ2)(s, t) = dT(σ, τ).

Proof: Let (π, ρ, 0) ∈ Conf1 for finite paths π, ρ with len(π) = len(ρ) = k ≥ 0
and tr(π) = σ0 . . . σk−1, tr(ρ) = τ0 . . . τk−1. If len(σ) ≥ k, then there is
e = (last(π), σk, s′) ∈ T , and we define θ1(π, ρ, 0) = (e, 0). If also len(τ) ≥ k,
then there is e′ = (last(ρ), τk, t′) ∈ T , and we let θ2(π · e, ρ, 0) = (e′, 0).

82

5.4. General Properties

Let (π̄, ρ̄) = out(θ1, θ2)(s, t). If both σ and τ are infinite traces, then
tr(π̄) = σ and tr(ρ̄) = τ ; otherwise, tr(π̄) and tr(ρ̄) will be finite prefixes of σ
and τ for which dT(tr(π̄), tr(ρ̄)) = dT(σ, τ). �

The following proposition shows that the distance defined by our quanti-
tative game is a hemimetric. Note that the proof of the triangle inequality
uses uniformity.

5.5 Proposition. For all Θ′1 ⊆ Θ1 with Θ0
1 ⊆ Θ′1, v(Θ′1) is a hemimetric on S.

Proof: We write v = v(Θ′1) during this proof. It is clear that v(s, s) = 0 for
all s ∈ S: if the players are making their choices from the same state, Player 2
can always answer by choosing exactly the same transition as Player 1. For
proving the triangle inequality v(s, u) ≤ v(s, t) + v(t, u), let ε > 0 and use
Lemma 5.3 to choose Player-2 strategies θs,t2 , θt,u2 ∈ Θ2 for which

sup
θ1∈Θ′1

util(θ1, θ
s,t
2)(s, t) < v(s, t) + ε

2 ,

sup
θ1∈Θ′1

util(θ1, θ
t,u
2)(t, u) < v(t, u) + ε

2 .
(5.1)

We define a strategy θs,u2 ∈ Θ2 which uses three paths and two configurations
in S as extra memory. This is only for convenience, as these can be recon-
structed by Player 2 at any time; hence we do not extend the capabilities of
Player 2:

θs,u2 (π · e, χ,m; π̄, ρ̄′, χ̄, π′, ρ′1, ρ′2, χ′) =

(
θt,u2

(
ρ′2 · θ

s,t
2,1(π′ · e, ρ′1,m), χ′,m

)
;

π̄ · e,
ρ̄′ · θs,t2,1(π′ · e, ρ′1,m),
χ̄ · θt,u2,1

(
ρ′2 · θ

s,t
2,1(π′ · e, ρ′1,m)

)
,

π′ · e,
ρ′1 · θ

s,t
2,1(π′ · e, ρ′1,m),

ρ′2 · θ
s,t
2,1(π′ · e, ρ′1,m),

χ′ · θt,u2,1
(
ρ′2 · θ

s,t
2,1(π′ · e, ρ′1,m)

))
if src(e) = tgt(last(π̄)),(

θs,t2
(
π′ · θt,u2,1(ρ′2 · e, χ′,m), ρ′1,m

)
;

π̄ · θs,t2,1
(
π′ · θt,u2,1(ρ′2 · e, χ′,m)

)
,

ρ̄′ · θt,u2,1(ρ′2 · e, χ′,m),
χ̄ · e,
π′ · θt,u2,1(ρ′2 · e, χ′,m),
ρ′1 · θ

s,t
2,1
(
π′ · θt,u2,1(ρ′2 · e, χ′,m)

)
ρ′2 · e,
χ′ · θt,u2,1(ρ′2 · e, χ′,m)

)
if src(e) = tgt(last(χ̄)).

83

5. The Quantitative Linear-Time–Branching-Time Spectrum

s t u

π

π

π

π

χ

χ

χ

χ

π′

π′

π′

π′

ρ′1

ρ′1

ρ′1

ρ′1

ρ′2

ρ′2

ρ′2

ρ′2

χ′

χ′

χ′

χ′

Figure 5.1: Configuration update in the game used for showing the triangle
inequality

In the beginning of the game, all memory paths are initialized to be empty.
In the expression above, the strategy θs,u2 is constructed from the strategies

θs,t2 and θt,u2 by using the answer to the move of Player 1 in one of the games
as an emulated Player-1 move in the other. The paths π̄, χ̄ are constructed
from the configuration (π, χ) of the (s, u)-game and are only kept in memory
so that we can see whether Player 1 is playing an edge prolonging π̄ or χ̄.
The pair (π′, ρ′1) is the configuration in the (s, t)-game we are emulating, and
(ρ′2, χ′) is the (t, u)-configuration. The path ρ̄′ = ρ̄′1 = ρ̄′2 is common for the
paths (π̄′, ρ̄′1), (ρ̄′2, χ̄′) constructed from (π′, ρ′1) and (ρ′2, χ′).

If Player 1 has played an edge e prolonging π̄ (first case above), we compute
an answer move (e′,m) = θs,t2 (π′ · e, ρ′1,m) to this in the (s, t)-game. This
answer is then used to emulate a Player-1 move in the (t, u)-game, and the
answer θt,u2 (ρ′2 ·e′, χ′,m) to this is what Player 2 plays in the (s, u)-game. The
memory is updated accordingly. If on the other hand, Player 1 has played
an edge e prolonging χ̄, we play in the (t, u)-game first and use the answer
(e′,m) = θt,u2 (ρ′2 · e, χ′,m) in the (s, t)-game to compute θs,t2 (π′ · e′, ρ′1,m).
Figure 5.1 gives an illustration of how the configurations are updated during
the game; note that uniformity of Θ′1 is necessary for being able to emulate
Player-1 moves from one game in another.

Take now any θs,u1 ∈ Θ′1, let (π̄, χ̄) = out(θs,u1 , θs,u2)(s, u), and let ρ̄′
be the corresponding memory path. By Lemma 5.4 there exist θs,t1 , θt,u1 ∈
Θ′1 for which dT(tr(π̄), tr(ρ̄′)) = util(θs,t1 , θs,t2)(s, t) and dT(tr(ρ̄′), tr(χ̄)) =
util(θt,u1 , θt,u2)(t, u). Using Equation (5.1) we have

util(θs,u1 , θs,u2)(s, u) = dT(tr(π̄), tr(χ̄))
≤ dT(tr(π̄), tr(ρ̄)) + dT(tr(ρ̄), tr(χ̄))
< v(s, t) + v(t, u) + ε

and hence also infθ2∈Θ2 util(θ
s,u
1 , θ2)(s, u) < v(s, t) + v(t, u) + ε. As the choice

84

5.5. The Distance Spectrum

of θs,u1 was arbitrary, this implies

sup
θ1∈Θ′1

inf
θ2∈Θ2

util(θ1, θ2)(s, u) ≤ v(s, t) + v(t, u) + ε ,

and as also ε was chosen arbitrarily, we have v(s, u) ≤ v(s, t) + v(t, u). �

Next we show a transfer principle which allows us to generalize counterex-
amples regarding the equivalences in the qualitative linear-time–branching-
time spectrum [vG01] to the qualitative setting. We will make use of this
principle later to show that all distances we introduce are topologically in-
equivalent.

5.6 Lemma. Let Θ′1,Θ′′1 ⊆ Θ1, and assume dT to be separating. If there exist
states s, t ∈ S for which v(dT

disc,Θ′1)(s, t) = 0 and v(dT
disc,Θ′′1)(s, t) =∞, then

v(dT,Θ′1) and v(dT,Θ′′1) are topologically inequivalent.

Proof: By v(dT
disc,Θ′1)(s, t) = 0, we know that for any θ1 ∈ Θ′1 there exists

θ2 ∈ Θ2 for which (π̄, ρ̄) = out(θ1, θ2)(s, t) satisfy tr(π̄) = tr(ρ̄), hence also
v(dT,Θ′1)(s, t) = 0. Conversely, as dT is separating, v(dT,Θ′′1)(s, t) = 0 would
imply that also v(dT

disc,Θ′′1)(s, t) = 0, hence we must have v(dT,Θ′′1)(s, t) 6= 0,
entailing topological inequivalence. �

5.5 The Distance Spectrum
In this section we introduce the distances depicted in Figure 5.2 and show
their relationship. Note again that the results obtained here are independent
of the particular trace distance considered. Throughout this section, we fix a
LTS (S, T) and a trace distance dT : K∞ ×K∞ → R≥0 ∪ {∞}.

5.5.1 Branching Distances
If the switching counter in the game introduced in Section 5.3 is unbounded,
Player 1 can choose at any move whether to prolong the previous choice or to
switch paths, hence this resembles the bisimulation game [Sti95].

5.7 Definition. The bisimulation distance between s and t is dbisim(s, t) = v(s, t).

5.8 Theorem. For dT = dT
disc the discrete trace distance, dbisimdisc (s, t) = 0 iff s and

t are bisimilar.

Proof: By discreteness of dT
disc, we have dbisimdisc (s, t) = 0 iff it holds that for

all θ1 ∈ Θ1 there exists θ2 ∈ Θ2 for which util(θ1, θ2)(s, t) = 0. Hence for each
reachable Player-1 configuration (π, ρ,m) with θ1(π, ρ,m) = (e′,m′), we have
θ2(π ·e′, ρ,m′) = (e′′,m′) with tr(e′) = tr(e′′), i.e., Player 2 matches the labels
chosen by Player 1 precisely, implying that s and t are bisimilar. The proof
of the other direction is trivial. �

85

5. The Quantitative Linear-Time–Branching-Time Spectrum

∞-nested trace equivalence

(k + 1)-nested ready inclusion

(k + 1)-nested trace equivalence

k-nested ready equivalence

(k + 1)-nested trace inclusion

k-nested ready inclusion

k-nested trace equivalence

2-nested ready inclusion

2-nested trace equivalence
possible-futures equivalence

1-nested ready equivalence
ready equivalence

2-nested trace inclusion
possible-futures inclusion

1-nested ready inclusion
ready inclusion

1-nested trace equivalence
trace equivalence

1-nested trace inclusion
trace inclusion

∞-nested simulation equivalence
bisimulation

(k + 1)-ready sim. equivalence

(k + 1)-nested sim.
equivalence

k-nested ready sim. equivalence

(k + 1)-nested simulation

k-nested ready simulation

k-nested sim. equivalence

2-nested ready simulation

2-nested sim. equivalence

1-nested ready sim. equivalence
ready simulation equivalence

2-nested simulation

1-nested ready simulation
ready simulation

1-nested sim. equivalence
simulation equivalence

1-nested simulation
simulation

Figure 5.2: The quantitative linear-time–branching-time spectrum. The nodes
are the different system distances introduced in this chapter, and an edge
d1 −→ d2 or d1 99K d2 indicates that d1(s, t) ≥ d2(s, t) for all states s, t, and
that d1 and d2 in general are topologically inequivalent.

86

5.5. The Distance Spectrum

We can restrict the strategies available to Player 1 by allowing only a
pre-defined finite number of switches:

Θk-sim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) = (e′,m′) is defined, then m′ ≤ k − 1}

In the so-defined k-nested simulation game, Player 1 is only allowed to switch
paths k − 1 times during the game. Note that Θ1-sim

1 = Θ0
1 is the set of

non-switching strategies.

5.9 Definition. The k-nested simulation distance from s to t, for k ∈ N+, is
dk-sim(s, t) = v(Θk-sim

1)(s, t). The k-nested simulation equivalence distance
between s and t is dk-sim-eq(s, t) = max(v(Θk-sim

1)(s, t), v(Θk-sim
1)(t, s)).

5.10 Theorem. For dT = dT
disc the discrete trace distance,

• dk-simdisc (s, t) = 0 iff there is a k-nested simulation from s to t,

• dk-sim-eq
disc (s, t) = 0 iff there is a k-nested simulation equivalence between
s and t.

Especially, d1-sim
disc corresponds to the usual simulation preorder, and d2-sim

disc
to two-nested simulation. Similarly, d1-sim-eq

disc is similarity, and d2-sim-eq
disc is two-

nested simulation equivalence. We refer to [GV92,HM85] for definitions and
discussion of two-nested and k-nested simulation.

Proof: This is similar to the proof of Theorem 5.8: If dk-simdisc (s, t) = 0, then
any θ1 ∈ Θk-sim

1 has a counter-strategy θ2 ∈ Θ2 which matches the labels
chosen by Player 1 precisely, implying k-nested simulation from s to t. The
other direction is again trivial. �

5.11 Theorem. For all k, ` ∈ N+ with k < ` and all s, t ∈ S,

dk-sim-eq(s, t) ≤ d`-sim(s, t) ≤ d`-sim-eq(s, t) ≤ dbisim(s, t).

If the trace distance dT is separating, then all distances above are topologically
inequivalent.

Proof: The first part of the theorem follows from the inclusions Θk-sim-eq
1 ⊆

Θ`-sim
1 ⊆ Θ`-sim-eq

1 ⊆ Θ1 and Lemma 5.1. Topological inequivalence follows
from Lemma 5.6 and the fact that for the discrete relations corresponding
to the distances above (obtained by letting dT = dT

disc), the inequalities are
strict [vG01]. �

As a variation of k-nested simulation, we can consider strategies which
allow Player 1 to switch paths k times during the game, but at the last switch,

87

5. The Quantitative Linear-Time–Branching-Time Spectrum

he may only pose one transition as a challenge, to which Player 2 must answer,
and then the game finishes:

Θk-rsim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) is defined, then m ≤ k − 1}

Hence after his k’th switch, Player 1 has no more moves available, and the
game finishes after the answer move of Player 2. Again, we allow Player 1 to
increase the switch counter without actually switching paths.

5.12 Definition. The k-nested ready simulation distance from s to t, for k ∈ N+, is
dk-rsim(s, t) = v(Θk-rsim

1)(s, t). The k-nested ready simulation equivalence dis-
tance between s and t is dk-rsim-eq(s, t) = max(v(Θk-rsim

1)(s, t), v(Θk-rsim
1)(t, s)).

For the discrete case, it seems only k = 1 has been considered; the proof
is similar to the one of Theorem 5.8.

5.13 Theorem. For dT = dT
disc the discrete trace distance,

• d1-rsim
disc (s, t) = 0 iff there is a ready simulation from s to t,

• d1-rsim-eq
disc (s, t) = 0 iff s and t are ready simulation equivalent.

The next theorem finishes our work on the right half of Figure 5.2.

5.14 Theorem. For all k, ` ∈ N+ with k < ` and all s, t ∈ S,

dk-sim(s, t) ≤ dk-rsim(s, t) ≤ d`-sim(s, t) ,
dk-sim-eq(s, t) ≤ dk-rsim-eq(s, t) ≤ d`-sim-eq(s, t) .

Additionally, dk-rsim and dk-sim-eq are incomparable, and also dk-rsim-eq and
d(k+1)-sim are incomparable. If the trace distance dT is separating, then all
distances above are topologically inequivalent.

Proof: Like in the proof of Theorem 5.11, the inequalities follow from strategy
set inclusions and topological inequivalence from Lemma 5.6. The incompara-
bility results follow from the corresponding results for dT

disc and Lemma 5.6.�

5.5.2 Linear Distances
Above we have introduced the distances in the right half of the quantitative
linear-time–branching-time spectrum in Figure 5.2 and shown the relations
claimed in the diagram. To develop the left half, we need the notion of blind
strategies. For any subset Θ′1 ⊆ Θ1 we define the set of blind Θ′1-strategies by

Θ̈′1 = {θ1 ∈ Θ′1 | ∀π, ρ, ρ′,m : θ1(π, ρ,m) = θ1(π, ρ′,m),
or θ1(π, ρ,m) = (e,m+ 1) and tgt(last(ρ)) 6= tgt(last(ρ′))}.

88

5.5. The Distance Spectrum

Hence in such a blind strategy, either the edge chosen by Player 1 does not
depend on the choices of Player 2, or the switch counter is increased, in which
case the Player-1 choice only depends on the target of the last choice of Player 2
(note that this dependency is necessary if Player 1 wants to switch paths).

Now we can define, for s, t ∈ S and k ∈ N+,

• the ∞-nested trace equivalence distance: d∞-trace-eq(s, t) = v(Θ̈1)(s, t),

• the k-nested trace distance: dk-trace(s, t) = v(Θ̈k-sim
1)(s, t),

• the k-nested trace equivalence distance:
dk-trace-eq(s, t) = max(v(Θ̈k-sim

1)(s, t), v(Θ̈k-sim
1)(t, s)),

• the k-nested ready distance: dk-ready(s, t) = v(Θ̈k-rsim
1)(s, t), and

• the k-nested ready equivalence distance:
dk-ready-eq(s, t) = max(v(Θ̈k-rsim

1)(s, t), v(Θ̈k-rsim
1)(t, s)).

Our approach is justified by the following lemma which shows that the (1-
nested) trace distance from s to t is precisely the Hausdorff distance between
the sets of traces available from s and t, respectively.

5.15 Lemma. For s, t ∈ S, d1-trace(s, t) = supσ∈Tr(s) infτ∈Tr(t) d
T(σ, τ).

Proof: We have d1-trace(s, t) = v(Θ̈0
1)(s, t), with Θ̈0

1 = {θ1 ∈ Θ0
1 | ∀π, ρ, ρ′,m :

θ1(π, ρ,m) = θ1(π, ρ′,m)}. Hence, and as strategies in Θ0
1 are non-switching,

every strategy θ1 ∈ Θ̈0
1 gives rise to precisely one trace σ = σ(θ1) ∈ Tr(s) inde-

pendently of Player-2 strategy θ2 ∈ Θ2. Conversely, by Lemma 5.4 (noticing
that indeed, we have constructed a blind Player-1 strategy in the proof of
that lemma), every trace σ ∈ Tr(s) is generated by a strategy θ1 ∈ Θ̈0

1 with
σ = σ(θ1).

We can finish the proof by showing that for all θ1 ∈ Θ̈0
1,

inf
θ2∈Θ2

dT(σ(θ1), tr(ρ̄(θ1, θ2))) = inf
τ∈Tr(t)

dT(σ(θ1), τ) .

But again using Lemma 5.4, we see that any τ ∈ Tr(t) is generated by a
strategy θ2 ∈ Θ2, hence this is clear. �

Using the discrete trace distance, we recover the following standard rela-
tions [vG01]. The theorem follows by Lemma 5.15 and arguments similar to
the ones used in the proofs of the corresponding theorems in the preceding
section. We refer to [RB81,HM85] for definitions and discussion of possible-
futures inclusion and equivalence.

5.16 Theorem. For dT = dT
disc the discrete trace distance and s, t ∈ S we have

• d1-trace
disc (s, t) = 0 iff there is a trace inclusion from s to t,

89

5. The Quantitative Linear-Time–Branching-Time Spectrum

• d1-trace-eq
disc (s, t) = 0 iff s and t are trace equivalent,

• d2-trace
disc (s, t) = 0 iff there is a possible-futures inclusion from s to t,

• d2-trace-eq
disc (s, t) = 0 iff s and t are possible-futures equivalent,

• d1-ready
disc (s, t) = 0 iff there is a readiness inclusion from s to t,

• d1-ready-eq
disc (s, t) = 0 iff s and t are ready equivalent.

The following theorem entails all relations in the left side of Figure 5.2;
the right-to-left arrows follow from the strategy set inclusions Θ̈′1 ⊆ Θ′1 for
any Θ′1 ⊆ Θ1 and Lemma 5.1. As with Theorems 5.11 and 5.14, the theorem
follows by strategy set inclusion, Lemma 5.6, and corresponding results for
the discrete relations.

5.17 Theorem. For all k, ` ∈ N+ with k < ` and s, t ∈ S,

dk-trace-eq(s, t) ≤ d`-trace(s, t) ≤ d`-trace-eq(s, t) ≤ d∞-trace-eq(s, t),
dk-trace(s, t) ≤ dk-ready(s, t) ≤ d`-trace(s, t),
dk-trace-eq(s, t) ≤ dk-ready-eq(s, t) ≤ d`-trace-eq(s, t).

Additionally, dk-ready and dk-trace-eq are incomparable, and also dk-ready-eq and
d(k+1)-trace are incomparable. If the trace distance dT is separating, then all
distances above are topologically inequivalent.

5.6 Recursive Characterizations

We now turn our attention to an important special case in which the given
trace distance has a specific recursive characterization; we show that in this
case, all distances in the spectrum can be characterized as least fixed points.
We will see in Section 5.7 that this can be applied to all examples of trace
distances mentioned in Section 5.2.

Note that all theorems require the LTS in question to be finitely branching;
this is a standard assumption which goes back to [Sti95]. In most cases it may
be relaxed to compact branching in the sense of [vB96], but to keep things
simple, we do not do this here.

5.6.1 Fixed-Point Characterizations

Let L be a complete lattice with order v and bottom and top elements ⊥, >.
Let f : K∞×K∞ → L, g : L→ R≥0∪{∞} and F : K×K×L→ L such that

90

5.6. Recursive Characterizations

dT = g ◦ f , g is monotone, F (x, y, ·) : L→ L is monotone for all x, y ∈ K, and

f(σ, τ) =


F (σ0, τ0, f(σ1, τ1)) if σ, τ 6= ε,

> if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

⊥ if σ = τ = ε

(5.2)

for all σ, τ ∈ K∞.
We hence assume that dT has a recursive characterization (using F) on top

of a complete (but otherwise arbitrary) lattice L which we introduce between
K
∞ and R≥0 ∪ {∞} to serve as a memory. Below we will work with different

endofunctions I on the set of mappings (N+ ∪ {∞}) × {1, 2} → LS×S which
are parametrized by the number m of switches in N+ ∪ {∞} which Player 1
has left, and a value p ∈ {1, 2} which keeps track of whether Player 1 currently
is building the left or the right path.

5.18 Theorem. The endofunction I on (N+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =



max


sup
s
x−→s′

inf
t
y−→t′

F (x, y, hm,1(s′, t′))

sup
t
y−→t′

inf
s
x−→s′

F (x, y, hm−1,2(s′, t′))
if m ≥ 2, p = 1

sup
s
x−→s′

inf
t
y−→t′

F (x, y, hm,1(s′, t′)) if m = 1, p = 1

max


sup
t
y−→t′

inf
s
x−→s′

F (x, y, hm,2(s′, t′))

sup
s
x−→s′

inf
t
y−→t′

F (x, y, hm−1,1(s′, t′))
if m ≥ 2, p = 2

sup
t
y−→t′

inf
st

x−→s′

F (x, y, hm,2(s′, t′)) if m = 1, p = 2

has a least fixed point h∗ : (N+∪{∞})×{1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-sim = g ◦ h∗k,1, dk-sim-eq = g ◦max(h∗k,1, h∗k,2) for
all k ∈ N+ ∪ {∞}.

Hence I iterates the function h over the branching structure of (S, T),
computing all nested branching distances at the same time. Note the spe-
cialization of this to simulation and bisimulation distance, where we have the
following fixed-point equations, using h∗1,1 = h1-sim and h∗∞,1 = hbisim:

h1-sim(s, t) = sup
s
x−→s′

inf
t
y−→t′

F (x, y, h1-sim(s′, t′))

hbisim(s, t) = max


sup
s
x−→s′

inf
t
y−→t′

F (x, y, hbisim(s′, t′))

sup
t
y−→t′

inf
s
x−→s′

F (x, y, hbisim(s′, t′))

91

5. The Quantitative Linear-Time–Branching-Time Spectrum

Proof: The lattice of mappings (N+∪{∞})×{1, 2} → LS×S with the point-
wise partial order is complete, and I is monotone because F is, so by Tarski’s
fixed-point theorem, I has indeed a least fixed point h∗. To show that dk-sim =
g◦h∗k,1 for all k, we pull back dk-sim along g: Define w : (N+∪{∞})×{1, 2} →
LS×S by

wk,1(s, t) = sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s, t)))

wk,2(s, t) = sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(t, s)))

then dk-sim = g ◦ f(k, 1) for all k by monotonicity of g. We will be done once
we can show that w = h∗.

We first show that w is a fixed point for I. Let s, t ∈ S, then (assuming
k ≥ 2)

I(wk,1)(s, t)

= max


sup
s
x−→s′

inf
t
y−→t′

F (x, y, wk,1(s′, t′))

sup
t
y−→t′

inf
s
x−→s′

F (x, y, wk−1,2(s′, t′))

= max


sup
s
x−→s′

inf
t
y−→t′

F (x, y, sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s′, t′))))

sup
t
y−→t′

inf
s
x−→s′

F (x, y, sup
θ1∈Θ(k−1)-sim

1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(t′, s′))))

= max


sup
s
x−→s′

inf
t
y−→t′

sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

F (x, y, f(tr(out(θ1, θ2)(s′, t′))))

sup
t
y−→t′

inf
s
x−→s′

sup
θ1∈Θ(k−1)-sim

1

inf
θ2∈Θ2

F (x, y, f(tr(out(θ1, θ2)(t′, s′))))

= max



sup
s
x−→s′

inf
t
y−→t′

sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(s′, t′)), y · tr(out2(θ1, θ2)(s′, t′)))
sup
t
y−→t′

inf
s
x−→s′

sup
θ1∈Θ(k−1)-sim

1

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(t′, s′)), y · tr(out2(θ1, θ2)(t′, s′))) ,

the next-to-last step by monotonicity of F . By uniformity, the choices of
t
y−→ t′ and θ1 ∈ Θk-sim

1 do not depend on each other, so the corresponding inf

92

5.6. Recursive Characterizations

and sup can be exchanged, whence

I(wk,1)(s, t) = max



sup
s
x−→s′

sup
θ1∈Θk-sim

1

inf
t
y−→t′

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(s′, t′)), y · tr(out2(θ1, θ2)(s′, t′)))
sup
t
y−→t′

sup
θ1∈Θ(k−1)-sim

1

inf
s
x−→s′

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(t′, s′)), y · tr(out2(θ1, θ2)(t′, s′)))

= max


sup

θ1∈Θk-sim
1,ns

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s, t)))

sup
θ1∈Θk-sim

1,s

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s, t)))

= wk,1(s, t).

In the last max expression, Θk-sim
1,ns ⊆ Θk-sim

1 is the subset of Player-1 strate-
gies θ1 which do not switch from the configuration (s, t, 0), i.e., for which
src(θ1,1(s, t, 0)) = s, and Θk-sim

1,s = Θk-sim
1 \ Θk-sim

1,ns consists of the strategies
which do switch from (s, t, 0). The other cases in the definition of I—I(w1,1),
I(w1,2), and I(wk,2) for k ≥ 2—can be shown similarly, and we can conclude
that I(wk,p) = wk,p for all k ∈ N+ ∪ {∞}, p ∈ {1, 2}.

To show that w is the least fixed point for I, let h̄ : (N+∪{∞})×{1, 2} →
LS×S be such that I(h̄) = h̄. We prove that w ≤ h̄, and again we show only
the case wk,1 ≤ h̄k,1 for k ≥ 2. Note first that as the LTS (S, T) is finitely
branching, we can use the equation for I(h̄k,1)(s, t) to conclude that for all
s, t ∈ S,

for any s x−→ s′ there is t y−→ t′ such that F (x, y, h̄k,1(s′, t′)) ≤ I(h̄k,1)(s, t),
(5.3)

for any t y−→ t′ there is s x−→ s′ such that F (x, y, h̄k−1,2(s′, t′)) ≤ I(h̄k,1)(s, t).
(5.4)

Now let θ1 ∈ Θk-sim
1 ; the proof will be finished once we can find θ2 ∈ Θ2

for which f(tr(out(θ1, θ2)(s, t))) ≤ h̄k,1(s, t). Let (π · e, ρ,m) ∈ Conf2 and
write s = tgt(last(π)), t = tgt(last(ρ)). Assume first that e = (s, x, s′), let t =
tgt(last(ρ)) and e = (t, y, t′) an edge which satisfies the inequality of (5.3), and
define θ2(π · e, ρ,m) = (e′,m). For the so-defined Player-2 strategy θ2 we have
f(tr(out(θ1, θ2)(s, t))) ≤ sup

s
x−→s′

inf
t
y−→t′

F (x, y, h̄k,1(s′, t′)) ≤ I(h̄k,1)(s, t) =
h̄k,1(s, t) for all s, t ∈ S. The case e = (t, y, t′) is shown similarly, using (5.4)
instead. �

The fixed-point characterization for the ready simulation distances is sim-
ilar (and so is its proof, which we hence omit):

93

5. The Quantitative Linear-Time–Branching-Time Spectrum

5.19 Theorem. The endofunction I on (N+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =



max


sup
s
x−→s′

inf
t
y−→t′

F (x, y, hm,1(s′, t′))

sup
t
y−→t′

inf
s
x−→s′

F (x, y, hm−1,2(s′, t′))
if m ≥ 2, p = 1

max


sup
s
x−→s′

inf
t
y−→t′

F (x, y, hm,1(s′, t′))

sup
t
y−→t′

inf
s
x−→s′

f(x, y)
if m = 1, p = 1

max


sup
t
y−→t′

inf
s
x−→s′

F (x, y, hm,2(s′, t′))

sup
s
x−→s′

inf
t
y−→t′

F (x, y, hm−1,1(s′, t′))
if m ≥ 2, p = 2

max


sup
t
y−→t′

inf
st

x−→s′

F (x, y, hm,2(s′, t′))

sup
s
x−→s′

inf
t
y−→t′

f(x, y)
if m = 1, p = 2

has a least fixed point h∗ : (N+∪{∞})×{1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-rsim = g ◦ h∗k,1, dk-rsim-eq = g ◦max(h∗k,1, h∗k,2) for
all k ∈ N+ ∪ {∞}.

For the linear distances, we extend F to a function Kn×Kn×L→ L, for
n ∈ N, by

F (ε, ε, α) = α, F (x · σ, y · τ, α) = F (x, y, F (σ, τ, α)).

We also extend the x−→ relation to finite traces so we can write s σ−→ s′ below,
by letting s ε−→ s for all s ∈ S and s x·σ−−→ s′ iff s

x−→ s′′
σ−→ s′ for some s′′ ∈ S.

We write s σ−→ if there is a (finite or infinite) trace σ from s. The proofs of the
below theorems are similar to the one of Theorem 5.18.

94

5.6. Recursive Characterizations

5.20 Theorem. The endofunction I on (N+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =



max



sup
s
σ−→

inf
t
τ−→
f(σ, τ)

sup
s
σ−→s′

inf
t
τ−→t′

F (σ, τ, hm−1,1(s′, t′))

sup
s
σ−→s′

inf
t
τ−→t′

F (σ, τ, hm−1,2(s′, t′))

if m ≥ 2, p = 1

sup
s
σ−→

inf
t
τ−→
f(σ, τ) if m = 1, p = 1

max



sup
t
τ−→

inf
s
σ−→
f(σ, τ)

sup
t
τ−→t′

inf
s
σ−→s′

F (σ, τ, hm−1,2(s′, t′))

sup
t
τ−→t′

inf
s
σ−→s′

F (σ, τ, hm−1,1(s′, t′))

if m ≥ 2, p = 2

sup
t
τ−→

inf
s
σ−→
f(σ, τ) if m = 1, p = 2

has a least fixed point h∗ : (N+∪{∞})×{1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-trace = g ◦h∗k,1, dk-trace-eq = g ◦max(h∗k,1, h∗k,2) for
all k ∈ N+ ∪ {∞}.

95

5. The Quantitative Linear-Time–Branching-Time Spectrum

5.21 Theorem. The endofunction I on (N+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =



max



sup
s
σ−→

inf
t
τ−→
f(σ, τ)

sup
s
σ−→s′

inf
t
τ−→t′

F (σ, τ, hm−1,1(s′, t′))

sup
s
σ−→s′

inf
t
τ−→t′

F (σ, τ, hm−1,2(s′, t′))

if m ≥ 2, p = 1

max



sup
s
σ−→

inf
t
τ−→
f(σ, τ)

sup
s
σ−→s′

inf
t
τ−→t′

sup
s′
x−→s′′

inf
t′
y−→t′′

f(σ · x, τ · y)

sup
s
σ−→s′

inf
t
τ−→t′

sup
t′
y−→t′′

inf
s′
x−→s′′

f(σ · x, τ · y)

if m = 1, p = 1

max



sup
t
τ−→

inf
s
σ−→
f(σ, τ)

sup
t
τ−→t′

inf
s
σ−→s′

F (σ, τ, hm−1,2(s′, t′))

sup
t
τ−→t′

inf
s
σ−→s′

F (σ, τ, hm−1,1(s′, t′))

if m ≥ 2, p = 2

max



sup
t
τ−→

inf
s
σ−→
f(σ, τ)

sup
t
τ−→t′

inf
s
σ−→s′

sup
t′
y−→t′′

inf
s′
x−→s′′

f(σ · x, τ · y)

sup
t
τ−→t′

inf
s
σ−→s′

sup
s′
x−→s′′

inf
t′
y−→t′′

f(σ · x, τ · y)

if m = 1, p = 2

has a least fixed point h∗ : (N+∪{∞})×{1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-ready = g ◦ h∗k,1, dk-ready-eq = g ◦ max(h∗k,1, h∗k,2)
for all k ∈ N+ ∪ {∞}.

The fixed-point characterizations above immediately lead to iterative semi-
algorithms for computing the respective distances: to compute for example
simulation distance, we can initialize h1-sim(s, t) = 0 for all states s, t ∈ S
and then iteratively apply the above equality. This assumes the LTS (S, T) to
be finitely branching and uses Kleene’s fixed-point theorem and continuity of
F . However, this computation is only guaranteed to converge to simulation
distance in finitely many steps in case the lattice LS×S is finite; otherwise,
the procedure might not terminate.

5.6.2 Relation Families
Below we show that both simulation and bisimulation distance admit a re-
lational characterization akin to the one of the standard Boolean notions.
Using switching counters like we did in the previous section, this can easily be
generalized to give relational characterizations to all distances in this chapter.

96

5.7. Recursive Characterizations for Example Distances

5.22 Theorem. If the LTS (S, T) is finitely branching, then d1-sim(s, t) ≤ ε iff
there exists a relation family R = {Rα ⊆ S × S | α ∈ L} for which (s, t) ∈
Rβ ∈ R for some β with g(β) ≤ ε, and such that for any α ∈ L and for all
(s′, t′) ∈ Rα ∈ R,

• for all s′ x−→ s′′, there exists t′ y−→ t′′ such that (s′′, t′′) ∈ Rα′ ∈ R for
some α′ ∈ L with F (x, y, α′) v α.

Similarly, dbisim(s, t) ≤ ε iff there exists a relation family R = {Rα ⊆ S × S |
α ∈ L} for which (s, t) ∈ Rβ ∈ R for some β with g(β) ≤ ε, and such that for
any α ∈ L and for all (s′, t′) ∈ Rα ∈ R,

• for all s′ x−→ s′′, there exists t′ y−→ t′′ such that (s′′, t′′) ∈ Rα′ ∈ R for
some α′ ∈ L with F (x, y, α′) v α;

• for all t′ y−→ t′′, there exists s′ x−→ s′′ such that (s′′, t′′) ∈ Rα′ ∈ R for
some α′ ∈ L with F (x, y, α′) v α.

Proof: We only show the proof for simulation distance; for bisimulation
distance it is analogous. Assume first that d1-sim(s, t) ≤ ε, then we have
h : S × S → L for which g(h(s, t)) ≤ ε and

h(s′, t′) = sup
s′
x−→s′′

inf
t′
y−→t′′

F (x, y, h(s′′, t′′))

for all s′, t′ ∈ S. Let β = h(s, t), and define a relation family R = {Rα |
α ∈ L} by Rα = {(s′, t′) | h(s′, t′) v α}. Let α ∈ L and (s′, t′) ∈ Rα, then
sup

s′
x−→s′′

inf
t′
y−→t′′

F (x, y, h(s′′, t′′)) = h(s′, t′) v α, and as (S, T) is finitely
branching, this implies that for all s′ x−→ s′′ there is t′ y−→ t′′ and α′ = h(s′′, t′′)
such that (s′′, t′′) ∈ Rα′ and F (x, y, α′) v α.

For the other direction, assume a relation family as in the theorem and
define h : S × S → L by h(s′, t′) = inf{α | (s′, t′ ∈ Rα}. Then (s, t) ∈
Rβ implies that h(s, t) v β and hence g(h(s, t)) ≤ ε. Let s′, t′ ∈ S, then
(s′, t′) ∈ Rh(s′,t′), hence for all s′ x−→ s′′ there is t′ y−→ t′′ and α′ ∈ L for
which F (x, y, α′) v h(s′, t′) and (s′′, t′′) ∈ Rα′ , implying h(s′′, t′′) v α′ and
hence F (x, y, h(s′′, t′′)) v h(s′, t′). Collecting the pieces, we get I(h)(s′, t′) =
sup

s′
x−→s′′

inf
t′
y−→t′′

F (x, y, h(s′′, t′′)) v h(s′, t′), hence h is a pre-fixed point for
I. But then h∗ v h, hence d1-sim(s, t) = g(h∗(s, t)) ≤ g(h(s, t)) ≤ ε. �

5.7 Recursive Characterizations for Example Distances
We show that the considerations in Section 5.6 apply to all the example dis-
tances we have introduced in Section 5.2. We apply Theorem 5.18 to derive
fixed-point formulae for corresponding simulation distances, but of course all

97

5. The Quantitative Linear-Time–Branching-Time Spectrum

other distances in the quantitative linear-time–branching-time spectrum have
similar characterizations.

Let d be a hemimetric on K, then for all σ, τ ∈ K∞ and 0 < λ ≤ 1,

PWλ(d)(σ, τ) =


max(d(σ0, τ0), λPWλ(d)(σ1, τ1)) if σ, τ 6= ε,

∞ if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

0 if σ = τ = ε,

ACλ(d)(σ, τ) =


d(σ0, τ0) + λACλ(d)(σ1, τ1) if σ, τ 6= ε,

∞ if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

0 if σ = τ = ε,

hence we can apply the iteration theorems with lattice L = R≥0∪{∞}, g = id
the identity function, and the recursion function F given like the formulae
above. Using Theorem 5.18 we can derive the following fixed-point expressions
for simulation distance:

PWλ(d)1-sim(s, t) = sup
s
x−→s′

inf
t
y−→t′

max(d(x, y), λPWλ(d)1-sim(s′, t′))

ACλ(d)1-sim(s, t) = sup
s
x−→s′

inf
t
y−→t′

(d(x, y) + λACλ(d)1-sim(s′, t′))

Incidentally, these are exactly the expressions introduced in [dAFS09] and in
previous chapters.

Also note that if S is finite with |S| = n, then undiscounted point-
wise distance PW1(d) can only take on the finitely many values {d(x, y) |
(s, x, s′), (t, y, t′) ∈ T}, hence the fixed-point algorithm given by Kleene’s the-
orem converges in at most n2 steps. This algorithm is used in [dAFS09,
DLT08, LFT11]. For undiscounted accumulating distance AC1(d), it can be
shown [LFT11] that with D = max{d(x, y) | (s, x, s′), (t, y, t′) ∈ T}, distance
is either infinite or bounded above by 2n2D, hence the AC1(d) algorithm either
converges in at most 2n2D steps or diverges.

For the limit-average distance AV(d), we let L = (R≥0 ∪ {∞})N, g(h) =
lim infj h(j), and f(σ, τ)(j) = 1

j+1
∑j
i=0 d(σi, τi) the j’th average. The intu-

ition is that L is used for “remembering” how long in the traces we have pro-
gressed with the computation. With F given by F (x, y, h)(n) = 1

n+1d(x, y) +
n
n+1h(n − 1) it can be shown that (5.2) holds, giving the following fixed-
point expression for limit-average simulation distance (which to the best of
our knowledge is new):

h1-sim
n (s, t) = sup

s
x−→s′

inf
t
y−→t′

(1
n+1d(x, y) + n

n+1h
1-sim
n−1 (s′, t′)

)
For the maximum-lead distance, we let L = (R≥0 ∪ {∞})R, the lattice of

mappings from leads to maximum leads. Using the notation from Section 5.2,

98

5.7. Recursive Characterizations for Example Distances

we let g(h) = h(0) and f(σ, τ)(δ) = max(|δ|, supj |δ + ∑j
i=0 σ

w
i −

∑j
i=0 τ

w
j |)

the maximum-lead distance between σ and τ assuming that σ already has
a lead of δ over τ . With F (x, y, h)(δ) = max(|δ|, h(δ + x − y)) it can be
shown that (5.2) holds, and then the fixed-point expression for maximum-
lead simulation distance becomes the one given in Chapter 2:

h1-sim(δ)(s, t) = sup
s
x−→s′

inf
t
y−→t′

max(|δ|, h1-sim(s′, t′)(δ + x− y))

Again it can be shown [HMP05] that for S finite with |S| = n and D =
max{d(x, y) | (s, x, s′), (t, y, t′) ∈ T}, the iterative algorithm for computing
maximum-lead distance either converges in at most 2n2D steps or diverges.

Regarding Cantor distance, a useful recursive formulation is

f(σ, τ)(n) =
{
f(σ1, τ1)(n+ 1) if σ0 = τ0,

n otherwise,

which iteratively counts the number of matching symbols in σ and τ . Here
we use L = (R≥0 ∪ {∞})N and g(h) = 1

h(0) ; note that the order on L has
to be reversed for g to be monotone. The fixed-point expression for Cantor
simulation distance becomes

h1-sim
n (s, t) = max(n, sup

s
x−→s′

inf
t
x−→t′

h1-sim
n+1 (s′, t′))

but as the order on L is reversed, the sup now means that Player 1 is trying
to minimize this expression, and Player 2 tries to maximize it. Hence Player 2
tries to find maximal matching subtrees; the corresponding Cantor simulation
equivalence distance between s and t hence is the inverse of the maximum
depth of matching subtrees under s and t. The Cantor bisimulation distance
in turn is the same as the inverse of bisimulation depth [HM85].

99

6 Weighted Modal Transition Systems1

In this chapter we lift the accumulating distance to modal specifications, a
specification formalism which permits incremental and compositional design.
To this end, we replace the refinement relation of standard modal specifica-
tions by a refinement distance. We then show that our quantitative gener-
alization does not admit any notions of determinization or conjunction, but
that structural composition and quotient do satisfy the expected quantitative
properties.

6.1 Weighted Modal Transition Systems
In this section we present the formalism we use for implementations and spec-
ifications. As implementations we choose the model of weighted transition
systems, i.e., labeled transition systems with integer weights at transitions.
Specifications both have amodal dimension, specifying discrete behavior which
must be implemented and behavior which may be present in implementations,
and a quantitative dimension, specifying intervals of weights on each transition
within are permissible for an implementation.

Let I =
{
[x, y]

∣∣ x ∈ Z ∪ {−∞}, y ∈ Z ∪ {∞}, x ≤ y
}
be the set of closed

extended-integer intervals and let Σ be a finite set of actions. Our set of
specification labels is Spec = Σ × I, pairs of actions and intervals. The set
of implementation labels is defined as Imp = Σ ×

{
[x, x]

∣∣ x ∈ Z} ≈ Σ × Z.
Hence a specification imposes labels and integer intervals which constrain the
possible weights of an implementation.

We define a partial order on I (representing inclusion of intervals) by
[x, y] 4 [x′, y′] if x′ ≤ x and y ≤ y′, and we extend this order to specifi-
cation labels by (a, I) 4 (a′, I ′) if a = a′ and I 4 I ′. The partial order on
Spec is hence a refinement order; if k1 4 k2 for k1, k2 ∈ Spec, then no more
implementation labels are contained in k1 than in k2.

Specifications and implementations are defined as follows:

6.1 Definition. A weighted modal transition system (WMTS) is a quadruple
(S, s0, 99K,−→) consisting of a set of states S with an initial state s0 ∈ S

1This chapter is based on the journal paper [BFJ+13] published in Formal Methods in
System Design.

101

6. Weighted Modal Transition Systems

and must (−→) and may (99K) transition relations −→, 99K ⊆ S × Spec × S
such that for every (s, k, s′) ∈ −→ there is (s, `, s′) ∈ 99K where k 4 `. A
WMTS is an implementation if −→ = 99K ⊆ S × Imp× S.

Note the natural requirement that any required (must) behavior is also al-
lowed (may) above, and that implementations correspond to standard integer-
weighted transition systems, where all optional behavior and positioning in the
intervals has been decided on.

A WMTS is finite if S and 99K (and hence also −→) are finite sets, and it is
deterministic if it holds that for all s ∈ S, a ∈ Σ,

(
s, (a, I1), t1

)
,
(
s, (a, I2), t2

)
∈

99K imply I1 = I2 and t1 = t2. Hence a deterministic specification allows at
most one transition under each discrete action from every state. In the rest of
the paper we will write s k

99K s′ for (s, k, s′) ∈ 99K and similarly for −→, and
we will always write S = (S, s0, 99K,−→) or Si = (Si, s0

i , 99Ki,−→i) for WMTS
and I = (I, i0,−→) for implementations. Note that an implementation is just
a usual integer-weighted transition system.

Our theory will work with infinite WMTS, though we will require them
to be compactly branching. This is a natural generalization of the standard
requirement on systems to be finitely branching which was first used in [vB96];
see Def. 6.11 below.

The implementation semantics of a specification is given through modal
refinement, as follows:

6.2 Definition. A modal refinement of WMTS S1, S2 is a relation R ⊆ S1 × S2
such that for any (s1, s2) ∈ R

• whenever s1
k1
99K1 t1 for some k1 ∈ Spec, t1 ∈ S1, then there exists

s2
k2
99K2 t2 for some k2 ∈ Spec, t2 ∈ S2, such that k1 4 k2 and (t1, t2) ∈ R,

• whenever s2
k2−→2 t2 for some k2 ∈ Spec, t2 ∈ S2, then there exists

s1
k1−→1 t1 for some k1 ∈ Spec, t1 ∈ S1, such that k1 4 k2 and (t1, t2) ∈ R.

We write S1 ≤m S2 if there is a modal refinement relationR for which (s0
1, s

0
2) ∈

R.

Hence in such a modal refinement, behavior which is required in S2 is
also required in S1, no more behavior is allowed in S1 than in S2, and the
quantitative requirements in S1 are refinements of the ones in S2. The im-
plementation semantics of a specification can then be defined as the set of all
implementations which are also refinements:

6.3 Definition. The implementation semantics of a WMTS S is the set JSK =
{I | I ≤m S and I is an implementation}.

102

6.2. Thorough and Modal Refinement Distances

This conforms with the intuition developed above: if I ∈ JSK, then any
(reachable) behavior i a,x−→ j in I must be allowed by a matching transition
s
a,[l,r]
99K t in S with l ≤ x ≤ r; correspondingly, any (reachable) required

behavior s a,[l,r]−→ t in S must be implemented by a matching transition i a,x−→ j
in I with l ≤ x ≤ r.

6.2 Thorough and Modal Refinement Distances
For the quantitative specification formalism we have introduced in the last
section, the standard Boolean notions of satisfaction and refinement are too
fragile. To be able to reason not only whether a given quantitative implemen-
tation satisfies a given quantitative specification, but also to what extent, we
introduce a notion of distance between both implementations and specifica-
tions.

We first define the distance between implementations; for this we introduce
a distance on implementation labels by

dImp
(
(a1, x1), (a2, x2)

)
=
{

∞ if a1 6= a2,
|x1 − x2| if a1 = a2.

(6.1)

In the rest of the chapter, let λ ∈ R with 0 < λ < 1 be a discounting factor.

6.4 Definition. The implementation distance d : I1 × I2 → R≥0 ∪ {∞} between
the states of implementations I1 and I2 is the least fixed point of the equations

d(i1, i2) = max


sup

i1
k1−→1j1

inf
i2

k2−→2j2

dImp(k1, k2) + λd(j1, j2),

sup
i2

k2−→2j2

inf
i1

k1−→1j1

dImp(k1, k2) + λd(j1, j2).

We define d(I1, I2) = d(i01, i02).

6.5 Lemma. The implementation distance is well-defined, and is a pseudometric.

Proof: This is precisely the accumulating bisimulation distance from Chap-
ter 5, so the statement follows from Proposition 5.5. See also the proof of
Lemma 4.3. �

We remark that besides this accumulating distance, other interesting sys-
tem distances may be defined depending on the application at hand, cf. Chap-
ter 5. We concentrate here on this distance and leave a generalization to other
distances for the next chapter.

103

6. Weighted Modal Transition Systems

i1 j1

k1

3
7 6

9

i2 j2
6

7

d(j1, j2) = 0
d(i1, j2) =∞
d(j1, i2) =∞
d(k1, j2) =∞
d(k1, i2) = max{2 + .9 d(k1, i2), .9

0︷ ︸︸ ︷
d(j1, j2)}

d(i1, i2) = max{3 + .9 d(j1, j2)︸ ︷︷ ︸
0

, .9 d(k1, i2)}

Figure 6.1: Two weighted transition systems with branching distance
d(I1, I2) = 18.

6.6 Example. Consider the two implementations I1 and I2 in Figure 6.1 with
a single action (elided for simplicity) and with discounting factor λ = .9.
The equations in the illustration have already been simplified by removing all
expressions that evaluate to ∞. What remains to be done is to compute the
least fixed point of the equation d(k1, i2) = max

{
2 + .9 d(k1, i2), 0

}
. Clearly 0

is not a fixed point, and solving the equation d(k1, i2) = 2 + .9 d(k1, i2) gives
d(k1, i2) = 20. Hence d(i1, i2) = max{3, .9 · 20} = 18.

Note that the interpretation of the distance between two implementations
depends entirely on the application one has in mind; but it can easily be shown
that the distance between two implementations is zero iff they are weighted
bisimilar. The intuition is then that the smaller the distance, the closer the
implementations are to being bisimilar.

To lift the implementation distance to specifications, we need first to con-
sider the distance between sets of implementations. Given implementation
sets I1, I2 ⊆ Imp, we define

d(I1, I2) = sup
I1∈I1

inf
I2∈I2

d(I1, I2)

Note that in case I2 is finite, we have that for all ε ≥ 0, d(I1, I2) ≤ ε if
and only if for each implementation I1 ∈ I1 there exists I2 ∈ I2 for which
d(I1, I2) ≤ ε, hence this is quite a natural notion of distance. Especially,
d(I1, I2) = 0 if I1 is a subset of I2 up to bisimilarity. For infinite I2, we have
the slightly more complicated property that d(I1, I2) ≤ ε iff for all δ > 0 and
any I1 ∈ I1, there is I2 ∈ I2 for which d(I1, I2) ≤ ε+ δ.

We lift this distance to specifications as follows:

6.7 Definition. The thorough refinement distance between WMTS S1 and S2 is
defined as dth(S1, S2) = d

(
JS1K, JS2K

)
. We write S1 ≤εth S2 if dth(S1, S2) ≤ ε.

6.8 Lemma. The thorough refinement distance is a hemimetric.

Proof: To show that dth(S, S) = 0 is trivial, and the triangle inequality
dth(S1, S2) + dth(S2, S3) ≥ dth(S1, S3) follows like in the proof of [AB07,
Lemma 3.72]. �

104

6.2. Thorough and Modal Refinement Distances

Indeed this permits us to measure incompatibility of specifications; intu-
itively, if two specifications have thorough distance ε, then any implementation
of the first specification can be matched by an implementation of the second
up to ε. Also observe the special case where S1 = I1 is an implementation:
then dth(I1, S2) = infI2∈JS2K d(I1, I2), which measures how close I1 is to satisfy
the specification S2.

We now proceed to introduce modal refinement distance as an overapprox-
imation of thorough refinement distance.

First we generalize the distance on implementation labels from Equa-
tion (6.1) to specification labels, again using a Hausdorff-type construction.
For k, ` ∈ Spec we define

dSpec(k, `) = sup
k′4k,k′∈Imp

inf
`′4`,`′∈Imp

dImp(k′, `′).

Note that dSpec is asymmetric, and that dSpec(k, `) = 0 if and only if k 4 `.
Also, dSpec(k, `) = dImp(k, `) for all k, ` ∈ Imp. In more elementary terms, we
can express dSpec as follows:

dSpec
(
(a1, I1), (a2, I2)

)
=∞ if a1 6= a2

dSpec
(
(a, [x1, y1]), (a, [x2, y2])

)
= max(x2 − x1, y1 − y2, 0)

6.9 Definition. Let S1, S2 be WMTS. The modal refinement distance dm : S1 ×
S2 → R≥0 ∪ {∞} from states of S1 to states of S2 is the least fixed point of
the equations

dm(s1, s2) = max


sup

s1
k1
99K1t1

inf
s2

k2
99K2t2

dSpec(k1, k2) + λdm(t1, t2) ,

sup
s2

k2−→2t2

inf
s1

k1−→1t1

dSpec(k1, k2) + λdm(t1, t2) .

We define dm(S1, S2) = dm(s0
1, s

0
2), and we write S1 ≤εm S2 if dm(S1, S2) ≤ ε.

6.10 Lemma. The modal refinement distance is well-defined, and is a hemimetric.

Proof: Like in the proof of Lemma 6.5, the argument for existence of a unique
least fixed point to the defining equations is that they define a contraction.
The triangle inequality can again be shown inductively, and the property
dm(s, s) = 0 is clear. �

We can now give a precise definition of compact branching:

6.11 Definition. A WMTS S is said to be compactly branching if the sets {(s′, k) |
s

k
99K s′}, {(s′, k) | s k−→ s′} ⊆ S × Spec are compact under the symmetrized

product distance d̄m × d̄Spec for every s ∈ S.

105

6. Weighted Modal Transition Systems

The notion of compact branching was first introduced, for a formalism of
metric transition systems, in [vB96]. It is a natural generalization of the stan-
dard requirement on transition systems to be finitely branching to a distance
setting; we will need it for the property that continuous functions defined on
the sets {(s′, k) | s k

99K s′}, {(s′, k) | s k−→ s′} ⊆ S × Spec, for some s ∈ S,
attain their infimum and supremum, see Lemma 6.13 and its proof below.

Thus, we shall henceforth assume all our WMTS to be compactly branch-
ing. The following lemma sets up some sufficient conditions for this to be the
case.

6.12 Lemma. Let S be a WMTS and define the sets Li(s, a), Ui(s, a) for all s ∈ S,
a ∈ Σ and i ∈ {1, 2} by

L1(s, a) = {l | s
a,[l,r]
99K s′}, L2(s, a) = {l | s a,[l,r]−→ s′},

U1(s, a) = {r | s
a,[l,r]
99K s′}, U2(s, a) = {r | s a,[l,r]−→ s′}.

Then S is compactly branching if

• for all s ∈ S, any Cauchy sequence (s′n)n∈N in {s′ | s 99K s′} (with
pseudometric d̄m) has limn→∞ sn ∈ {s′ | s 99K s′}, and likewise, any
Cauchy sequence (s′n)n∈N in {s′ | s −→ s′} has limn→∞ sn ∈ {s′ | s −→
s′}, and

• for all s ∈ S, a ∈ Σ and i ∈ {1, 2}, Li(s, a) is finite or −∞ ∈ Li(s, a),
and Ui(s, a) is finite or ∞ ∈ Ui(s, a).

Note that the first property mimicks (and generalizes) standard properties
of finite branching and saturation, cf. [San09, Sect. 3.3]. The intuition is that
if s has (either may or must) transitions to a converging sequence of states,
then it also has a transition to the limit.

Proof: The first condition implies that the sets {s′ ∈ S | s 99K s′} and
{s′ ∈ S | s −→ s′} are compact in the pseudometric d̄m for all s ∈ S. By
Tychonoff’s theorem, products of compact sets are compact, so we need only
show that the second condition implies that the sets {k ∈ Spec | s k

99K s′} and
{k ∈ Spec | s k−→ s′} are compact in the pseudometric d̄Spec for every s ∈ S.

Let s ∈ S. By definition of dSpec, the sets {k | s k
99K s′}, {k | s k−→ s′} fall

into connected components {I | s a,I
99K s′}, {I | s a,I−→ s′} for all a ∈ Σ, hence

the former are compact iff all the latter are. These in turn are compact iff the
four sets Li, Ui in the lemma, collecting lower and upper bounds of intervals,
are compact. Now interval bounds are extended integers, so a sequence in Li
or Ui converges iff it is eventually stable or goes towards −∞ or ∞. If the
sets are finite, eventual stability is the only option; if they are infinite, they

106

6.2. Thorough and Modal Refinement Distances

need to include the limit points −∞ (for the lower interval bounds in Li) or
∞ (for the upper interval bounds in Ui). �

We extend the notion of relation families from revious chapters to modal
refinement distance. We define a modal refinement family as an R≥0-indexed
family of relations R = {Rε ⊆ S1 × S2 | ε ≥ 0} such that for any ε and any
(s1, s2) ∈ Rε ∈ R,

• whenever s1
k1
99K t1 for some k1 ∈ Spec, t1 ∈ S1, then there exists

s2
k2
99K t2 for some k2 ∈ Spec, t2 ∈ S2, such that dSpec(k1, k2) ≤ ε and

(t1, t2) ∈ Rε′ ∈ R for some ε′ ≤ λ−1(ε− dSpec(k1, k2)
)
,

• whenever s2
k2−→ t2 for some k2 ∈ Spec, t2 ∈ S2, then there exists

s1
k1−→ t1 for some k1 ∈ Spec, t1 ∈ S1, such that dSpec(k1, k2) ≤ ε and

(t1, t2) ∈ Rε′ ∈ R for some ε′ ≤ λ−1(ε− dSpec(k1, k2)
)
.

Note that modal refinement families are

• upward closed in the sense that (s1, s2) ∈ Rε implies that (s1, s2) ∈ Rε′
for all ε′ ≥ ε, and

• downward compact in the sense that for any set E ⊆ R≥0, if (s1, s2) ∈ Rε
for all ε ∈ E, then also (s1, s2) ∈ Rinf E . This property follows from the
assumption that our WMTS are compactly branching.

Following the proof strategy developed in previous chapters for imple-
mentations, we can show the following characterization of modal refinement
distance by modal refinement families:

6.13 Lemma. S1 ≤εm S2 iff there is a modal refinement family R with (s0
1, s

0
2) ∈

Rε ∈ R.

Proof: First, assume that S1 ≤εm S2, i.e., dm(s0
1, s

0
2) ≤ ε, and define a relation

family R = {Rδ | δ ≥ 0} by Rδ = {(s1, s2) ∈ S1 × S2 | dm(s1, s2) ≤ δ} for all
δ ≥ 0, then (s0

1, s
0
2) ∈ Rε holds by assumption. We show that R is a modal

refinement family. Let (s1, s2) ∈ Rδ for some δ ≥ 0, then by definition we
know that dm(s1, s2) ≤ δ. Assume s1

k1
99K1 t1. From dm(s1, s2) ≤ δ we can

infer that
inf

s2
k2
99K2t2

dSpec(k1, k2) + λdm(t1, t2) ≤ δ .

Hence, because S2 is compactly branching, there exists a may-transition s2
k2
99K

t2 such that dSpec(k1, k2) ≤ δ and dm(t1, t2) ≤ λ−1(δ − dSpec(k1, k2)). The
latter implies that (t1, t2) ∈ Rδ′ for some δ′ ≤ λ−1(δ − dSpec(k1, k2)) which
was to be shown. The argument for the other assertion for must-transitions is

107

6. Weighted Modal Transition Systems

symmetric. This proves that there is a modal refinement family R such that
(s0

1, s
0
2) ∈ Rε ∈ R.

For the reverse direction, assume that (s0
1, s

0
2) ∈ Rε ∈ R for some modal

refinement family R = {Rε | ε ≥ 0}. We prove that (s1, s2) ∈ Rδ, for some
δ ≥ 0, implies dm(s1, s2) ≤ δ. The claim S1 ≤εm S2 then follows from the
assumption (s0

1, s
0
2) ∈ Rε.

To this end, observe that the space of functions ∆ = [S1×S2 → R≥0∪{∞}]
forms a complete lattice, when the partial order ≤∆ is defined such that for
f, f ′ ∈ ∆, f ≤∆ f ′ iff f(s1, s2) ≤ f ′(s1, s2) for all s1 ∈ S1, s2 ∈ S2. Moreover,
since max, sup, inf and + are monotone, the function D defined for all f ∈ ∆
by

D(f) = max


sup

s1
k1
99K1t1

inf
s2

k2
99K2t2

dSpec(k1, k2) + λf(t1, t2) ,

sup
s2

k2−→2t2

inf
s1

k1−→1t1

dSpec(k1, k2) + λf(t1, t2)

is a monotone endofunction on ∆, hence by Tarski’s fixed point theorem, D
has a least fixed point. Now define h(s1, s2) = inf{δ | (s1, s2) ∈ Rδ ∈ R};
since Rδ is downward compact, we have (s1, s2) ∈ Rh(s1,s2). By showing that
h is a pre-fixed point of D, i.e., that D(h) ≤∆ h, we get that (s1, s2) ∈ Rδ
implies that dm(s1, s2) ≤ δ, since h(s1, s2) ≤ δ and dm(s1, s2) ≤ h(s1, s2).

Since (s1, s2) ∈ Rh(s1,s2), every s1
k1
99K s′1 can be matched by some s2

k2
99K s′2

such that dSpec(k1, k2) + λδ′ ≤ h(s1, s2) for some δ′ where (s′1, s′2) ∈ Rδ′ ,
implying h(s′1, s′2) ≤ δ′, but then also dSpec(k1, k2) + λh(s′1, s′2) ≤ h(s1, s2).
Similarly, every s2

k2−→ s′2 has a match s1
k1−→ s′1 such that dSpec(k1, k2) +

λh(s′1, s′2) ≤ h(s1, s2). Hence we have D(h) ≤∆ h which was to be shown. �

The next theorems show that modal refinement distance indeed overap-
proximates thorough refinement distance, and that it is exact for determinis-
tic WMTS. Note that nothing general can be said about the precision of the
overapproximation in the nondeterministic case; the standard counterexam-
ple given for the Boolean case in [BKLS09] shows that there exist WMTS for
which dth(S1, S2) = 0 but dm(S1, S2) =∞.

6.14 Theorem. For WMTS S1, S2 we have dth(S1, S2) ≤ dm(S1, S2).

Proof: If dm(S1, S2) = ∞, we have nothing to prove. Otherwise, let R =
{Rε ⊆ S1 × S2 | ε ≥ 0} be a modal refinement family which witnesses
dm(S1, S2), i.e., such that (s0

1, s
0
2) ∈ Rdm(S1,S2), and let I1 ∈ JS1K. We have to

expose I2 ∈ JS2K for which d(I1, I2) ≤ dm(S1, S2).
Let R̃ ⊆ I1 × S1 be a witness for I1 ≤m S1, define R′ε = R̃ ◦ Rε ⊆ I1 × S2

for all ε ≥ 0, and let R′ = {R′ε | ε ≥ 0}. The states of I2 = (I2, i
0
2, Imp,−→I2)

are I2 = S2 with i02 = s0
2, and the transitions we define as follows:

108

6.2. Thorough and Modal Refinement Distances

For any i1
k′1−→I1 j1 and any s2 ∈ S2 for which (i1, s2) ∈ R′ε ∈ R′ for some

ε, we have s2
k2
99K2 t2 in S2 with dSpec(k′1, k2) ≤ ε and (j1, t2) ∈ R′ε′ ∈ R′ for

some ε′ ≤ λ−1(ε − dSpec(k′1, k2)
)
. Write k′1 = (a′1, x′1) and k2 =

(
a2, [x2, y2]

)
,

then we must have a′1 = a2. Let

x′2 =


x2 if x′1 < x2,

x′1 if x2 ≤ x′1 ≤ y2,

y2 if x′1 > y2

(6.2)

and k′2 = (a2, x
′
2), and put s2

k′2−→I2 t2 in I2. Note that

dSpec(k′1, k′2) = dSpec(k′1, k2). (6.3)

Similarly, for any s2
k2−→2 t2 in S2 and any i1 ∈ I1 with (i1, s2) ∈ R′ε ∈ R′

for some ε, we have i1
k′1−→I1 j1 with dSpec(k′1, k2) ≤ ε and (j1, t2) ∈ R′ε′ ∈ R′

for some ε′ ≤ λ−1(ε−dSpec(k′1, k2)
)
. Write k′1 = (a′1, x′1) and k2 = (a2, [x2, y2]),

define x′2 as in (6.2) and k′2 = (a2, x
′
2), and put s2

k′2−→I2 t2 in I2.
We show that the identity relation idS2 = {(s2, s2) | s2 ∈ S2} ⊆ S2 × S2

witnesses I2 ≤m S2. Let first s2
k′2−→I2 t2; we must have used one of the two

constructions above for creating this transition. In the first case, we have
s2

k2
99K2 t2 with k′2 4 k2, and in the second case, we have s2

k2−→2 t2, hence also
s2

k2
99K2 t2, with the same property. For a transition s2

k2−→2 t2 on the other
hand, we have introduced s2

k′2−→I2 t2 in the second construction above, with
k′2 4 k2.

We also want to show that the family R′ is a witness for d(I1, I2) ≤
dm(S1, S2). We have (i01, s0

2) ∈ R′dm(S1,S2) = R̃◦Rdm(S1,S2), so let (i1, s2) ∈ R′ε ∈

R′ for some ε ≥ 0. For any i1
k′1−→I1 j1 we have s2

k2
99K2 t2 and s2

k′2−→I2 t2 by the
first part of our construction above, with dSpec(k′1, k′2) = dSpec(k′1, k2) ≤ ε be-
cause of (6.3), and also (j1, t2) ∈ R′ε′ ∈ R′ for some ε′ ≤ λ−1(ε−dSpec(k′1, k2)

)
.

For any s2
k′2−→I2 t2, we must have used one of the constructions above to in-

troduce this transition, and both give us i1
k′1−→I1 j1 with dSpec(k′1, k′2) ≤ ε and

(j1, t2) ∈ R′ε′ ∈ R′ for some ε′ ≤ λ−1(ε− dSpec(k′1, k2)
)
. �

The fact that modal refinement only equals thorough refinement for de-
terministic specifications is well-known from the theory of modal transition
systems [Lar89], and the special case of S2 deterministic is important, as it
can be argued [Lar89] that deterministic specifications are sufficient for appli-
cations.

6.15 Theorem. If S2 is deterministic, then dth(S1, S2) = dm(S1, S2).

109

6. Weighted Modal Transition Systems

Proof: If dth(S1, S2) = ∞, we are done by Theorem 6.14. Otherwise, let
R = {Rε | ε ≥ 0} be the smallest relation family for which

• (s0
1, s

0
2) ∈ Rdth(S1,S2) and

• whenever we have (s1, s2) ∈ Rε ∈ R, s1
a,I1
99K1 t1, and s2

a,I2
99K2 t2, then

(t1, t2) ∈ Rλ−1(ε−dSpec((a,I1),(a,I2))) ∈ R.

We show below that R is well-defined (also that ε−dSpec
(
(a, I1), (a, I2)

)
≥ 0 in

all cases) and a modal refinement family. We will use the convenient notation
(s1, S1) for the WMTS S1 with initial state s0

1 replaced by s1, similarly for
(s2, S2).

We first show inductively that for any pair of states (s1, s2) ∈ Rε ∈ R we
have dth

(
(s1, S1), (s2, S2)

)
≤ ε. This is obviously the case for s1 = s0

1 and s1 =
s0

2, so assume now that (s1, s2) ∈ Rε ∈ R is such that dth
(
(s1, S1), (s2, S2)

)
≤ ε

and let s1
a,I1
99K1 t1, s2

a,I2
99K2 t2. Let (q′1, P ′1) ∈ J(t1, S1)K and x1 ∈ I1.

There is an implementation (p1, P1) ∈ J(s1, S1)K for which p1
a,x1−−→ q1 and

such that (q1, P1) ≤m (q′1, P ′1). Now

dth
(
(p1, P1), (s2, S2)

)
≤ dth

(
(p1, P1), (s1, S1)

)
+ dth

(
(s1, S1), (s2, S2)

)
≤ ε,

hence we must have s2
a′2,I

′
2

99K2 t′2 with dSpec
(
(a, x1), (a′2, I ′2)

)
≤ ε. But then

a′2 = a, hence by determinism of S2, I2 = I ′2 and t2 = t′2.
The above considerations hold for any x1 ∈ I1, hence dSpec

(
(a, I1), (a, I2)

)
≤

ε. Thus ε−dSpec
(
(a, I1), (a, I2)

)
≥ 0, and the definition of R above is justified.

Now let x2 ∈ I2 such that dSpec
(
(a, x1), (a, x2)

)
= dSpec

(
(a, x1), (a, I2)

)
, then

there is an implementation (p2, P2) ∈ J(s2, S2)K for which p2
a,x2−−→ q2, and

d
(
(q′1, P ′1), (q2, P2)

)
≤ λ−1(ε− dSpec((a, x1), (a, x2))

)
= λ−1(ε− dSpec((a, I1), (a, I2))

)
,

which, as (q′1, P ′1) ∈ J(t1, S1)K was chosen arbitrarily, entails

dth
(
(s1, S1), (s2, S2)

)
≤ λ−1(ε− dSpec((a, I1), (a, I2))

)
.

We are ready to show that R is a modal refinement family. Let (s1, s2) ∈
Rε ∈ R for some ε, and assume s1

a,I1
99K1 t1. Let x ∈ I1, then there is (p, P x) ∈

J(s1, S1)K with a transition p
m−→ q. Now dth

(
(p, P x), (s2, S2)

)
≤ ε, hence

we have a transition s2
a,Ix2
99K2 tx2 with dSpec

(
(a, x), (a, Ix2)

)
≤ ε. Also for any

other x′ ∈ I1 we have a transition s2
a,Ix

′
2
99K2 t

x′
2 with dSpec

(
(a, x′), (a, Ix′2)

)
≤ ε,

hence by determinism of S2, Ix2 = Ix
′

2 and tx2 = tx
′

2 . It follows that there is a
unique transition s2

a,I2
99K t2, and as dSpec

(
(a, x), (a, I2)

)
≤ ε for all x ∈ I1, we

110

6.3. Relaxation

have dSpec
(
(a, I1), (a, I2)

)
≤ ε, and (t1, t2) ∈ Rλ−1(ε−dSpec((a,I1),(a,I2))) ∈ R by

definition.
Now assume s2

a,I2−→2 t2. Let (p1, P1) ∈ J(s1, S1)K, then we have (p2, P2) ∈
J(s2, S2)K with d

(
(p1, P1), (p2, P2)

)
≤ ε. Now any (p2, P2) ∈ J(s2, S2)K has

p2
a,x2−−→ q2 with x2 ∈ I2, thus there is also p1

a,x1−−→ q1 with dSpec
(
(a, x1), (a, x2)

)
≤

ε and d
(
(q1, P1), (q2, P2)

)
≤ λ−1(ε − dSpec((a, x1), (a, x2))

)
. This in turn

implies that s1
a,I1−→1 t1 for some x1 ∈ I1. We will be done once we can

show dSpec
(
(a, I1), (a, I2)

)
≤ ε, so assume to the contrary that there is x′1 ∈

I1 with dSpec
(
(a, x′1), (a, I2)

)
> ε. Then there must be an implementation

(p′1, P ′1) ∈ J(s1, S1)K with p′1
a,x′1−−→ q′1, hence a transition s2

a,I′2
99K2 t′2 with

dSpec
(
(a, x′1), (a, I ′2)

)
≤ ε. But I ′2 = I2 by determinism of S2, a contradic-

tion. �

6.3 Relaxation
We introduce here a notion of relaxation which is specific to the quantitative
setting. Intuitively, relaxing a specification means to weaken the quantitative
constraints, while the discrete demands on which transitions may or must be
present in implementations are kept. A similar notion of strengthening may
be defined, but we do not use this here.

6.16 Definition. For WMTS S, S′ and ε ≥ 0, S′ is an ε-relaxation of S if S ≤m S′

and S′ ≤εm S.

Hence the quantitative constraints in S′ may be more permissive than the
ones in S, but no new discrete behavior may be introduced. Also note that any
implementation of S is also an implementation of S′, and no implementation
of S′ is further than ε away from an implementation of S. The following
proposition relates specifications to relaxed specifications:

6.17 Proposition. If S′1 and S′2 are ε-relaxations of S1 and S2, respectively, then
dm(S1, S2) − ε ≤ dm(S1, S

′
2) ≤ dm(S1, S2) and dm(S1, S2) ≤ dm(S′1, S2) ≤

dm(S1, S2) + ε.

Proof: By the triangle inequality we have

dm(S1, S
′
2) ≤ dm(S1, S2) + dm(S2, S

′
2),

dm(S1, S2) ≤ dm(S1, S
′
2) + dm(S′2, S2),

dm(S1, S2) ≤ dm(S1, S
′
1) + dm(S′1, S2),

dm(S′1, S2) ≤ dm(S′1, S1) + dm(S1, S2). �

On the syntactic level, we can introduce the following widening operator
which relaxes all quantitative constraints in a systematic manner. We write
I ± δ = [x− δ, y + δ] for an interval I = [x, y] and δ ∈ N.

111

6. Weighted Modal Transition Systems

6.18 Definition. Given δ ∈ N, the δ-widening of a WMTS S is the WMTS S+δ

with transitions s a,I±δ
99K t in S+δ for all s a,I

99K t in S, and s a,I±δ−→ t in S+δ for
all s a,I−→ t in S.

Widening and relaxation are related as follows; note also that as widening
is a global operation whereas relaxation may be achieved entirely locally, not
all relaxations may be obtained as widenings.

6.19 Proposition. The δ-widening of any WMTS S is a δ
1−λ -relaxation.

Proof: For the first claim, the identity relation idS = {(s, s) | s ∈ S} ⊆ S×S
is a witness for S ≤m S+δ: if s k

99K t, then by construction s
k2
99K+δ t with

k 4 k2, and if s k2−→+δ t, then again by construction s k−→ t for some k 4 k2.
Now to prove dm(S+δ, S) ≤ (1−λ)−1δ, we define a family of relations R =

{Rε | ε ≥ 0} by Rε = ∅ for ε < (1 − λ)−1δ and Rε = idS for ε ≥ (1− λ)−1δ.
We show that R is a modal refinement family.

Let (s, s) ∈ Rε for some ε ≥ (1− λ)−1δ, and assume s k2
99K+δ t. By

construction there is a transition s k
99K t with dSpec(k2, k) ≤ δ ≤ ε. Now

1
λ

(
ε− dSpec(k2, k)

)
≥ 1
λ

(δ

1− λ − δ
)

= δ

1− λ ≥ ε

and (t, t) ∈ Rε, which settles this part of the proof. The other direction,
starting with a transition s k−→ t, is similar. �

There is also an implementation-level notion which corresponds to relax-
ation:

6.20 Definition. The ε-extended implementation semantics, for ε ≥ 0, of a WMTS
S is JSK+ε =

{
I
∣∣ I ≤εm S, I implementation

}
.

6.21 Proposition. If S′ is an ε-relaxation of S, then JS′K ⊆ JSK+ε.

Proof: If I ∈ JS′K, then dm(I, S′) = 0, hence dm(I, S) ≤ ε by Proposi-
tion 6.17, which in turn implies that I ∈ JSK+ε. �

The example in Figure 6.2 shows that there are WMTS S, S′ such that
S′ is an ε-relaxation of S but the inclusion JS′K ⊆ JSK+ε is strict. Indeed, for
δ = 1 and λ = .9, we have I ∈ JSK+(1−λ)−1δ, but I /∈ JS+δK.

112

6.4. Limitations of the Quantitative Approach

s t u
a, [5, 5] a, [5, 5]

(a) S

s+1 t+1 u+1
a, [4, 6] a, [4, 6]

(b) S+1

i j k
a, 15 a, 5

(c) I

Figure 6.2: WMTS S and implementation I for which I ∈ JSK+(1−λ)−1δ, for
δ = 1 and λ = .9 (thus (1 − λ)−1δ = 10), but I /∈ JS+δK, so that JS+δK (
JSK+(1−λ)−1δ, even though S+δ is a (1− λ)−1δ-relaxation of S.

6.4 Limitations of the Quantitative Approach
In this section we turn our attention towards some of the standard opera-
tors for specification theories; determinization and logical conjunction. In the
standard Boolean setting, there is indeed a determinization operator which
derives the smallest deterministic overapproximation of a specification, which
is useful because it enables checking thorough refinement, cf. Theorem 6.15.
Quite surprisingly, we show that in the quantitative setting, there are prob-
lems with these notions which do not appear in the Boolean theory. More
specifically, we show that there is no determinization operator which always
yields a smallest deterministic overapproximation, and there is no conjunction
operator which acts as a greatest lower bound.

6.22 Theorem. There is no unary operator D on WMTS for which it holds that

(6.22.1) D(S) is deterministic for any WMTS S,

(6.22.2) S ≤m D(S) for any WMTS S,

(6.22.3) S ≤εm D implies D(S) ≤εm D for any WMTS S, any deterministic
WMTS D, and any ε ≥ 0.

Proof: There is a determinization operator D′ on WMTS which satisfies
Properties (6.22.1) and (6.22.2) above and a weaker version of Property (6.22.3)
with ε = 0:

(6.22.3′) S ≤m D implies D′(S) ≤m D for any WMTS S and any deterministic
WMTS D.

This D′ can be defined as follows: For a WMTS S = (S, s0, 99K,−→),

D′(S) =
(
2S \ {∅}, {s0}, 99Kd,−→d

)
,

where 2S is the power set of S and the transition relations 99Kd and −→d

are defined as follows: Let T ∈ (2S \ {∅}) be a state in D′(S). For every

113

6. Weighted Modal Transition Systems

s0

s1

s2

s3

s4

a, [3
, 3]

a, [5, 6]
a, [0, 0]

a, [3, 3]

(a) S

{s0} {s1, s2} {s3, s4}
a, [3, 6] a, [0, 3]

(b) D′(S)

d0 d1 d2
a, [2, 3] a, [0, 0]

(c) D

Figure 6.3: Counter-example for Theorem 6.22: dm
(
D′(S), D

)
= 3 + 3λ and

dm(S,D) = max(3, 3λ) = 3, hence dm
(
D′(S), D

)
6≤ dm(S,D).

maximal, nonempty set La ⊆ {I | ∃s ∈ T : s a,I
99K} for some a ∈ Σ, we have

T
a,
⋃
La

99K d Ta where Ta = {s′ ∈ S | ∃s ∈ T , I ∈ La : s a,I
99K s′} and ⋃La is the

smallest interval containing all intervals from La. If, moreover, for each s ∈ T
we have s a,I−→ s′ for some s′ ∈ Ta and some I ∈ La, then T

a,
⋃
La−→ d Ta. It is

straightforward to prove that D′ satisfies the expected properties.
Assume now that there is an operator D as in the theorem. Then for any

WMTS S, S ≤m D′(S) and thus D(S) ≤m D′(S) by (6.22.3), and S ≤m D(S)
and hence D′(S) ≤m D(S) by (6.22.3′). We finish the proof by showing that
the operator D′ does not satisfy (6.22.3). The example in Figure 6.3 shows
a WMTS S and a deterministic WMTS D for which dm

(
D′(S), D

)
= 3 + 3λ

and dm(S,D) = max(3, 3λ) = 3, hence dm
(
D′(S), D

)
6≤ dm(S,D). �

Likewise, the greatest-lower-bound property of logical conjunction in the
Boolean setting ensures that the set of implementations of a conjunction of
specifications is precisely the intersection of the implementation sets of the
two specifications. Conjoining two WMTS naturally involves a partial label
conjunction operator 7. We let (a1, I1)7 (a2, I2) be undefined if a1 6= a2, and
otherwise

(
a, [x1, y1]

)
7
(
a, [x2, y2]

)
=


(
a, [max(x1, x2),min(y1, y2)]

)
if max(x1, x2) ≤ min(y1, y2),

undefined otherwise.

Before we show that such a conjunction operator for WMTS does not exist
in general, we need to define a pruning operator which removes inconsistent
states that naturally arise when conjoining two WMTS. The intuition is that
if a WMTS S1 requires a behavior s1

k1−→1 for which there is no may transition
s2

k2
99K2 such that k1 7 k2 is defined, then the state (s1, s2) in the conjunc-

tion is inconsistent and will have to be pruned away, together with all must

114

6.4. Limitations of the Quantitative Approach

s t
a, [1, 2]

(a) S

s1 t1
a, [0, 1]

(b) S1

s2 t2
a, [2, 3]

(c) S2

(s1, s2)

(d) S1 ∧ S2

Figure 6.4: Counter-example for Theorem 6.24: dm(S, S1) = dm(S, S2) = 1,
but dm(S, S1 ∧ S2) =∞.

transitions leading to it. In the definition below, pre∗ denotes the reflexive,
transitive closure of pre.

6.23 Definition. For a WMTS S, let pre : 2S → 2S be given by pre(B) = {s ∈
S | s k−→ t ∈ B for some k}. Let B ⊆ S be a set of inconsistent states.
If s0 /∈ pre∗(B), then the pruning of S w.r.t. B is defined by ρB(S) =
(Sρ, s0, 99Kρ,−→ρ) where Sρ = S \pre∗(B), 99Kρ = 99K∩

(
Sρ×Spec×Sρ

)
and

−→ρ = −→∩
(
Sρ × Spec× Sρ

)
.

6.24 Theorem. There is no partial binary operator ∧ on WMTS for which it holds
that, for all WMTS S, S1, S2 such that S1 and S2 are deterministic,

(6.24.1) whenever S1 ∧ S2 is defined, then S1 ∧ S2 ≤m S1 and S1 ∧ S2 ≤m S2,

(6.24.2) whenever S ≤m S1 and S ≤m S2, then S1 ∧ S2 is defined and S ≤m
S1 ∧ S2,

(6.24.3) for any ε ≥ 0, there exist ε1 ≥ 0 and ε2 ≥ 0 such that if S1 ∧ S2 is
defined, S ≤ε1m S1 and S ≤ε2m S2, then S ≤εm S1 ∧ S2.

Proof: We follow the same strategy as in the proof of Theorem 6.22. One
can define a partial conjunction operator ∧′ defined for WMTS which satisfies
Properties (6.24.1) and (6.24.2) as follows: For deterministic WMTS S1 and
S2, S1∧′ S2 = ρB(S1×S2, (s0

1, s
0
2), 99K,−→) where the transition relations 99K

and −→ and the set B ⊆ S1 × S2 of inconsistent states are defined by the

115

6. Weighted Modal Transition Systems

following rules:

s1
k1−→ s′1 s2

k2
99K s′2 k1 7 k2 defined

(s, t) k17k2−→ (s′1, s′2)
s1

k1
99K s′1 s2

k2−→ s′2 k1 7 k2 defined
(s1, s2) k17k2−→ (s′1, s′2)

s1
k1
99K s′1 s2

k2
99K s′2 k1 7 k2 defined

(s1, s2) k17k2
99K (s′1, s′2)

s1
k1−→

(
k1 7 k2 undefined for any k2 such that s2

k2
99K

)
(s1, s2) ∈ B

s2
k2−→

(
k1 7 k2 undefined for any k1 such that s1

k1
99K

)
(s1, s2) ∈ B

Using these properties, one can see that for all deterministic WMTS S1
and S2, S1 ∧S2 ≤m S1 ∧′ S2 and S1 ∧′ S2 ≤m S1 ∧S2. The WMTS depicted in
Figure 6.4 then show that Property (6.24.3) cannot hold: here, dm(S, S1) =
dm(S, S2) = 1, but dm(S, S1 ∧ S2) =∞. �

The counterexamples used in the proofs of Theorems 6.22 and 6.24 are
quite general and apply to a large class of distances, rather than only to the
accumulating distance discussed in this paper. Hence it can be argued that
what we have exposed here is a fundamental limitation of any quantitative
approach to modal specifications.

6.5 Structural Composition and Quotient
In this section we show that in our quantitative setting, notions of structural
composition and quotient can be defined which obey the properties expected
of such operations. In particular, structural composition satisfies independent
implementability [dAH05], hence the refinement distance between structural
composites can be bounded by the distances between their respective compo-
nents.

First we define partial synchronization operators � and � on specification
labels which will be used for synchronizing transitions. We let (a1, I1)�(a2, I2)
and (a1, I1) � (a2, I2) be undefined if a1 6= a2, and otherwise(
a, [x1, y1]

)
�
(
a, [x2, y2]

)
=
(
a, [x1 + x2, y1 + y2]

)
,

(
a, [x1, y1]

)
�
(
a, [x2, y2]

)
=
{
undefined if x1 − x2 > y1 − y2 ,(
a, [x1 − x2, y1 − y2]

)
if x1 − x2 ≤ y1 − y2 .

Note that we use CSP-style synchronization, but other types of synchroniza-
tion can easily be defined. Also, defining � to add intervals (and � to subtract
them) is only one particular choice; depending on the application, one can also

116

6.5. Structural Composition and Quotient

e.g., let � be intersection of intervals or some other operation. It is not dif-
ficult to see that these alternative synchronization operators would lead to
properties similar to those we show here.

6.25 Definition. Let S1 and S2 be WMTS. The structural composition of S1 and
S2 is S1‖S2 =

(
S1 × S2, (s0

1, s
0
2), Spec, 99K,−→

)
with transitions given as fol-

lows:

s1
k1
99K1 t1 s2

k2
99K2 t2 k1 � k2 def.

(s1, s2) k1�k2
99K (t1, t2)

s1
k1−→1 t1 s2

k2−→2 t2 k1 � k2 def.
(s1, s2) k1�k2−→ (t1, t2)

The quotient of S1 by S2 is S1/S2 = ρB
(
S1×S2 ∪{u}, (s0

1, s
0
2), Spec, 99K,−→

)
with transitions and the set of inconsistent states given as follows:

s1
k1
99K1 t1 s2

k2
99K2 t2 k1 � k2 def.

(s1, s2) k1�k2
99K (t1, t2)

s1
k1−→1 t1 s2

k2−→2 t2 k1 � k2 def.
(s1, s2) k1�k2−→ (t1, t2)

s1
k1−→1 t1 ∀s2

k2−→2 t2 : k1 � k2 undefined
(s1, s2) ∈ B

k ∈ Spec ∀s2
k2
99K2 t2 : k � k2 undefined

(s1, s2) k
99K u

k ∈ Spec

u
k
99K u

Note that during the quotient construction inconsistent states can arise
which are then recursively removed using the pruning operator ρ, see Defini-
tion 6.23. After a technical lemma, the next theorem shows that structural
composition is well-behaved with respect to modal refinement distance in the
sense that the distance between the composed systems is bounded by the dis-
tances of the individual systems. Note also the special case in the theorem of
S1 ≤m S2 and S3 ≤m S4 implying S1‖S3 ≤m S2‖S4.

6.26 Lemma. For k1, k2, k3, k4 ∈ Spec with k1 � k3 and k2 � k4 defined, we have
dSpec(k1 � k3, k2 � k4) ≤ dSpec(k1, k2) + dSpec(k3, k4).

Proof: Let ki =
(
a, [xi, yi]

)
for all i. We have

dSpec(k1, k2) + dSpec(k3, k4)
= max(x2 − x1, y1 − y2, 0) + max(x4 − x3, y3 − y4, 0)
≥ max

(
(x2 − x1) + (x4 − x3), (y1 − y2) + (y3 − y4), 0

)
= max

(
(x2 + x4)− (x1 + x3), (y1 + y3)− (y2 + y4), 0

)
= dSpec(k1 � k3, k2 � k4). �

6.27 Theorem (Independent implementability). For WMTS S1, S2, S3, S4
we have dm

(
S1‖S3, S2‖S4

)
≤ dm(S1, S2) + dm(S3, S4).

117

6. Weighted Modal Transition Systems

Proof: If dm(S1, S2) = ∞ or dm(S3, S4) = ∞, we have nothing to prove.
Otherwise, let R1 = {R1

ε ⊆ S1 × S2 | ε ≥ 0}, R2 = {R2
ε ⊆ S3 × S4 | ε ≥

0} be witnesses for dm(S1, S2) and dm(S3, S4), respectively; hence (s0
1, s

0
2) ∈

R1
dm(S1,S2) ∈ R

1 and (s0
3, s

0
4) ∈ R2

dm(S3,S4) ∈ R
2. Define

Rε =
{(

(s1, s3), (s2, s4)
)
∈ S1 × S3 × S2 × S4

∣∣
(s1, s2) ∈ R1

ε1 ∈ R
1, (s3, s4) ∈ R2

ε2 ∈ R
2, ε1 + ε2 ≤ ε

}
for all ε ≥ 0 and let R = {Rε | ε ≥ 0}. We show that R witnesses
dm
(
S1‖S3, S2‖S4

)
≤ dm(S1, S2) + dm(S3, S4).

We have
(
(s0

1, s
0
3), (s0

2, s
0
4)
)
∈ Rdm(S1,S2)+dm(S3,S4) ∈ R. Now let

(
(s1, s3), (s2, s4)

)
∈ Rε ∈ R

for some ε, then (s1, s2) ∈ R1
ε1 ∈ R

1 and (s3, s4) ∈ R2
ε2 ∈ R

2 for some
ε1 + ε2 ≤ ε.

Assume (s1, s3) k1�k3
99K (t1, t3), then s1

k1
99K1 t1 and s3

k3
99K3 t3. By (s1, s2) ∈

R1
ε1 ∈ R

1, we have s2
k2
99K2 t2 with dSpec(k1, k2) ≤ ε1 and (t1, t2) ∈ R1

ε′1
∈ R1

for some ε′1 ≤ λ−1(ε1−dSpec(k1, k2)
)
; similarly, s4

k4
99K4 t4 with dSpec(k3, k4) ≤

ε2 and (t3, t4) ∈ R2
ε′2
∈ R2 for some ε′2 ≤ λ−1(ε2 − dSpec(k3, k4)

)
. Let ε′ =

ε′1 + ε′2, then the sum k2 � k4 is defined, and

ε′ ≤ λ−1(ε1 + ε2 − (dSpec(k1, k2) + dSpec(k3, k4))
)

≤ λ−1(ε− dSpec(k1 � k3, k2 � k4)
)

by Lemma 6.26. We have (s2, s4) k2�k4
99K (t2, t4), dSpec(k1 � k3, k2 � k4) ≤

ε1 + ε2 ≤ ε again by Lemma 6.26, and
(
(t1, t3), (t2, t4)

)
∈ Rε′ ∈ R. The

reverse direction, starting with a transition (s2, s4) k2�k4−→ (t2, t4), is similar. �

Again after a technical lemma, the next theorem expresses the fact that
quotient is a partial inverse to structural composition. Intuitively, the theorem
shows that the quotient S1/S2 is maximal among all WMTS S3 with respect to
any distance S2‖S3 ≤εm S1; note the special case of S3 ≤m S1/S2 iff S2‖S3 ≤m
S1.

6.28 Lemma. If k1, k2, k3 ∈ Spec are such that k1 � k2 and k2 � k3 are defined,
then dSpec(k3, k1 � k2) = dSpec(k2 � k3, k1).

118

6.5. Structural Composition and Quotient

Proof: We can write ki =
(
a, [xi, yi]

)
for some a ∈ Σ. Then

dSpec(k3, k1 � k2) = max
(
(x1 − x2)− x3, y3 − (y1 − y2), 0

)

=



x1 − x2 − x3 if x1 − x2 − x3 ≥ 0,
x1 − x2 − x3 ≥ y3 − y1 + y2;

y3 − y1 + y2 if y3 − y1 + y2 ≥ 0,
y3 − y1 + y2 ≥ x1 − x2 − x3;

0 if x1 − x2 − x3 ≤ 0,
y3 − y1 + y2 ≤ 0.

Similarly,

dSpec(k2 � k3, k1) = max
(
x1 − (x2 + x3), (y2 + y3)− y1, 0

)

=



x1 − x2 − x3 if x1 − x2 − x3 ≥ 0,
x1 − x2 − x3 ≥ y2 + y3 − y1;

y2 + y3 − y1 if y2 + y3 − y1 ≥ 0,
y2 + y3 − y1 ≥ x1 − x2 − x3;

0 if x1 − x2 − x3 ≤ 0,
y2 + y3 − y1 ≤ 0.

�

6.29 Theorem (Soundness and maximality of quotient). Let S1, S2 and S3
be locally consistent WMTS such that S2 is deterministic and S1/S2 is defined.
If dm(S3, S1/S2) <∞, then dm(S3, S1/S2) = dm(S2‖S3, S1).

Proof: To avoid confusion, we write 99K/ and −→/ for transitions in S1/S2
and 99K‖ and −→‖ for transitions in S2‖S3. The inequality dm(S3, S1/S2) ≥
dm(S2‖S3, S1) is trivial if dm(S2‖S3, S1) =∞, so assume the opposite and let
R1 =

{
R1
ε ⊆ S3 ×

(
S1 × S2 ∪ {u}

) ∣∣ ε ≥ 0
}
be a witness for dm(S3, S1/S2).

Define R2
ε =

{(
(s2, s3), s1

) ∣∣ (s3, (s1, s2)
)
∈ R1

ε

}
⊆ S2 × S3 × S1 for all ε ≥ 0,

and let R2 = {R2
ε | ε ≥ 0}. Certainly

(
(s0

2, s
0
3), s0

1
)
∈ R2

dm(S3,S1/S2) ∈ R
2, so let

now
(
(s2, s3), s1

)
∈ R2

ε ∈ R2 for some ε ≥ 0.
Assume (s2, s3) k2�k3

99K ‖ (t2, t3), then also s2
k2
99K2 t2 and s3

k3
99K3 t3. We have(

s3, (s1, s2)
)
∈ R1

ε, so there is (s1, s2)
k1�k′2
99K / (t1, t′2) for which dSpec(k3, k1 �

k′2) = dSpec(k′2 � k3, k1) ≤ ε and such that
(
t3, (t1, t′2)

)
∈ R1

ε′ ∈ R1, hence(
(t′2, t3), t1

)
∈ R2

ε′ ∈ R2, for some ε′ ≤ λ−1(ε−dSpec(k′2�k3, k1)
)
. By definition

of quotient we must have s1
k1
99K1 t1 and s2

k′2
99K2 t′2, and by determinism of S2,

k′2 = k2 and t′2 = t2.
Assume s1

k1−→1 t1. We must have a transition s2
k2−→2 t2 for which

k1 � k2 is defined. Hence (s1, s2) k1�k2−→ / (t1, t2). This in turn implies that
there is s3

k3−→3 t3 for which dSpec(k3, k1 � k2) = dSpec(k2 � k3, k1) ≤ ε and

119

6. Weighted Modal Transition Systems

s1 t1
a, [0, 0]

(a) S1

s2 t2
a, [0, 1]

(b) S2

s3 t3
a, [0, 0]

(c) S3

(s2, s3) (t2, t3)
a, [0, 1]

(d) S2‖S3

(s1, s2)

(e) S1/S2

Figure 6.5: WMTS for which dm(S2‖S3, S1) 6= dm(S3, S1/S2) =∞.

such that
(
t3, (t1, t2)

)
∈ R1

ε′ ∈ R1, hence
(
(t2, t3), t1

)
∈ R2

ε′ ∈ R2, for some
ε′ ≤ λ−1(ε − dSpec(k2 � k3, k1)

)
, and by definition of parallel composition,

(s2, s3) k2�k3−→ ‖ (t2, t3).
To show that dm(S3, S1/S2) ≤ dm(S2‖S3, S1), let R2 = {R2

ε ⊆ S2 × S3 ×
S1 | ε ≥ 0} be a witness for dm(S2‖S3, S1), define R1

ε =
{(
s3, (s1, s2)

) ∣∣(
(s2, s3), s1

)
∈ R2

ε

}
∪
{
(s3, u)

∣∣ s3 ∈ S3
}
for all ε ≥ 0, and let R1 = {R1

ε | ε ≥
0}, then

(
s0

3, (s0
1, s

0
2)
)
∈ R1

dm(S2‖S3,S1) ∈ R
1.

For any (s3, u) ∈ R1
ε for some ε ≥ 0, any transition s3

k3
99K3 t3 can be

matched by u k3
99K/ u, and then (t3, u) ∈ R1

0. Let now
(
s3, (s1, s2)

)
∈ R1

ε ∈ R1

for some ε ≥ 0, and assume s3
k3
99K3 t3. If k2�k3 is undefined for all transitions

s2
k2
99K2 t2, then by definition (s1, s2) k3

99K u, and again (t3, u) ∈ R1
0. If there

is a transition s2
k2
99K2 t2 such that k2 � k3 is defined, then also (s2, s3) k2�k3

99K ‖

(t2, t3). Hence we have s1
k1
99K1 t1 with dSpec(k2 � k3, k1) ≤ ε, implying that

(s1, s2) k1�k2
99K / (t1, t2). Hence dSpec(k3, k1 � k2) = dSpec(k2 � k3, k1) ≤ ε.

Also,
(
(t2, t3), t1

)
∈ R2

ε′ ∈ R2, hence
(
t3, (t1, t2)

)
∈ R1

ε′ ∈ R1, for some ε′ ≤
λ−1(ε− dSpec(k3, k1 � k2)

)
.

Assume (s1, s2) k1�k2−→ / (t1, t2), hence we have s1
k1−→1 t1 and s2

k2−→2 t2. It

follows that (s2, s3)
k′2�k3−→ ‖ (t′2, t3) with dSpec(k′2�k3, k1) = dSpec(k3, k1�k′2) ≤ ε

and such that
(
(t′2, t3), t1

)
∈ R2

ε′ ∈ R2, hence
(
t3, (t1, t′2)

)
∈ R1

ε′ ∈ R1, for some
ε′ ≤ λ−1(ε − dSpec(k3, k1 � k′2)

)
. By definition of parallel composition we

must have s2
k′2−→2 t

′
2 and s3

k3−→3 t3, and by determinism of S2, k′2 = k2 and
t′2 = t2. �

The example of Figure 6.5 shows that the condition dm(S3, S1/S2) <∞ in
Theorem 6.29 is necessary. Here dm(S2‖S3, S1) = 1, but dm(S3, S1/S2) = ∞
because of inconsistency between the transitions s1

a,[0,0]
99K 1 t1 and s2

a,[0,1]
99K 2 t2

for which k1 � k2 is defined.

As a practical application, we notice that relaxation as defined in Sec-
tion 6.3 can be useful when computing quotients. The quotient construction

120

6.6. Conclusion

in Definition 6.25 introduces inconsistent states (which afterwards are pruned)
whenever there is a must transition s1

k1−→1 s
′
1 such that k1 � k2 is undefined

for all transitions s2
k2−→2 s

′
2. Looking at the definition of �, we see that this

is the case if k1 = (a1, [x1, y1]) and k2 = (a2, [x2, y2]) are such that a1 6= a2
or x1 − x2 > y1 − y2. In the first case, the inconsistency is of a structural
nature and cannot be dealt with; but in the second case, it may be avoided
by enlarging k1: decreasing x1 or increasing y1 so that now, x1−x2 ≤ y1−y2.

Enlarging quantitative constraints is exactly the intuition of relaxation,
thus in practical cases where we get a quotient S1/S2 which is “too incon-
sistent”, we may be able to solve this problem by constructing a suitable
ε-relaxation S′1 of S1. Theorems 6.27 and 6.29 can then be used to ensure
that also S′1/S2 is a relaxation of S1/S2.

6.6 Conclusion
We have shown in this chapter that within the quantitative specification frame-
work of weighted modal transition systems, refinement and implementation
distances provide a useful tool for robust compositional reasoning. Note that
these distances permit us not only to reason about differences between imple-
mentations and from implementations to specifications, but they also provide
a means by which we can compare specifications directly at the abstract level.

We have shown that for some of the ingredients of our specification theory,
namely structural composition and quotient, our formalism is a conservative
extension of the standard Boolean notions. We have also noted however, that
for determinization and logical conjunction, the properties of the Boolean
notions are not preserved, and that this seems to be a fundamental limitation
of any reasonable quantitative specification theory. We will have more to say
about this in the next chapter.

121

7 General Quantitative Specification
Theories with Modal Transition
Systems1

This chapter combines the work of the two previous chapters. It uses the
general theory of linear and branching distances developed in Chapter 5 to
introduce general refinement distances between structured modal transition
systems. It then proceeds to consider quantitative properties of structural
composition, quotient, and conjunction, and finishes with a logical character-
ization of quantitative refinement using Hennessy-Milner logic.

7.1 Structured Modal Transition Systems

We work with a poset Spec of specification labels with a partial order 4 and
denote by Spec∞ = Spec∗ ∪ Specω the set of finite and infinite traces over
Spec. In applications, Spec may be used to model data about the behavior
of a system; for specifications this may be considered as legal parameters
of operation, whereas for implementations it may be thought of as observed
information.

The partial order 4 is meant to model refinement of data; if k 4 `, then k
is more refined (leaves fewer choices) than `. The set Imp = {k ∈ Spec | k′ 4
k =⇒ k′ = k} is called the set of implementation labels; these are the data
which cannot be refined further. We let JkK = {k′ ∈ Imp | k′ 4 k} and assume
that JkK 6= ∅ for all k ∈ Spec.

When k 64 `, we want to be able to quantify the impact of this difference
in data on the systems in question, thus circumventing the fragility of the
theory. To this end, we introduce a general notion of distance on sequences of
data following the approach laid out in Chapter 5.

1This chapter is based on the journal paper [FL14a] published in Acta Informatica.

123

7. General Quantitative Specification Theories

7.1.1 Trace distances

In order to build a framework for specification distances which is general
enough to cover the distances commonly used, we introduce a notion of ab-
stract trace distance which factors through a lattice on which it has a recursive
characterization. We will show in Section 7.1.2 that this indeed covers the
common scenarios; see also Section 5.7.

LetM be an arbitrary set and L = (R≥0∪{∞})M the set of functions from
M to the extended non-negative real line. Then L is a complete lattice with
partial order vL given by α vL β if and only if α(x) ≤ β(x) for all x ∈M , and
with an addition �L given by (α�Lβ)(x) = α(x)+β(x). The bottom element
of L is also the zero of �L and given by ⊥L(x) = 0, and the top element is
>L(x) =∞. We also define a metric on L by dL(α, β) = supx∈M |α(x)−β(x)|.

Intuitively, the lattice L serves as a memory for more elaborate trace
distances such as for example the limit-average distance, see Section 7.1.2.
For simpler distances, it will suffice to let M = {∗} be the one-point set and
thus L = R≥0 ∪ {∞}. We extend the notions of hemimetrics, pseudometrics
and metrics to mappings d : X × X → L, by replacing in their defining
properties 0 by ⊥L and + by �L.

Let d : Imp× Imp→ L be a hemimetric on implementation labels. We ex-
tend d to Spec by d(k, `) = supm∈JkK infn∈J`K d(m,n). Hence also this distance
is asymmetric; the intuition is that any label in JkK has to be matched as good
as possible in J`K. Note that this is the Hausdorff hemimetric associated with
d on implementation labels.

We will assume given an abstract trace distance dLtr : Spec∞× Spec∞ → L

which is a hemimetric and has a recursive expression using a distance iterator
function F : Imp× Imp×L→ L, see below. This will allow us to recover many
of the system distances found in the literature, while preserving key results.
We will need to assume that F satisfies the following properties:

(1) F is continuous in the first two coordinates: F (·, n, α) and F (m, ·, α) are
continuous functions Imp→ L for all α ∈ L.

(2) F is monotone in the third coordinate: F (m,n, ·) : L → L is monotone
for all m,n ∈ Imp.

(3) F extends d: for all m,n ∈ Imp, F (m,n,⊥L) = d(m,n).

(4) Indiscernibility of identicals: F (m,m,α) = α for all m ∈ Imp.

(5) An extended triangle inequality: for all m,n, o ∈ Imp and α, β ∈ L,
F (m,n, α) �L F (n, o, β) wL F (m, o, α�L β).

Note how the last two axioms are a generalization of the standard axioms for
hemimetrics.

124

7.1. Structured Modal Transition Systems

We extend F to specification labels by defining

F (k, `, α) = sup
m∈JkK

inf
n∈J`K

F (m,n, α) .

Then also the extended F : Spec×Spec×L→ L is continuous in the first two
and monotone in the third coordinates. Additionally, we assume that sets of
implementation labels are closed with respect to F in the sense that for all
k, ` ∈ Spec and α ∈ L with F (k, `, α) 6= >L, there are m ∈ JkK, n ∈ J`K with
F (m, `, α) = F (k, n, α) = F (k, `, α). Note that this implies that the sets JkK
are closed under the hemimetric d on Spec.

Axioms (4) and (5) for F above now imply that for the extension, the
following hold:

(4′) For all k, ` ∈ Spec with k 4 ` and all α ∈ L, F (k, `, α) = α.

(5′) For all k, `,m ∈ Spec and α, β ∈ L,

F (k, `, α) �L F (`,m, β) wL F (k,m, α�L β) .

Let ε ∈ Spec∞ denote the empty sequence, and for any sequence σ ∈
Spec∞, denote by σ0 its first element and by σ1 the tail of the sequence with
the first element removed. We assume that dLtr has a recursive characterization,
using F , as follows:

dLtr(σ, τ) =


F (σ0, τ0, d

L
tr(σ1, τ1)) if σ, τ 6= ε,

>L if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

⊥L if σ = τ = ε.

(7.1)

We remark that a recursive characterization such as the one above is quite
natural. Not only does it cover all commonly used trace distances (see the
examples in the next section), but recursion is central to computing, and any
trace distance without a recursive characterization would strike us as being
quite artificial. It is precisely this recursive characterization which allows us
to lift the trace distance to states of specifications in Definition 7.10 below,
see also Chapter 5.

In applications (see below), the lattice L comes equipped with a homomor-
phism eval : L→ R≥0∪{∞} for which eval(⊥L) = 0. The actual trace distance
of interest is then the composition dtr = eval ◦ dLtr. The triangle inequality for
F implies the usual triangle inequality for dtr: dtr(σ, τ) + dtr(τ, χ) ≤ dtr(σ, χ)
for all σ, τ, χ ∈ Spec∞, hence dtr is a hemimetric on Spec∞.

We need to work with distances which factor through L, instead of plainly
taking values in R≥0 ∪{∞}, because some distances which are useful in prac-
tice, as the ones in Examples 7.3 and 7.5 below, have no recursive character-
ization using L = R≥0 ∪ {∞}. Whether the theory works for more general
intermediate lattices than L = (R≥0 ∪ {∞})M is an open question; we have
had no occasion to use more general lattices in practice.

125

7. General Quantitative Specification Theories

7.1.2 Examples
To give an application to the framework laid out above, we show here a few
examples of specification labels and trace distances and how they fit into the
framework. For a much more comprehensive application of the theory see
Chapter 5.

7.1 Example. A good example of a set of specification labels is given by Spec =
Σ×I, where Σ is a finite set of discrete labels and I = {[l, r] | l ∈ Z∪{−∞}, r ∈
Z ∪ {∞}, l ≤ r} is the set of extended-integer intervals. The partial order is
defined by (a, [l, r]) 4 (a′, [l′, r′]) iff a = a′, l′ ≤ l and r′ ≥ r. Hence refinement
is given by restricting intervals, so that Imp = Σ× {[x, x] | x ∈ Z} ≈ Σ× Z.

The implementation label distance is given by

d((a, x), (a′, x′)) =
{
|x− x′| if a = a′,

∞ otherwise,

so that for specification labels (a, [l, r]), (a′, [l′, r′]),

d((a, [l, r]), (a′, [l′, r′])) = sup
m∈J(a,[l,r])K

inf
n∈J(a′,[l′,r′])K

d(m,n)

=
{

max(l′ − l, r − r′, 0) if a = a′,

∞ otherwise.

Now let L = R≥0 ∪ {∞}, eval = id, and

F (m,n, α) = d(m,n) + λα

for some fixed discounting factor λ ∈ R with 0 < λ < 1, then dtr(σ, τ) =∑
j λ

jd(σj , τj) for implementation traces σ, τ of equal length. This is the
accumulating distance which we have used in Chapter 6 to develop a specifi-
cation theory; we will continue this example below to show how it fits in our
present context.

7.2 Example. Using the same setting as above, with Spec = Σ × I, (a, [l, r]) 4
(a′, [l′, r′]) iff a = a′, l′ ≤ l and r′ ≥ r, and d((a, x), (a′, x′)) = |x−x′| if a = a′

and∞ otherwise, we can instantiate F to a point-wise instead of accumulating
distance.

Let again L = R≥0 ∪ {∞} and eval = id, but now

F (m,n, α) = max(d(m,n), α) .

Then dtr(σ, τ) = supj d(σj , τj) for implementation traces σ, τ of equal length,
hence measuring the biggest individual difference between the traces’ symbols.
We will also continue this example below to show how to develop a specification
theory based on the point-wise distance.

126

7.1. Structured Modal Transition Systems

7.3 Example. Again with the same instantiations of Imp and Spec as above,
we can introduce limit-average distance. Here we let L = (R≥0 ∪ {∞})N,
eval : L→ R≥0 ∪ {∞} given by eval(α) = lim infj α(j), and

F (m,n, α)(j) = 1
j + 1d(m,n) + j

j + 1α(j − 1) ,

then dtr(σ, τ) = eval(dLtr(σ, τ)) = lim infj 1
j+1

∑j
i=0 d(σj , τj) for traces of equal

length. We show below how this distance, in the framework of the present
paper, gives a limit-average specification theory.

7.4 Example. Examples 7.1 to 7.3 above are in a sense agnostic to the precise
structure of implementation and specification labels. Indeed, the definitions
only use the label distance d : Imp× Imp→ R≥0∪{∞}, hence Imp (and Spec)
can be any set. In particular, the theory put forward here works equally well
in a multi-weighted setting as for example in [FJLS11], where Imp = Σ × Zk
and Spec = Σ× Ik for some k ∈ N.

7.5 Example. With the same instantiations of Imp and Spec as in Examples 7.1
to 7.3, we can introduce a distance which, instead of accumulating individual
label differences, measures the long-run difference between accumulated labels.
This maximum-lead distance is especially useful for real-time systems and has
been considered in [HMP05,TFL10], see also Chapter 2. Unlike Examples 7.1
to 7.3, it does not use the distance d on implementation labels in the definition
of the trace distance; rather it accumulates the labels itself before taking the
distance.

Let L = (R≥0 ∪ {∞})R and define F : Imp× Imp× L→ L by

F ((a, x), (a′, x′), α)(δ) =
{
∞ if a 6= a′,

max(|δ + x− x′|, α(δ + x− x′)) if a = a′.

Define eval : L→ R≥0 ∪ {∞} by eval(α) = α(0); the maximum-lead distance
assuming the lead is zero. It can then be shown that for implementation traces
σ = ((a0, x0), (a1, x1), . . .), τ = ((a0, y0), (a1, y1), . . .),

dtr(σ, τ) = eval(dLtr(σ, τ)) = sup
m

∣∣∣ m∑
i=0

xi −
m∑
i=0

yi
∣∣∣

is precisely the maximum-lead distance.

7.6 Example. Specification labels different from the ones above can for example
be clock constraints, or zones [AD94]. For a finite set Σ, let Spec = Φ(Σ) be
the set of closed clock constraints over Σ given by

Φ(Σ) 3 φ ::= a ≤ k | a ≥ k | φ1 ∧ φ2 (a ∈ Σ, k ∈ N, φ1, φ2 ∈ Φ(Σ)).

127

7. General Quantitative Specification Theories

Clock constraints have a natural partial order given by φ 4 φ′ iff φ =⇒ φ′.
Implementation labels are then clock constraints which impose a precise value
for each a ∈ Σ, which can be seen as functions u : Σ → N. The natural
distance between such discrete clock valuations is d(u, u′) = maxa∈Σ |u(a) −
u′(a)|, and on top of this, any interesting trace distance can be imposed using
our framework.

7.1.3 Structured Modal Transition Systems
7.7 Definition. A structured modal transition system (SMTS) is a tuple

(S, s0, 99KS ,−→S) consisting of a set S of states, an initial state s0 ∈ S,
and must and may transitions −→S , 99KS ⊆ S × Spec × S for which it holds
that for all s k−→S s

′ there is s `
99KS s′ with k 4 `.

The last condition is one of consistency: everything which is required
is also allowed. If no confusion can arise, we will omit the subscripts S
on the must and may transitions; we will also sometimes identify an SMTS
(S, s0, 99KS ,−→S) with its state set S.

Intuitively, a may transition s k
99K s′ specifies that an implementation I of

S is permitted to have a corresponding transition i
m−→ i′, for any m ∈ JkK,

whereas a must transition s `−→ s′ postulates that I is required to implement
at least one corresponding transition i n−→ i′ for some n ∈ J`K. We will make
this precise below.

An SMTS S is an implementation if −→S = 99KS ⊆ S× Imp×S; hence in
an implementation, all optional behavior has been resolved, and all data has
been refined to implementation labels.

7.8 Definition. An SMTS (S, s0, 99KS ,−→S) is L-deterministic, for a given lat-
tice L, if it holds for all s ∈ S, s k1

99K s1, s
k2
99K s2 for which there is k ∈ Spec

with d(k, k1) 6= >L and d(k, k2) 6= >L that k1 = k2 and s1 = s2.

Note that for the Boolean label distance given by d(k, k′) = ⊥L if k =
k′ and >L otherwise, the above definition reduces to the property that if
k1 = k2, then also s1 = s2, hence L-determinism is a generalization of usual
determinism. In our quantitative case, we need to be more restrictive: not
only do we not allow distinct transitions from s with the same label, but
we forbid distinct transitions with labels which have a common quantitative
refinement. Despite of this, we will generally omit the L and say deterministic
instead of L-deterministic.

7.9 Example. For the label distance d((a, x), (a′, x′)) = |x − x′| if a = a′ and
∞ otherwise of Examples 7.1 to 7.3 and 7.5, the above condition that there
exist k ∈ Spec with d(k, k1) 6= >L and d(k, k2) 6= >L is equivalent, with
k1 = (a1, I1) and k2 = (a2, I2), to saying that a1 = a2, hence our notion of
determinism agrees with the one of the previous chapter.

128

7.2. Refinement Distances

A modal refinement of SMTS S, T is a relation R ⊆ S × T such that for
any (s, t) ∈ R,

• whenever s k
99KS s′, then also t `

99KT t′ for some k 4 ` and (s′, t′) ∈ R,

• whenever t `−→T t
′, then also s k−→S s

′ for some k 4 ` and (s′, t′) ∈ R.

Thus any behavior which is permitted in S is also permitted in T , and any
behavior required in T is also required in S. We write S ≤m T if there is a
modal refinement R ⊆ S × T with (s0, t0) ∈ R.

The implementation semantics of a SMTS S is the set JSK = {I ≤m
S | I is an implementation}, and we write S ≤th T if JSK ⊆ JT K, saying
that S thoroughly refines T . It follows by reflexivity of ≤m that S ≤m T
implies S ≤th T , hence modal refinement is a syntactic over-approximation of
thorough refinement.

It can be shown for standard modal transition systems that S ≤th T
does not imply S ≤m T unless T is deterministic, see [BKLS09] and Theo-
rem 6.15 in the previous chapter. We shall provide a quantitative generaliza-
tion of this result in Theorem 7.17 below. Also, modal refinement for MTS
can be decided in polynomial time, whereas deciding thorough refinement is
EXPTIME-complete [BKLS09]. Intuitively, thorough refinement—inclusion
of implementation sets—is the relation one really is interested in, but modal
refinement provides a useful over-approximation.

7.2 Refinement Distances

We define two distances between SMTS, one at the syntactic and one at the
semantic level.

7.2.1 Modal and thorough refinement distance

7.10 Definition. The modal refinement distance dm : S × T → L between the
states of SMTS S, T is defined to be the least fixed point to the equations

dm(s, t) = max


sup

s
k
99KS s′

inf
t
`
99KT t′

F (k, `, dm(s′, t′)) ,

sup
t
`−→T t′

inf
s

k−→S s′

F (k, `, dm(s′, t′)) .

We let dm(S, T) = dm(s0, t0), and we write S ≤αm T if dm(S, T) vL α.

7.11 Lemma. The modal refinement distance is well-defined and a hemimetric.
Also, S ≤m T implies dm(S, T) = ⊥L.

129

7. General Quantitative Specification Theories

Proof: Let I : LS×T → L
S×T be the endofunction defined by

I(h)(s, t) = max


sup

s
k
99KS s′

inf
t
`
99KT t′

F (k, `, h(s′, t′)),

sup
t
`−→T t′

inf
s

k−→S s′

F (k, `, h(s′, t′)).

The lattice LS×T is complete because L is, and I is monotone because F (k, `, ·) :
L→ L is. By an application of Tarski’s fixed point theorem [Tar55], I has a
unique least fixed point which hence defines dm.

The property that dm(S, S) = 0 for all SMTS S is clear, and the triangle
inequality dm(S, T)�L dm(T,U) wL dm(S,U) can be shown inductively.

To show the last claim, assume s ≤m t. Then for any s
k
99K s′ there is

t
`
99K t′ for which k 4 `, hence F (k, `, α) = α for all α ∈ L by Axiom (4′).

Similarly for must transitions, so the fixed point equations simplify to

dm(s, t) = max
(

sup
s99Ks′

inf
t99Kt′

dm(s′, t′), sup
t−→t′

inf
s−→s′

dm(s′, t′)
)
,

the least fixed point of which is dm(s, t) = ⊥L. �

One can also define a linear distance between states, analogous to trace
inclusion. This is given by

dLtr(s, t) = max
(

sup
σ∈Tr(s)

inf
τ∈Tr(t)

dLtr(σ, τ), sup
τ∈Tr(t)

inf
σ∈Tr(s)

dLtr(σ, τ)
)
,

where Tr(s) denotes the set of (may or must) traces emanating from s. It can
then be shown that dLtr(s, t) vL dm(s, t) for all s, t ∈ S, see Chapter 5.

7.12 Definition. The thorough refinement distance from an SMTS S to an SMTS
T is

dth(S, T) = sup
I∈JSK

inf
J∈JT K

dm(I, J),

and we write S ≤αth T if dth(S, T) vL α.

7.13 Lemma. The thorough refinement distance is a hemimetric, and S ≤th T
implies dth(S, T) = ⊥L.

Proof: The equality dth(S, S) = ⊥L is clear, and the triangle inequality
dth(S, T)+dth(T,U) ≥ dth(S,U) follows like in the proof of [AB07, Lemma 3.72].
If S ≤th T , then JSK ⊆ JT K implies dth(S, T) = ⊥L. �

130

7.2. Refinement Distances

7.2.2 Refinement families

As is the case for ordinary (bi)simulation [Par81], there is a dual relational
notion of refinement distance which is useful. Before we can introduce this,
we need a notion similar to the finite branching assumption one needs to make
for the case of bisimulation, cf. [Mil89], see also Chapter 6.

7.14 Definition. A SMTS S is said to be compactly branching if the sets {(s′, k) |
s

k
99K s′}, {(s′, k) | s k−→ s′} ⊆ S × Spec are compact under the symmetrized

product distance d̄m × d̄ for every s ∈ S.

Recall that the pseudometric d̄m × d̄ is given by d̄m × d̄((s, k), (s′, k′)) =
d̄m(s, s′) + d̄(k, k′) = max(dm(s, s′), dm(s′, s)) + max(d(k, k′), d(k′, k)). As in
Chapter 6, we will need compactness of the sets {(s′, k) | s k

99K s′}, {(s′, k) |
s

k−→ s′} ⊆ S × Spec for the property that continuous functions defined on
them attain their infimum and supremum, see Lemma 7.16 and its proof below.

The notion of compact branching was first introduced, for a formalism of
metric transition systems, in [vB96]. It is a natural generalization of finite
branching to a distance setting; we shall henceforth assume all our SMTS to
be compactly branching.

7.15 Definition. A modal refinement family from S to T , for SMTS S, T , is an
L-indexed family of relations R = {Rα ⊆ S × T | α ∈ L} with the property
that for all α ∈ L and all (s, t) ∈ Rα,

• whenever s k
99KS s′, then there is β ∈ L and (s′, t′) ∈ Rβ for which

t
`
99KT t′ and F (k, `, β) vL α,

• whenever t `−→T t′, then there is β ∈ L and (s′, t′) ∈ Rβ for which
s

k−→S s
′ and F (k, `, β) vL α.

Compact branching implies that refinement families R are closed in the
sense that for all s ∈ S, t ∈ T , (s, t) ∈ Rinf{α|(s,t)∈Rα∈R} ∈ R. Also note how
this definition is a common refinement of the notions of relaton families from
Chapters 5 and 6.

7.16 Lemma. For all SMTS S, T and α ∈ L, S ≤αm T if and only if there is a
modal refinement family R from S to T with (s0, t0) ∈ Rα.

We say that a modal refinement family as in the lemma witnesses S ≤αm T ;
this is of course the same as saying that it witnesses dm(S, T) vL α, which we
sometimes shorten to say that it witnesses dm(S, T).

131

7. General Quantitative Specification Theories

Proof: Assume first that S ≤αm T , thus we know that dm(S, T) vL α. We
have to show that there is a modal refinement family R from S to T with
(s0, t0) ∈ Rα. Define a family R = {Rα′ ⊆ S × T | α′ ∈ L} by

Rα′ = {(s, t) | dm(s, t) vL α′}

for every α′ ∈ L; note that R is closed in the sense above. Now let β ∈ L and
(s, t) ∈ Rβ.

• Assume s k
99K s′. By dm(s, t) vL β and the definition of dm(s, t) it follows

that inft `99Kt′ F (k, `, dm(s′, t′)) vL β. As T is compactly branching and F
continuous, the set {F (k, `, dm(s′, t′)) | t `

99K t′} is compact, hence there
exists a transition t `

99K t′ such that F (k, `, dm(s′, t′)) vL β.

• Assume t `−→ t′. By dm(s, t) vL β and the definition of dm(s, t) it
follows that infs k−→s′ F (k, `, dm(s′, t′)) vL β. Again {F (k, `, dm(s′, t′)) |
s

k−→ s′} is a compact set, whence there exists a transition s k−→ s′ such
that F (k, `, dm(s′, t′)) vL β.

For the other direction, assume a refinement family R from S to T with
(s0, t0) ∈ Rα. Define h : S × T → L by h(s, t) = inf{α | (s, t) ∈ Rα}. Then
(s, t) ∈ Rβ implies that h(s, t) vL β. Let s ∈ S and t ∈ T , then (s, t) ∈ Rh(s,t)

because R is closed, hence for all s k
99K s′ there is t `

99K t′ and α′ ∈ L for
which F (k, `, α′) vL h(s, t) and (s′, t′) ∈ Rα′ , implying h(s′, t′) vL α′ and
hence F (k, `, h(s′, t′)) vL h(s, t) by monotonicity and transitivity. Similarly,
for all t `−→ t′ there is s k−→ s′ with F (k, `, h(s′, t′)) vL h(s, t). Hence h
is a pre-fixed point for the equations in the definition of dm, implying that
dm(s, t) vL h(s, t) for all s ∈ S, t ∈ T , thus especially dm(s0, t0) vL α,
because (s0, t0) ∈ Rα implies h(s0, t0) vL α and dm(s0, t0) vL h(s0, t0). �

7.2.3 Modal distance bounds thorough distance

The next theorem shows that the modal refinement distance overapproximates
the thorough one, and that it is exact for deterministic SMTS. This is similar
to the situation for standard modal transition systems [Lar89]; note [Lar89]
that deterministic specifications generally suffice for applications.

7.17 Theorem. For all SMTS S, T , dth(S, T) vL dm(S, T). If T is deterministic,
then dth(S, T) = dm(S, T).

The counterexample for the Boolean version of the second result given
in [BKLS09] also works in our setting, to show that there exist (necessarily
nondeterministic) SMTS S, T for which dth(S, T) = ⊥L, but dm(S, T) = >L.

132

7.2. Refinement Distances

Proof: For the first claim, if dm(S, T) = >L, we have nothing to prove.
Otherwise, let R = {Rα ⊆ S × T | α ∈ L} be a modal refinement family
which witnesses dm(S, T), then (s0, t0) ∈ Rdm(S,T). Let I ∈ JSK; we will
expose J ∈ JT K for which dm(I, J) vL dm(S, T).

Let R̃ ⊆ I × S be a witness for I ≤m S, define R′α = R̃ ◦ Rα ⊆ I × T for
all α ∈ L, and let R′ = {R′α | α ∈ L}. We let the states of J be J = T , with
j0 = t0, and define 99KJ = −→J as follows:

For any i
m−→I i

′ and any t ∈ T for which (i, t) ∈ R′α ∈ R′ for some
α ∈ L, α 6= >L, we have t `

99KT t′ with (i′, t′) ∈ R′β ∈ R′ for some β ∈ L
with F (m, `, β) vL α. As J`K is closed under F , there is n ∈ J`K for which
F (m,n, β) = F (m, `, β), and we add a transition t n−→J t

′ to J .
Similarly, for any t `−→T t′ and any i ∈ I for which (i, t) ∈ R′α ∈ R′ for

some α ∈ L, α 6= >L, we have i m−→I i
′ with (i′, t′) ∈ R′β for some β ∈ L

with F (m, `, β) vL α. Using again closedness of J`K, we find n ∈ J`K for which
F (m,n, β) = F (m, `, β) and add a transition t n−→J t

′ to J .
We show that the identity relation {(t, t) | t ∈ T} ⊆ J × T witnesses

J ≤m T . Let first t n−→J t
′; we must have used one of the two constructions

above for creating this transition. In the first case, there is t `
99KT t′ with

n ∈ J`K, and in the second case, there is t `−→T t′, hence also t `′
99KT t′ with

` 4 `′, thus n ∈ J`K ⊆ J`′K. Now let t `−→T t′, then the second construction
above has introduced t n−→J t

′ with n ∈ J`K.
To finish the proof, we show that the family R′ is a witness for dm(I, J) vL

dm(S, T). First, (i0, s0) ∈ R̃ and (s0, t0) ∈ Rdm(S,T) imply (i0, t0) ∈ R′dm(S,T).
Let (i, t) ∈ R′α ∈ R′ for some α ∈ L, α 6= >L, and assume first i m−→I i

′.
Then t

`
99KT t′ and t

n−→J t′ by the first part of our above construction,
and (i′, t′) ∈ R′β with F (m,n, β) vL F (m, `, β) vL α. For the converse, a
transition t

n−→J t′ must have been introduced above, and in both cases,
i

m−→I i
′ with (i′, t′) ∈ R′β and F (m,n, β) vL F (m, `, β) vL α.

Now to the proof of the second assertion of the theorem. If dth(S, T) = >L,
we are done. Otherwise we inductively construct a relation family R = {Rα ⊆
S × T | α ∈ L} which satisfies dth((s, S), (t, T)) v α for any (s, t) ∈ Rα, as
follows: Begin by letting Rα = {(s0, t0)} for all α wL dth(S, T), and let now
(s, t) ∈ Rα with dth((s, S), (t, T)) v α 6= >L.

Let s k
99KS s′ and t

`
99KT t′ such that d(k, `) 6= >L. Let (i′, I ′) ∈

J(s′, S)K and m ∈ JkK, then there is (i, I) ∈ J(s, S)K for which i
m−→I i′′

and (i′′, I) ≤m (i′, I ′). By the triangle inequality we have dth((i, I), (t, T)) vL
dth((i, I), (s, S)) �L dth((s, S), (t, T)) vL α, hence there is t `′

99K t′′ for which
d(m, `′) vL α. But we also have d(m, `) vL d(m, k)�L d(k, `) = d(k, `) 6= >L,
so by determinism of T it follows that ` = `′ and t′ = t′′.

As m ∈ JkK was chosen arbitrarily above, we have d(m, `) vL α for all
m ∈ JkK, hence d(k, `) = F (k, `,⊥L) v α. Let B = {β′ ∈ L | F (k, `, β′) vL α}

133

7. General Quantitative Specification Theories

and β = supB, then F (k, `, β) vL α as ⊥L ∈ S. Add (s′, t′) to Rγ for all
γ wL β.

We miss to show that dth((s′, S), (t′, T)) vL β. By dth((s, S), (t, T)) vL α
we must have (j, J) ∈ J(t, T)K, j n−→J j

′, and an element β′ ∈ L for which
dm((i′, I ′), (j′, J)) vL β′ and F (m,n, β′) vL α. Then

F (k, `, β′) = F (m, `, β′) vL F (m,n, β′) vL α ,

hence β′ ∈ B, implying that dth((s′, S), (t′, T)) vL β′ vL β.
We show that R is a refinement family which witnesses dm(S, T). Let

(s, t) ∈ Rα ∈ R for some α ∈ L and assume s k
99KS s′. Let m ∈ JkK, then

there is (i, I) ∈ J(s, S)K with i m−→I i
′. As dth((i, I), (t, T)) vL α, this implies

that there is t `
99KT t′ with d(m, `) vL α. Also for any other m′ ∈ JkK we

have t `′
99KT t′′ with d(m, `′) vL α, hence ` = `′ and t′ = t′′ by determinism.

As m was chosen arbitrarily, we have d(m, `) v α for all m ∈ JkK, hence
d(k, `) = F (k, `,⊥L) v α. By construction of R, (s′, t′) ∈ Rβ for β = sup{β′ ∈
L | F (k, `, β′) vL α}.

Now assume t `−→T t
′. Let (i, I) ∈ J(s, S)K, then we have (j, J) ∈ J(t, T)K

with dm((i, I), (j, J)) vL α. We must have j n−→J j
′ with n ∈ J`K, hence there

are i m−→I i
′ and β′ ∈ L with dm((i′, I), (j′, J)) vL β′ and F (m,n, β′) vL α.

The above considerations hold for all (i, I) ∈ J(s, S)K, hence there is k ∈ L
with m ∈ JkK, s k−→S s

′, and F (k, `, β′) = F (m, `, β′). But then F (k, `, β′) vL
F (m,n, β′) vL α, hence by construction of R, (s′, t′) ∈ Rβ for β = sup{β′ ∈
L | F (k, `, β′) vL α}. �

7.2.4 Quantitative relaxation

In a quantitative framework, it can be useful to be able to relax and strengthen
specifications during the development process. Which precise relaxations and
strengthenings one wishes to apply will depend on the actual application, but
we can here show three general relaxations which differ from each other in the
level of the theory at which they are applied. For α ∈ L and SMTS S, T ,

• T is an α-widening of S if there is a relation R ⊆ S × T for which
(s0, t0) ∈ R and such that for all (s, t) ∈ R, s k

99KS s′ if and only if
t

`
99KT t′, and s k−→S s

′ if and only if t `−→T t
′, for k 4 `, d(`, k) vL α,

and (s′, t′) ∈ R;

• T is an α-relaxation of S if S ≤m T and T ≤αm S;

• the α-extended implementation semantics of S is

JSK+α = {I ≤αm S | I implementation}.

134

7.3. Structural Composition and Quotient

All three notions have also been introduced for the special case of integer
weights in Section 6.3; but note that the notion of widening presented here is
more synthetic than the one of the previous chapter.

The notion of α-widening is entirely syntactic: up to unweighted bisimu-
lation, T is the same as S, but transition labels in T can be α “wider” than in
S (hence also S ≤m T). The second notion, α-relaxation, works at the level of
semantics of specifications, whereas the last notion is at implementation level.
A priori, there is no relation between the syntactic and semantic notions, even
though one can be established in some special cases.

7.18 Example. For the accumulated distance with discounting factor λ, any α-
widening is also an α

1−λ -relaxation, see Proposition 6.19. This is due to
the fact that for traces σ, τ ∈ Spec∞ with d(σj , τj) ≤ α for all j, we have∑
j λ

jd(σj , τj) ≤
∑
j λ

jα ≤ (1−λ)−1α by convergence of the geometric series.
For the point-wise distance, it is easy to see that any α-widening is also

an α-relaxation, and the same holds for the limit-average distance:

lim inf
j

1
j+1

j∑
i=0

d(σi, τi) ≤ lim inf
j

1
j+1 jα = α

7.19 Example. For the maximum-lead distance on the other hand, it is easy to
expose cases of α-widenings which are not β-relaxations for any β. One exam-
ple consists of two one-state SMTS S, T with loops s0

a,1−→ s0 and t0
a,[0,2]−→ t0;

then T is an α-widening of S for α(δ) = |δ + 1|, but dm(T, S) = >L.

7.20 Proposition. If T is an α-relaxation of S, then JT K ⊆ JSK+α. �

It can be shown for special cases that the inclusion in the proposition is
strict, see Section 6.3; for its proof one only needs the fact that dm(I, S) vL
dm(I, T)�L dm(T, S) vL α for all I ∈ JT K.

Also of interest is the relation between relaxations of different specifica-
tions. An easy application of the triangle inequality for dm shows that the
distance between relaxations is bounded by the sum of the relaxation con-
stants and the unrelaxed systems’ distances:

7.21 Proposition. Let T be an α-relaxation of S and T ′ an α′-relaxation of S′.
Then dm(T, T ′) vL α�L dm(S, S′) and dm(T ′, T) vL α′ �L dm(S′, S). �

7.3 Structural Composition and Quotient
We now introduce the different operations on SMTS which make up a specifi-
cation theory. Firstly, we are interested in composing specifications S, S′ into
a specification S‖S′ by synchronizing on shared actions. Secondly, we need a
quotient operator which solves equations of the form S‖X ≡ T , that is, the
quotient synthesizes the most general specification T � S which describes all
SMTS X satisfying the above equation.

135

7. General Quantitative Specification Theories

7.3.1 Structural composition

To structurally compose SMTS, we assume given a generic partial label com-
position operator � : Spec × Spec ⇀ Spec which specifies which labels can
synchronize, cf. [WN95]. We will need to assume the following property:

• for all `, `′ ∈ Spec, (∃k ∈ Spec : d(k, `) 6= >L, d(k, `′) 6= >L) ⇔ (∃m ∈
Spec : `�m, `′ �m are defined).

This operator permits to compose labels at transitions which are executed
in parallel; the property required relates composability to distances in such a
way that two labels have a common quantitative refinement if and only if they
have a common synchronization. This is quite natural and holds for all our
examples, and is needed to relate determinism to composition in the proof of
Theorem 7.29 below.

Additionally, we must assume that there exists a function P : L× L→ L

which allows us to infer bounds on distances on synchronized labels. We as-
sume that P is monotone in both coordinates, has P (⊥L,⊥L) = ⊥L, P (α,>L) =
P (>L, α) = >L for all α ∈ L, and that

F (k � k′, `� `′, P (α, α′)) vL P (F (k, `, α), F (k′, `′, α′))

for all k, `, k′, `′ ∈ Spec and α, α′ ∈ L for which k � k′ and `� `′ are defined.
Hence d(k�k′, `�`′) vL P (d(k, `), d(k′, `′)) for all such k, `, k′, `′ ∈ Spec, thus
P indeed bounds distances of synchronized labels.

Intuitively, P gives us a uniform bound on label composition: distances
between composed labels can be bounded above using P and the individual
labels’ distances.

7.22 Definition. The structural composition of two SMTS S and T is the SMTS
S‖T = (S × T, (s0, t0), 99KS‖T ,−→S‖T) with transitions defined as follows:

s
k
99KS s′ t

`
99KT t′ k � ` defined

(s, t) k�`
99KS‖T (s′, t′)

s
k−→S s

′ t
`−→T t

′ k � ` defined
(s, t) k�`−→S‖T (s′, t′)

The next theorem shows that structural composition supports quantitative
independent implementability: the distance between structural compositions
can bounded above using P and the distances between the individual compo-
nents.

7.23 Theorem. For all SMTS S, T , S′ and T ′ with dm(S‖S′, T‖T ′) 6= >L,
dm(S‖S′, T‖T ′) vL P (dm(S, T), dm(S′, T ′)).

136

7.3. Structural Composition and Quotient

Proof: Let R = {Rα ⊆ S × T | α ∈ L}, R′ = {R′α ⊆ S′ × T ′ | α ∈ L} be
witnesses for dm(S, T) and dm(S′, T ′), respectively, and define

R
‖
β = {((s, s′), (t, t′)) ∈ S × S′ × T × T ′ |

∃α, α′ ∈ L : (s, t) ∈ Rα ∈ R, (s′, t′) ∈ R′α′ ∈ R′, P (α, α′) vL β}

for all β ∈ L. We show that R‖ = {R‖β | β ∈ L} witnesses dm(S‖S′, T‖T ′) vL
P (dm(S, T), dm(S′, T ′)).

First, ((s0, s
′
0), (t0, t′0)) ∈ R‖P (dm(S,T),dm(S′,T ′)). Let now β ∈ L \ {>L} and

((s, s′), (t, t′)) ∈ R‖β ∈ R‖, then we have α, α′ ∈ L\{>L} with (s, t) ∈ Rα ∈ R,
(s′, t′) ∈ R′α′ ∈ R′, and P (α, α′) vL β.

Let (s, s′) k�k
′

99KS‖S′ (s̄, s̄′), then s k
99KS s̄ and s′

k′
99KS′ s̄′. As (s, t) ∈ Rα ∈ R,

we have t `
99KT t̄ and ᾱ ∈ L with (s̄, t̄) ∈ Rᾱ ∈ R and F (k, `, ᾱ) vL α.

Similarly, (s′, t′) ∈ R′α′ ∈ R′ implies that there is t′ `′
99KT ′ t̄′ and ᾱ′ ∈ L with

(s̄′, t̄′) ∈ R′ᾱ′ ∈ R′ and F (k′, `′, ᾱ′) vL α′.
Now if the composition `� `′ is undefined, then dm(S‖S′, T‖T ′) = >L. If

it is defined, then we have (t, t′) `�`′
99KT‖T ′ (t̄, t̄′) by definition of S‖S′. Also,

(t̄, t̄′) ∈ R‖P (ᾱ,ᾱ′) ∈ R
‖ and

F (k � k′, `� `′, P (ᾱ, ᾱ′)) vL P (F (k, `, ᾱ), F (k′, `′, ᾱ′)) vL P (α, α′) .

The reverse direction, assuming a transition (t, t′) `�`′−→T‖T ′ (t̄, t̄′), is similar.�

7.24 Example. One popular label synchronization operator for the set Spec =
Σ× I from our examples, also used in Chapter 6, is given by adding interval
boundaries, viz.

(a, [l, r])� (a′, [l′, r′]) =
{

(a, [l + l′, r + r′]) if a = a′,

undefined otherwise.

It can then be shown that

d(k � k′, `� `′) ≤ d(k, `) + d(k′, `′) (7.2)

for all k, `, k′, `′ ∈ Spec for which k � k′ and `� `′ are defined.
For the accumulating distance, (7.2) implies that � is bounded above by

P (α, α′) = α+ α′:

F (k � k′, `� `′, α+ α′) = d(k � k′, `� `′) + λ(α+ α′)
≤ d(k, `) + λα+ d(k′, `′) + λα′

= F (k, `, α) + F (k′, `′, α′)

Theorem 7.23 thus specializes to Theorem 6.27: dm(S‖S′, T‖T ′) ≤ dm(S, T)+
dm(S′, T ′) for all SMTS S, T, S′, T ′.

137

7. General Quantitative Specification Theories

7.25 Example. Also for the point-wise distance, a bound is given by P (α, α′) =
α+ α′:

F (k � k′, `� `′, α+ α′) = max(d(k � k′, `� `′), α+ α′)
≤ max(d(k, `) + d(k′, `′), α+ α′)
≤ max(d(k, `), α) + max(d(k′, `′), α′)
= F (k, `, α) + F (k′, `′, α′) ,

the last inequality because of distributivity of addition over maximum. Thus
also here, dm(S‖S′, T‖T ′) ≤ dm(S, T) + dm(S′, T ′) for all SMTS S, T, S′, T ′.

7.26 Example. For the limit-average distance, a similar bound P (α, α′) = α�Lα′

works: For all j ∈ N,

F (k � k′, `� `′, α�L α′)(j)
= 1

j+1d(k � k′, `� `′) + j
j+1(α(j − 1) + α′(j − 1))

≤ 1
j+1d(k, `) + j

j+1α(j − 1) + 1
j+1d(k′, `′) + j

j+1α
′(j − 1)

= F (k, `, α)(j) + F (k′, `′, α′)(j) .

Hence also for the limit-average distance, we have dm(S‖S′, T‖T ′) ≤ dm(S, T)+
dm(S′, T ′) for all SMTS S, T, S′, T ′.

7.27 Example. In a real-time setting, a label synchronization operator which uses
intersection of intervals instead of addition has been used [FL12, BLPR09].
That is,

(a, [l, r])� (a′, [l′, r′]) =


(a, [max(l, l′),min(r, r′)])

if a = a′,max(l, l′) ≤ min(r, r′),
undefined otherwise.

We show that for the maximum-lead distance, � is bounded above by P (α, α′) =
max(α, α′), that is,

F (k � k′, `� `′,max(α, α′))(d) ≤ max(F (k, `, α)(d), F (k′, `′, α′)(d)) .

Applying the definition of F , we see that this is equivalent to

sup
p∈Jk�k′K

inf
q∈J`�`′K

max(|d+ p− q|,max(α(d+ p− q), α′(d+ p− q)))

≤ max


sup
m∈JkK

inf
n∈J`K

max(|d+m− n|, α(d+m− n))

sup
m′∈Jk′K

inf
n′∈J`′K

max(|d+m′ − n′|, α′(d+m′ − n′)) ;

138

7.3. Structural Composition and Quotient

note that we are abusing notation by identifying p = (a, x) with x etc. This
inequality in turn is equivalent to

max



sup
p∈Jk�k′K

inf
q∈J`�`′K

|d+ p− q|

sup
p∈Jk�k′K

inf
q∈J`�`′K

α(d+ p− q)

sup
p∈Jk�k′K

inf
q∈J`�`′K

α′(d+ p− q)

≤ max



sup
m∈JkK

inf
n∈J`K

|d+m− n|

sup
m∈JkK

inf
n∈J`K

α(d+m− n)

sup
m′∈Jk′K

inf
n′∈J`′K

|d+m′ − n′|

sup
m′∈Jk′K

inf
n′∈J`′K

α′(d+m′ − n′) .

In this expression, the first line on the left-hand side is bounded by the right-
hand side’s first line, the second line on the left by the second line on the
right, and the left-hand side’s last line by the last line of the right-hand side,
so that altogether, it holds. Theorem 7.23 then translates to dm(S‖S′, T‖T ′) ≤
max

(
dm(S, T), dm(S′, T ′)

)
.

7.3.2 Quotient

For quotients of SMTS, we need a partial label operator� : Spec×Spec⇀ Spec
for which it holds that

• for all k, `,m ∈ Spec, `� k is defined and m 4 `� k if and only if k�m
is defined and k �m 4 `;

• for all `, `′ ∈ Spec, (∃k ∈ Spec : d(k, `) 6= >L, d(k, `′) 6= >L) ⇔ (∃m ∈
Spec : m� `,m� `′ are defined).

The first condition ensures that � is adjoint to �, and the second relates it
to distances just as we did for � above. Extending the first condition, we say
that

• � is quantitatively well-behaved if it holds for all k, `,m ∈ Spec that
`� k is defined and d(m, `� k) 6= >L if and only if k�m is defined and
d(k�m, `) 6= >L, and in that case, F (m, `� k, α) wL F (k�m, `, α) for
all α ∈ L, and that

• � is quantitatively exact if the inequality can be sharpened to F (m, `�
k, α) = F (k �m, `, α).

Both of these are useful quantitative generalization of the adjunction between
� and �; we will see examples below of quantitatively exact and quantitatively
well-behaved label quotients.

In the definition of quotient below, we denote by ρB(S) the pruning of a
SMTS S with respect to the states in B ⊆ S, see Section 6.4.

139

7. General Quantitative Specification Theories

7.28 Definition. For SMTS S, T , the quotient of T by S is the SMTS T/S =
ρB(T × S ∪ {u}, (t0, s0), 99KT/S ,−→T/S) given as follows (if it exists):

t
`
99KT t′ s

k
99KS s′ `� k defined

(t, s) `�k
99KT/S (t′, s′)

t
`−→T t

′ s
k−→S s

′ `� k defined
(t, s) `�k−→T/S (t′, s′)

t
`−→T t

′ ∀s k−→S s
′ : `� k undefined

(t, s) ∈ B

m ∈ Spec ∀s k
99KS s′ : k �m undefined

(t, s) m
99KT/S u

m ∈ Spec
u

m
99KT/S u

In the above definition, u is a new universal state from which everything is
allowed and nothing required (last SOS rule). This state is reached from a quo-
tient state (t, s) under labelm whenever there is no may transition from s with
whose label m can synchronize (next-to-last SOS rule), because in that case,
any transition in the quotient will be canceled in the structural composition
(cf. Theorem 7.29 below), and we need the quotient to be maximal. Similarly,
if t specifies a must transition under a label ` which cannot be matched by
any transition from s, then the quotient state (t, s) is inconsistent; hence we
add it to B and remove it when pruning.

The next theorem shows that under certain standard conditions, quotient
is sound and maximal with respect to structural composition.

7.29 Theorem. Let S, T , X be SMTS such that S is deterministic and T/S exists.
Then X ≤m T/S if and only if S‖X ≤m T . Also,

• if � is quantitatively well-behaved, then dm(X,T/S) wL dm(S‖X,T);

• if � is quantitatively exact and dm(X,T/S) 6= >L, then dm(X,T/S) =
dm(S‖X,T).

The (Boolean) property that X ≤m T/S iff S‖X ≤m T implies unique-
ness of quotient [FLW11]. For the quantitative generalizations, the property
induced by a well-behaved � means that distances to the quotient bound
distances of structural compositions, which can be useful in further calcula-
tions; similarly for exact �. Note that uniqueness implies that if a certain
instantiation of our framework admits a quotient which is not quantitatively
well-behaved, there is no hope that one can find another one which is.

Proof: The proof that X ≤m T/S if and only if S‖X ≤m T is in [BJL+12a].
For the other properties, assume first � to be quantitatively well-behaved; we
show that dm(S‖X,T) vL dm(X,T/S). If dm(X,T/S) = >L, there is nothing
to prove, so assume dm(X,T/S) 6= >L and let R = {Rα ⊆ X× (T ×S∪{u})}
be a witness for dm(X,T/S). Define R′α = {((s, x), t) | (x, (t, s)) ∈ Rα} ⊆

140

7.3. Structural Composition and Quotient

S ×X × T for all α ∈ L and collect these to a family R′ = {R′α | α ∈ L}. We
show that R′ is a witness for dm(S‖X,T) vL dm(X,T/S).

We have ((s0, x0), t0) ∈ R′dm(X,T/S) ∈ R
′, so let α ∈ L and ((s, x), t) ∈

R′α ∈ R′, and assume first that (s, x) k�m
99KS‖X (s′, x′). Then s

k
99KS s′ and

x
m
99KX x′ by definition of S‖X. Now (x, (t, s)) ∈ Rα ∈ R implies that

there is (t, s) `�k′
99KT/S (t′, s′′) and α′ ∈ L for which F (m, ` � k′, α′) vL α and

(x′, (t′, s′′)) ∈ Rα′ ∈ R. But then also ((s′′, x′), t′) ∈ R′α ∈ R′, hence k′ �m is
defined and F (k′ �m, `, α′) vL F (m, `� k′, α′) vL α.

Now k � m and k′ � m being defined implies that there is k′′ for which
d(k′′, k) 6= >L and d(k′′, k′) 6= >L, and by definition of T/S, s k′

99KS s′′. As S
is deterministic, this implies k = k′ and s′ = s′′. Hence ((s′, x′), t′) ∈ R′α′ ∈ R′
and F (k �m, `, α′) vL α.

Assume now that t `−→T t′. We must have s k−→S s′ for which ` � k
is defined, for otherwise (t, s) ∈ B and hence (t, s) would have been pruned
in T/S. Thus (t, s) `�k−→T/S (t′, s′), which by (x, (t, s)) ∈ Rα ∈ R implies
that there is x m−→X x′ and α′ ∈ L for which F (m, ` � k, α′) vL α and
(x′, (t′, s′)) ∈ Rα′ ∈ R, hence ((s′, x′), t′) ∈ R′α′ ∈ R′. But then k � m is
defined and F (k�m, `, α′) vL F (m, `�k, α′) vL α, and (s, x) k�m−→S‖X (s′, x′).

In order to prove the theorem’s last claim, let � be quantitatively exact.
To show that dm(X,T/S) vL dm(S‖X,T), assume that dm(S‖X,T) 6= >L
(otherwise there is nothing to prove), let R = {Rα ⊆ S × X × T | α ∈
L} be a witness for dm(S‖X,T), and define R′α = {(x, (t, s)) | ((s, x), t) ∈
Rα} ∪ {(x, u) | x ∈ X} ⊆ X × (T × S ∪ {u}) for all α ∈ L. We show that
R′ = {R′α | α ∈ L} is a witness for dm(X,T/S) vL dm(S‖X,T).

We have (x0, (t0, s0)) ∈ R′dm(S‖X,T) ∈ R
′. Let α ∈ L, (x, u) ∈ R′α ∈ R′ and

x
m
99KX x′, then also u m

99KT/S u, F (m,m,⊥L) v α, and (x′, u) ∈ R′⊥L ∈ R
′.

Now let (x, (t, s)) ∈ R′α ∈ R′ and x
m
99KX x′. If k � m is undefined for all

s
k
99KS s′, then by definition of T/S, (t, s) m

99KT/S u, F (m,m,⊥L) v α, and
(x′, u) ∈ R′⊥L ∈ R

′.

If there is a transition s k
99KS s′ for which k�m is defined (by determinism

there can be at most one), then also (s, x) k�m
99KS‖X (s′, x′). As ((s, x), t) ∈

Rα ∈ R, we must have t `
99K t′ and α′ ∈ L with F (k � m, `, α′) vL α and

((s′, x′), t′) ∈ Rα′ ∈ R, hence (x′, (t′, s′)) ∈ R′α′ ∈ R′. Then ` � k is defined
and F (m, `� k, α′) vL α, and by definition of T/S, (t, s) `�k

99KT/S (t′, s′).
Now assume that (t, s) `�k−→T/S (t′, s′), then t

`−→T t′ and s
k−→S s′ by

definition of T/S. By ((s, x), t) ∈ Rα ∈ R, we have (s, x) k
′�m−→ S‖X (s′′, x′) and

α′ ∈ L with F (k′ �m, `, α′) vL α and ((s′′, x′), t′) ∈ Rα′ ∈ R. This in turn
implies that s k′−→S s

′′ and x m−→X s′ by definition of S‖X. We also see that

141

7. General Quantitative Specification Theories

l l′ r r′ l l′ r′ r l r l′ r′

l′ l r r′ l′ l r′ r l′ r′ l r

Figure 7.1: Quotient [l′, r′]� [l, r] of intervals in Example 7.31, six cases. Top
bar: [l, r]; middle bar: [l′, r′]; bottom bar: quotient. Note that for the two
cases on the right, quotient is undefined.

`� k′ is defined, which by determinism of S entails k = k′ and s′ = s′′. Hence
F (k �m, `, α′) vL α and (x′, (t′, s′)) ∈ R′α′ ∈ R′. �

7.30 Example. For the label synchronization operator for Spec = Σ× I given by
adding interval boundaries, a quotient can be defined by

(a′, [l′, r′])� (a, [l, r]) =
{

(a, [l′ − l, r′ − r]) if a = a′ and l′ − l ≤ r′ − r,
undefined otherwise.

It can then be shown that d(m, `� k) = d(k �m, `) for all k, `,m ∈ Spec for
which both ` � k and k �m are defined, see Chapter 6. From this it easily
follows that both for the accumulating, the point-wise, and the limit-average
distance, � is quantitatively exact, hence for all three distances, Theorem 7.29
specializes to the theorem that dm(X,T/S) = dm(S‖X,T) for all SMTS S,
T , X for which S is deterministic, T/S exists and dm(X,T/S) 6=∞. For the
accumulating distance, this is Theorem 6.29.

7.31 Example. For the variant of the operator � which uses intersection of inter-
vals instead of addition, a quotient can be defined as follows:

(a′, [l′, r′])� (a, [l, r]) =



undefined if a 6= a′ ,

(a, [l′,∞]) if a = a′ and l < l′ ≤ r ≤ r′ ,
(a, [l′, r′]) if a = a′ and l < l′ ≤ r′ < r ,

undefined if a = a′ and l ≤ r < l′ ≤ r′ ,
(a, [0,∞]) if a = a′ and l′ ≤ l ≤ r ≤ r′ ,
(a, [0, r′]) if a = a′ and l′ ≤ l ≤ r < r′ ,

undefined if a = a′ and l′ ≤ r′ < l ≤ r .

The intuition is that to obtain the maximal solution [p, q] to an equation
[l, r] � [p, q] vSpec [l′, r′], whether p and q must restrain the interval in the
intersection, or can be 0 and ∞, respectively, depends on the position of [l, r]
relative to [l′, r′], cf. Figure 7.1.

It can be shown [FL12] that for the maximum-lead distance, this variant of
� is quantitatively well-behaved, but not quantitatively exact. Theorem 7.29

142

7.4. Conjunction

hence translates to the fact that for all SMTA S, T , X for which S is deter-
ministic and T/S exists, dm(X,T/S) ≥ dm(S‖X,T).

7.4 Conjunction
Conjunction of SMTS can be used to merge two specifications into one. Let
7 : Spec× Spec⇀ Spec be a partial label operator for which it holds that

• for all k, ` ∈ Spec, if k 7 ` is defined, then k 7 ` 4 k, k 7 ` 4 `, and

• for all `, `′ ∈ Spec, (∃k ∈ Spec : d(k, `) 6= >L, d(k, `′) 6= >L) ⇔ (∃m ∈
Spec : `7m, `′ 7m are defined).

The first requirement above ensures that conjunction acts as a lower bound,
and the second one relates it to distances such that two labels have a common
quantitative refinement if and only if they have a common conjunction. One
also usually wants conjunction to be a greatest lower bound; we say that 7 is
conjunctively compositional if it holds for all k, `,m ∈ Spec for which m 4 k
and m 4 ` that also k 7 ` is defined and m 4 k 7 `.

As a quantitative generalization, and analogously to what we did for
structural composition, we say that 7 is conjunctively bounded by a function
C : L × L → L if C is monotone in both coordinates, has C(⊥L,⊥L) = ⊥L,
C(α,>L) = C(>L, α) = >L for all α ∈ L, and if it holds for all k, `,m ∈ Spec
for which d(m, k) 6= >L and d(m, `) 6= >L that k 7 ` is defined and

F (m, k 7 `, C(α, α′)) vL C(F (m, k, α), F (m, `, α′))

for all α, α′ ∈ L. Note that this implies that d(m, k7`) vL C(d(m, k), d(m, `)),
hence conjunctive boundedness implies conjunctive compositionality. Like P
for structural composition, C gives a uniform bound on label conjunction.

7.32 Definition. The conjunction of two SMTS S and T is the SMTS S ∧ T =
ρB(S × T, (s0, t0), 99KS∧T ,−→S∧T) given as follows:

s
k−→S s

′ t
`
99KT t′ k 7 ` defined

(s, t) k7`−→S∧T (s′, t′)
s

k
99KS s′ t

`−→T t
′ k 7 ` defined

(s, t) k7`−→S∧T (s′, t′)

s
k
99KS s′ t

`
99KT t′ k 7 ` defined

(s, t) k7`
99KS∧T (s′, t′)

s
k−→S s

′ ∀t `
99KT t′ : k 7 ` undef.

(s, t) ∈ B
t

`−→T t
′ ∀s k

99KS s′ : k 7 ` undef.
(s, t) ∈ B

Note that like for quotient, conjunction of SMTS may give inconsistent
states which need to be pruned after. As seen in the last two SOS rules
above, this is the case when one SMTS specifies a must transition with which

143

7. General Quantitative Specification Theories

the other SMTS cannot synchronize; then, the demand on implementations
would be that they simultaneously must and cannot have a transition, which
of course is unsatisfiable.

The next theorem shows the precise conditions under which conjunction is
a greatest lower bound. Note that the greatest-lower-bound condition U ≤m S,
U ≤m T ⇒ U ≤m S ∧ T entails uniqueness.

7.33 Theorem. Let S, T , U be SMTS. If S ∧ T is defined, then S ∧ T ≤m S and
S ∧ T ≤m T . If, additionally, S or T are deterministic, then:

• If 7 is conjunctively compositional, U ≤m S, and U ≤m T , then S ∧ T
is defined and U ≤m S ∧ T .

• If 7 is conjunctively bounded by C, dm(U, S) 6= >L, and dm(U, T) 6= >L,
then S ∧ T is defined and dm(U, S ∧ T) vL C(dm(U, S), dm(U, T)).

Proof: The proof of the two first claims is in [BJL+12a]. For the third claim,
let R = {Rα ⊆ U × S | α ∈ L} and R′ = {R′α ⊆ U × T | α ∈ L} be
relation families witnessing dm(U, S) and dm(U, T), respectively, define R∧β =
{(u, (s, t)) | ∃α, α′ ∈ L : (u, s) ∈ Rα, (u, t) ∈ R′α′ , C(α, α′) vL β} ⊆ U × S × T
for all β ∈ L, and let R∧ = {R∧β | β ∈ L}. We show that R∧ is a witness for
dm(U, S ∧ T) vL C(dm(U, S), dm(U, T)).

We have (u0, (s0, t0)) ∈ R∧C(dm(U,S),dm(U,T)) ∈ R
∧. Let β ∈ L \ {⊥L} and

(u, (s, t)) ∈ R∧β ∈ R∧, then we have α, α′ ∈ L \ {⊥L} with (u, s) ∈ Rα ∈ R,
(u, t) ∈ R′α′ ∈ R′, and C(α, α′) vL β.

Assume u m
99KU u′, then there exist s k

99KS s′ and ᾱ ∈ L for which (u′, s′) ∈
Rᾱ ∈ R and F (m, k, ᾱ) vL α, and similarly t `

99KT t′ and ᾱ′ with (u′, t′) ∈
R′ᾱ′ ∈ R′ and F (m, `, ᾱ′) v α′. Then d(m, k) 6= >L and d(m, `) 6= >L, so by
conjunctive boundedness k7` is defined, and (s, t) k7`

99KS∧T (s′, t′) by definition
of S ∧ T . Also, (u′, (s′, t′)) ∈ R∧C(ᾱ,ᾱ′) ∈ R

∧ and F (m, k 7 `, C(ᾱ, ᾱ′)) vL
C(F (m, k, ᾱ), F (m, `, ᾱ′)) vL C(α, α′).

Assume (s, t) k7`−→S∧T (s′, t′), then s k−→S s
′ and t `−→T t

′ by definition of
S ∧ T . We can without loss of generality postulate that T is deterministic.
The fact that (u, s) ∈ Rα ∈ R implies that there are u m−→U u

′ and ᾱ ∈ L for
which (u′, s′) ∈ Rᾱ ∈ R and F (m, k, ᾱ) vL α. We must also have u m′

99KU u′

for some m′ wSpec m, and then (u, t) ∈ R′ᾱ ∈ R′ implies that there exist
t

`′
99KT t′′ and ᾱ′ ∈ L with (u′, t′′) ∈ R′ᾱ′ ∈ R′ and F (m′, `′, ᾱ′) vL α′.
The triangle inequality for F gives

F (m, `′, ᾱ′) vL F (m,m′,⊥L)�L F (m′, `′, ᾱ′) vL α′ ,

hence d(m, `′) 6= >L. Together with d(m, k) 6= >L, conjunctive boundedness
allows us to conclude that k7 `′ is defined, but then both k7 ` and k7 `′ are
defined, hence by determinism of T , ` = `′ and t′ = t′′. �

144

7.4. Conjunction

7.34 Example. For the set Spec = Σ× I from our examples, the unique composi-
tional conjunction operator on is given, on labels, by intersection of intervals:

(a, [l, r])7 (a′, [l′, r′]) =


(a, [max(l, l′),min(r, r′)])

if a = a′,max(l, l′) ≤ min(r, r′),
undefined otherwise.

We can easily show that 7 is not conjunctively bounded: with m = (a, [2, 2]),
k = (a, [0, 1]) and ` = (a, [3, 4]), we have d(m, k) = d(m, `) = 1, but k7` is not
defined. Noting that this statement does not involve the distance iterator F ,
we conclude that neither accumulating, point-wise nor limit-average distance
admit a bounded conjunction operator. For the accumulating distance, this
statement is Theorem 6.24.

To deal with the problem that, as in the above example, conjunction may
not be conjunctively bounded, we introduce another, weaker, property which
ensures some compatibility of conjunction with distances. We say that 7 is
relaxed conjunctively bounded by a function C : L× L→ L if C is monotone
in both coordinates, has C(⊥L,⊥L) = ⊥L, C(α,>L) = C(>L, α) = >L for
all α ∈ L, and such that for all k, ` ∈ Spec for which there is m ∈ Spec with
d(m, k) 6= >L and d(m, `) 6= >L, there exist k′, `′ ∈ Spec with k′ 7 `′ defined,
k 4 k′, ` 4 `′, d(k′, k) 6= >L, and d(`′, `) 6= >L, such that for all m′ ∈ Spec,
α, α′ ∈ L,

F (m′, k′ 7 `′, C(α, α′)) vL C(F (m′, k, α), F (m′, `, α′)). (7.3)

The following theorem shows that relaxed boundedness of 7 entails a sim-
ilar property for SMTS conjunction.

7.35 Theorem. Let S, T be SMTS with S or T deterministic and 7 relaxed con-
junctively bounded by C. If there is an SMTS U for which dm(U, S) 6= >L and
dm(U, T) 6= >L, then there exist β- and γ-widenings S′ of S and T ′ of T such
that S′ ∧ T ′ is defined, and dm(U ′, S′ ∧ T ′) vL C(dm(U ′, S), dm(U ′, T)) for all
SMTS U ′.

Proof: We start by constructing S′ and T ′, almost as in the proof of the third
claim of Theorem 7.33. The states of S′ and T ′ will be the same as for S and
T , and we start by letting β = ⊥L, γ = ⊥L.

Let U fulfill dm(U, S) 6= >L and dm(U, T) 6= >L, let R = {Rα ⊆ U × S |
α ∈ L} and R′ = {R′α ⊆ U × T | α ∈ L} be relation families witnessing
dm(U, S) and dm(U, T), respectively, define R∧η = {(u, (s, t)) | ∃α, α′ ∈ L :
(u, s) ∈ Rα, (u, t) ∈ R′α′ , C(α, α′) vL η} ⊆ U × S × T for all η ∈ L, and let
R∧ = {R∧η | η ∈ L}.

Now let η ∈ L \ {>L} and (u, (s, t)) ∈ R∧η ∈ R∧, then we have α, α′ ∈
L \ {⊥L} with (u, s) ∈ Rα ∈ R, (u, t) ∈ R′α′ ∈ R′, and C(α, α′) vL η.

145

7. General Quantitative Specification Theories

Let u m
99KU u′, then also s k

99KS s′ and t
`
99KT t′, and there are ᾱ, ᾱ′ ∈ L \

{>L} with F (m, k, ᾱ) vL α and F (m, `, ᾱ′) vL α′. Hence d(m, k) 6= >L and
d(m, `) 6= >L, and by relaxed conjunctive boundedness we have k′, `′ ∈ Spec
with k 4 k′, ` 4 `′, d(k′, k) 6= >L, d(`′, `) 6= >L, and k′7`′ defined. We add the
transitions s k′

99KS′ s′, t
`′
99KT ′ t′ to S′ and T ′ and update β := max(β, d(k′, k)),

γ := max(γ, d(`′, `)).
As the sets {k ∈ Spec | s k

99KS s′}, {` ∈ Spec | t `
99KT t′} are compact,

the above process converges to some β, γ 6= >L. The must transitions we just
copy from S to S′ and from T to T ′, and then S′ is a β-widening of S and T ′
is a γ-widening of T .

We must show that S′ and T ′ satisfy the properties claimed. By con-
struction S′ ∧ T ′ is defined, so let U ′ be an SMTS with dm(U ′, S) 6= >L and
dm(U ′, T) 6= >L (otherwise we have nothing to prove). We must show that
dm(U ′, S′ ∧ T ′) vL C(dm(U ′, S), dm(U ′, T)). Let R = {Rα ⊆ U ′ × S | α ∈ L}
and R′ = {R′α ⊆ U ′ × T | α ∈ L} be relation families witnessing dm(U ′, S)
and dm(U ′, T), respectively, define R∧′η = {(u′, (s, t)) | ∃α, α′ ∈ L : (u′, s) ∈
Rα, (u′, t) ∈ R′α′ , C(α, α′) vL η} ⊆ U ′ × S × T for all η ∈ L, and let
R∧′ = {R∧′η | η ∈ L}.

We have (u′0, (s0, t0)) ∈ R∧
′

C(dm(U ′,S),dm(U ′,T)) ∈ R
∧′ . Let η ∈ L \ {⊥L}

and (u′, (s, t)) ∈ R∧′η , then we have α, α′ ∈ L \ {⊥L} with (u′, s) ∈ Rα ∈ R,
(u′, t) ∈ R′α′ ∈ R′, and C(α, α′) vL η. Let u′ m

99KU ′ u′′, then also s k
99KS s′

and t `
99KT t′, and there are ᾱ, ᾱ′ ∈ L\{>L} with (u′′, s′) ∈ Rᾱ, (u′′, t′) ∈ R′ᾱ′ ,

F (m, k, ᾱ) vL α, and F (m, `, ᾱ′) vL α′.
By construction of S′ and T ′, we have s k′

99KS′ s′ and t
`′
99KT ′ t′ with k 4 k′,

` 4 `′, d(k′, k) vL β, and d(`′, `) vL γ, and such that k′ 7 `′ is defined. Also,
(u′′, (s′, t′)) ∈ R∧′C(ᾱ,ᾱ′) and

F (m, k′ 7 `′, C(ᾱ, ᾱ′)) vL C(F (m, k, ᾱ), F (m, `, ᾱ′)) vL C(α, α′).

The other direction of the proof, starting with a transition (s, t) k7`−→S′∧T ′

(s′, t′), is an exact copy of the corresponding part of the proof of Theo-
rem 7.33. �

7.36 Example. For the set Spec = Σ× I from our examples, the following lemma
shows a one-step version of relaxed conjunctive boundedness.

7.37 Lemma. For all k, ` ∈ Spec for which there is m ∈ Spec with d(m, k) 6= ∞
and d(m, `) 6= ∞, there exist k′, `′ ∈ Spec with k 4 k′, ` 4 `′, d(k′, k) 6= ∞,
d(`′, `) 6=∞, and k′7`′ defined, and then d(m′, k′7`′) ≤ max(d(m′, k), d(m′, `))
for all m′ ∈ Spec.

Proof: Let k, ` ∈ Spec such that there is m ∈ Spec with d(m, k) 6= ∞ and
d(m, `) 6= ∞. This implies that k = (a, [l, r]) and ` = (a, [l′, r′]) for some

146

7.4. Conjunction

a ∈ Σ, k, l, k′, l′ ∈ Z ∪ {−∞,∞}. Without loss of generality we can assume
that l ≤ l′.

If r ≥ l′, then k7 ` = (a, [l′, r]) is defined, and we take k′ = k, `′ = `. Now
let m′ = (a′, [l′′, r′′]) ∈ Spec. If a′ 6= a, the property to prove is trivially true.
If a′ = a, then we have

d(m′, k′ 7 `′) = max(0, l′ − l′′, r′′ − r) ,
d(m′, k) = max(0, l − l′′, r′′ − r) ,
d(m′, `) = max(0, l′ − l′′, r′′ − r′) .

Thus we need to show that

max(0, l′ − l′′, r′′ − r) ≤ max(0, l − l′′, r′′ − r, l′ − l′′, r′′ − r′) ,

which is clear as all left-hand terms also appear on the right-hand side.
In case r < l′, we let k′ = (a, [l, l′]) and `′ = (a, [r, r′]). Then k 4 k′, ` 4 `′,

and k′ 7 `′ = (a, [r, l′]) is defined. Also, d(k′, k) = d(`′, `) = l′ − r 6=∞.
Let m′ = (a′, [l′′, r′′]) as before, then the case a′ 6= a is again trivial. We

have
d(m′, k′ 7 `′) = max(0, r − l′′, r′′ − l′) ,

so we need to show that

max(0, r − l′′, r′′ − l′) ≤ max(0, l − l′′, r′′ − r, l′ − l′′, r′′ − r′)
= max(0, r′′ − r, l′ − l′′) ,

where the equality follows from l ≤ l′, hence l− l′′ ≤ l′− l′′, and r ≤ r′, hence
r′′ − r′ ≤ r′′ − r. But 0 ≤ l′ − r, r − l′′ < l′ = l′′, and r′′ − l′ < r′′ − r because
of r < l′, so the inequality follows. �

For the accumulating distance, it then follows that 7 is relaxed conjunc-
tively bounded by C(α, α′) = α+α′: Using the notation from Lemma 7.37, we
need to show (7.3), i.e., that d(m′, l′7`′)+λ(α+α′) ≤ d(m′, k)+λα+d(m′, `)+
λα′, which however is clear by d(m′, k′ 7 `′) ≤ max(d(m′, k), d(m′, `)) ≤
d(m′, k) + d(m′, `).

7.38 Example. For the pointwise distance, 7 is relaxed conjunctively bounded by
C(α, α′) = max(α, α′): (7.3) is then equivalent to max(d(m′, k′ 7 `′), α, α′) ≤
max(d(m′, k), d(m′, `), α, α′), which follows from Lemma 7.37.

7.39 Example. For the limit-average distance, 7 is relaxed conjunctively bounded
by C(α, α′) = α �L α′: Again using the notation from Lemma 7.37, we need
to show (7.3), so we need to see that for all j ∈ N+,

1
j+1d(m′, k′ 7 `′) + j

j+1α(j − 1) + j
j+1α

′(j − 1)

≤ 1
j+1d(m′, k) + j

j+1α(j − 1) + 1
j+1d(m′, `) + j

j+1α
′(j − 1) .

147

7. General Quantitative Specification Theories

This follows again from d(m′, k′ 7 `′) ≤ max(d(m′, k), d(m′, `)) ≤ d(m′, k) +
d(m′, `).

7.40 Example. Also for the maximum-lead distance, 7 is relaxed conjunctively
bounded by C(α, α′) = α �L α′. To see this, we again use the notation from
Lemma 7.37. We need to show that for all α, α′ ∈ L and all d ∈ R,

sup
l′′≤z≤r′′

inf
r≤w≤l′

max(|d+ z − w|, α(d+ z − w) + α′(d+ z − w))
≤ sup

l′′≤z≤r′′
inf
l≤x≤r

max(|d+ z − x|, α(d+ z − x))

+ sup
l′′≤z≤r′′

inf
l′≤y≤r′

max(|d+ z − y|, α′(d+ z − y))

(7.4)

Now for all z ∈ [l′′, r′′], we have

inf
r≤w≤l′

|d+ z − w| ≤ inf
l≤x≤r

|d+ z − x|+ inf
l′≤y≤r′

|d+ z − y|

and

inf
r≤w≤l′

(α(d+ z − w) + α′(d+ z − w))
≤ inf

l≤x≤r
α(d+ z − x) + inf

l′≤y≤r′
α′(d+ z − y) ;

both can be shown by simply considering all cases of the placement of the
infima. But then also

max(inf
r≤w≤l′

|d+ z − w|, inf
r≤w≤l′

(α(d+ z − w) + α′(d+ z − w)))

≤ max


inf

l≤x≤r
|d+ z − x|+ inf

l′≤y≤r′
|d+ z − y|

inf
l≤x≤r

α(d+ z − x) + inf
l′≤y≤r′

α′(d+ z − y))

≤ max(inf
l≤x≤r

|d+ z − x|, inf
l≤x≤r

α(d+ z − x))

+ max(inf
l′≤y≤r′

|d+ z − y|, inf
l′≤y≤r′

α′(d+ z − y)) ,

the last inequality by distributivity of + over max. As this holds for all z, we
have proven (7.4).

7.5 Logical Characterizations
We show that quantitative refinement admits a logical characterization. Our
results extend the logical characterization of modal transition systems in [Lar89].
Our logic L is the smallest set of expressions generated by the following ab-
stract syntax:

φ, φ1, φ2 := tt | ff | 〈`〉φ | [`]φ | φ1 ∧ φ2 | φ1 ∨ φ2 (` ∈ Spec)

148

7.5. Logical Characterizations

The semantics of a formula φ ∈ L is a mapping JφK : S → L given inductively
as follows:

JttKs = ⊥ JffKs = >
J(φ1 ∧ φ2)Ks = max(Jφ1Ks, JφK2s) J(φ1 ∨ φ2)Ks = min(Jφ1Ks, Jφ2Ks)

J〈`〉φKs = inf{F (k, `, JφKt) | s k−→ t, d(k, `) 6= >L}

J[`]φKs = sup{F (k, `, JφKt) | s k
99K t, d(k, `) 6= >L}

For a SMTS S we write JφKS = JφKs0.
The below theorems express the fact that L is quantitatively sound for

refinement distance, i.e., the value of a formula in a specification is bounded
by its value in any other specification together with their distance, and that
the disjunction-free fragment of L is quantitatively implementation complete,
i.e., the value of any disjunction-free formula in a specification S is bounded
above by its value in any implementation of S. Note that disjunction-freeness
is a very common assumption in this context, cf. [Lar89,BCK11].

7.41 Theorem. For all φ ∈ L and all SMTS S, T , JφKS vL JφKT �L dm(S, T).

Proof: Structural induction. The claim obviously holds for φ = tt and φ = ff ;
if φ = φ1 ∧ φ2, then JφiKs1 vL JφiKs2 �L dm(s1, s2) for i = 1, 2 imply that
also max(Jφ1Ks1, Jφ2Ks1) vL max(Jφ1Ks2, Jφ2Ks2) �L dm(s1, s2), and similarly
for φ = φ1 ∨ φ2.

For the case φ = 〈`〉φ′, there is nothing to prove if there are no transi-
tions s2 −→2 or if dm(s1, s2) = >L. Let thus s2

k2−→2 t2, then there exist
s1

k1−→1 t1 with F (k1, k2, dm(t1, t2)) vL dm(s1, s2). Now by induction hypoth-
esis, Jφ′Kt1 vL dm(t1, t2) �L Jφ′Kt2, and then, using the triangle inequality,

F (k1, `, Jφ′Kt1) vL F (k1, k2, dm(t1, t2)) �L F (k2, `, Jφ′Kt2)
vL dm(s1, s2) �L F (k2, `, Jφ′Kt2) .

As s2
k2−→2 t2 was arbitrary, this entails

inf{F (k1, `, Jφ′Kt1) | s1
k1−→1 t1}

vL inf{F (k2, `, Jφ′Kt2) | s1
k2−→2 t2}�L dm(s1, s2) .

For the case φ = [`]φ′ the proof is similar: We have nothing to prove if
dm(s1, s2) = >L or if there are no transitions s1

k1
99K1 t1 with F (k1, `, Jφ′Kt1) 6=

>L, so assume there is such a transition. Then we also have s2
k2
99K2 t2 with

F (k1, k2, dm(t1, t2)) vL dm(s1, s2), and

F (k1, `, Jφ′Kt1) vL F (k1, k2, dm(t1, t2))�L F (k2, `, Jφ′Kt2)
vL dm(s1, s2)�L F (k2, `, Jφ′Kt2) . �

149

7. General Quantitative Specification Theories

7.42 Theorem. For all disjunction-free formulae φ ∈ L and all SMTS S, JφKS =
supI∈JSKJφKI.

Proof: Theorem 7.41 entails JφKI vL JφKS�Ldm(I, S) = JφKS for all I ∈ JSK,
hence also supI∈JSKJφKI vL JφKS. To show that JφKS vL supI∈JSKJφKI we use
structural induction on φ. If φ = tt, both sides are ⊥L, and if φ = ff , both
sides are >L, so the induction base is clear.

The case φ = φ1∧φ2 is also clear: By hypothesis, Jφ1KS vL supI∈JSKJφ1KI
and similarly for φ2, hence

JφKS = max(Jφ1KS, Jφ2KS) vL max(sup
I∈JSK

Jφ1KI, sup
I∈JSK

Jφ2KI)

= sup
I∈JSK

max(Jφ1KI, Jφ2KI) .

For the case φ = 〈`〉φ′, we are done if JφKS = ⊥L. Otherwise, let α @L
JφKS; we want to expose I ∈ JSK for which α @L JφKI. Start by letting
I = {i0} and −→I = ∅.

Now for each transition s0
k−→S t, we have α @L F (k, `, Jφ′Kt), so (as-

suming for the moment that Jφ′Kt 6= ⊥L) there is α′k @L Jφ′Kt for which
F (k, `, α′k) AL α. By induction hypothesis, there is J ∈ Jt, SK for which
α′k @L Jφ

′KJ ; let n ∈ JkK such that F (n, `, Jφ′KJ) = F (k, `, Jφ′KJ), and add J
together with a transition i0 n−→I j0 to I. In case Jφ′Kt = ⊥L, we just take an
arbitrary J ∈ Jt, SK.

For the so-constructed implementation I we have

JφKI = inf{F (m, `, Jφ′Kj | i0 m−→I j}

= inf{F (k, `, Jφ′KJ) | s0
k−→S t, J ∈ Jt, SK, Jφ′Kt = ⊥L or α′k @L Jφ′KJ}

AL inf({F (k, `, α′k) | s0
k−→S t} ∪ {F (k, `, Jφ′Kt)}) wL α , (7.5)

the strict inequality in (7.5) because S is compactly branching.
For the case φ = [`]φ′, let again α @L JφKS, and let I ∈ JSK be any imple-

mentation (there exists one because of local consistency of S). If F (k, `, Jφ′Kt) =
>L for all s0

k
99KS t, then JφKS = sup ∅ = ⊥L and we are done. Otherwise let

s0
k
99KS t be such that JφKS = F (k, `, Jφ′Kt), which exists because S is com-

pactly branching. Then α @L F (k, `, Jφ′Kt), so (assuming that Jφ′Kt 6= ⊥L) we
have α′k @L Jφ′Kt with F (k, `, α′k) AL α.

Let J ∈ Jt, SK such that α′k @L Jφ′KJ , let n ∈ JkK such that F (n, `, Jφ′KJ) =
F (k, `, Jφ′KJ), and add J together with a transition i0 n−→I j0 to I. Then

JφKI = sup{F (m, `, Jφ′Kn) | i0 m−→I j}
wL F (n, `, Jφ′KJ) = F (k, `, Jφ′KJ) wL F (k, `, α′k) AL α .

In case Jφ′Kt = ⊥L instead, we again take an arbitrary J ∈ Jt, SK, and then
JφKI wL F (k, `, Jφ′Kt) AL α. �

150

8 Logical vs. Behavioral Specifications1

In this chapter we depart from the quantitative setting of this thesis and intro-
duce disjunctive modal transition systems. We show that this generalization
of MTS is closely related to other specification formalisms, viz. acceptance
automata and the modal ν-calculus and that it admits both disjunction and
conjunction as well as a general notion of quotient which was unavailable for
MTS.

8.1 Specification Formalisms
In this section we introduce the four specification formalisms with which this
chapter is concerned. For the rest of the chapter, we fix a finite alphabet
Σ. In each of the formalisms, the semantics of a specification is a set of
implementations, in our case always a set of (finite) labeled transition systems
(LTS) over Σ, i.e., structures I = (S, s0,−→) consisting of a finite set S of
states, an initial state s0 ∈ S, and a transition relation −→ ⊆ S × Σ× S.

8.1.1 Disjunctive Modal Transition Systems

8.1 Definition. A disjunctive modal transition system (DMTS) is a structure
D = (S, S0, 99K,−→) consisting of finite sets S ⊇ S0 of states and initial
states, a may-transition relation 99K ⊆ S × Σ × S, and a disjunctive must-
transition relation −→ ⊆ S × 2Σ×S . It is assumed that for all (s,N) ∈ −→
and all (a, t) ∈ N , (s, a, t) ∈ 99K; furthermore, if (s, ∅) ∈ −→ then there are
no a and t such that (s, a, t) ∈ 99K.

As customary, we write s a
99K t instead of (s, a, t) ∈ 99K, s −→ N instead

of (s,N) ∈ −→, s a
99K if there exists t for which s

a
99K t, and s

a
X99K if there

does not.
The intuition is that may-transitions s a

99K t specify which transitions are
permitted in an implementation, whereas a must-transition s −→ N stipulates
a disjunctive requirement: at least one of the choices (a, t) ∈ N has to be

1This chapter is based on the journal paper [BFK+20] published in Information and
Computation.

151

8. Logical vs. Behavioral Specifications

implemented. A DMTS (S, S0, 99K,−→) is an implementation if S0 = {s0} is
a singleton and −→ = {(s, {(a, t)}) | s a

99K t}.
DMTS were introduced in [LX90b] in the context of equation solving. They

are a natural extension of the modal transition systems (MTS) of previous
chapters. We say that a DMTS (S, S0, 99K,−→) is a MTS if S0 = {s0} is
a singleton and for all s −→ N it holds that N = {(a, t)} is also a singleton.
When speaking about MTS, we usually write s a−→ t instead of s −→ {(a, t)}.

An LTS (S, s0,−→) can be translated to a DMTS implementation
(S, S0, 99K, −→′) by setting S0 = {s0}, 99K = −→ and −→′ = {(s, {(a, t)}) |
s

a−→ t}. This defines an embedding of LTS into DMTS whose image is
precisely the set of DMTS implementations.

8.2 Definition. Let D1 = (S1, S
0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) be

DMTS. A relation R ⊆ S1 × S2 is a modal refinement if for all (s1, s2) ∈ R
the following conditions hold:

• for all s1
a
99K1 t1 there is t2 ∈ S2 with s2

a
99K2 t2 and (t1, t2) ∈ R, and

• for all s2 −→2 N2 there is s1 −→1 N1 such that for each (a, t1) ∈ N1
there is (a, t2) ∈ N2 with (t1, t2) ∈ R.

We say that D1 modally refines D2, denoted D1 ≤m D2, whenever there exists
a modal refinement R such that for all s0

1 ∈ S0
1 , there exists s0

2 ∈ S0
2 for which

(s0
1, s

0
2) ∈ R.

We write D1 ≡m D2 if D1 ≤m D2 and D2 ≤m D1. For states s1 ∈ S1,
s2 ∈ S2, we write s1 ≤m s2 if (S1, {s1}, 99K1,−→1) ≤m (S2, {s2}, 99K2,−→2).
Sometimes we will refer to the last property of a modal refinement relation,
∀s0

1 ∈ S0
1 : ∃s0

2 ∈ S0
2 : (s0

1, s
0
2) ∈ R, as being initialised. Note that modal

refinement is reflexive and transitive, i.e., a preorder on DMTS.
The set of implementations of a DMTSD is JDK = {I ≤m D | I implement-

ation}. This is, thus, the set of all LTS which satisfy the specification given
by the DMTS D. We say that D1 thoroughly refines D2, and write D1 ≤t D2,
if JD1K ⊆ JD2K. We write D1 ≡t D2 if D1 ≤t D2 and D2 ≤t D1. For states
s1 ∈ S1, s2 ∈ S2, we write Js1K = J(S1, {s1}, 99K1,−→1)K and s1 ≤t s2 if
Js1K ⊆ Js2K.

The proposition below, which follows directly from transitivity of modal
refinement, shows that modal refinement is sound with respect to thorough
refinement; in the context of specification theories, this is what one would ex-
pect, and we only include it for completeness of presentation. It can be shown
that modal refinement is also complete for deterministic DMTS [BCK11], but
we will not need this here.

8.3 Proposition. For all DMTS D1, D2, D1 ≤m D2 implies D1 ≤t D2. �

152

8.1. Specification Formalisms

8.1.2 The Modal ν-Calculus
We recall the syntax and semantics of the modal ν-calculus, the fragment of
the modal µ-calculus [SdB69,Koz83] with only greatest fixed points. Instead of
an explicit greatest fixed point operator, we use the representation by equation
systems in Hennessy-Milner logic developed in [Lar90b].

For a finite set X of variables, let H(X) be the set of Hennessy-Milner
formulae, generated by the abstract syntax

H(X) 3 φ ::= tt | ff | x | 〈a〉φ | [a]φ | φ ∧ φ | φ ∨ φ ,

for a ∈ Σ and x ∈ X.
A declaration is a mapping ∆ : X → H(X); we recall the greatest fixed

point semantics of declarations from [Lar90b]. For an LTS (S, s0,−→), an as-
signment is a mapping σ : X → 2S . The set of assignments forms a complete
lattice with order σ1 v σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and least upper
bound

(⊔
i∈I σi

)
(x) = ⋃

i∈I σi(x).
The semantics of a formula is a subset of S, given relative to an assign-

ment σ, defined as follows: JttKσ = S, JffKσ = ∅, JxKσ = σ(x), Jφ ∧ ψKσ =
JφKσ ∩ JψKσ, Jφ ∨ ψKσ = JφKσ ∪ JψKσ, and

J〈a〉φKσ = {s ∈ S | ∃s a−→ s′ : s′ ∈ JφKσ},
J[a]φKσ = {s ∈ S | ∀s a−→ s′ : s′ ∈ JφKσ}.

The semantics of a declaration ∆ is then the assignment defined by

J∆K =
⊔
{σ : X → 2S | ∀x ∈ X : σ(x) ⊆ J∆(x)Kσ};

the greatest (post)fixed point of ∆.
A ν-calculus expression is a structure N = (X,X0,∆), with X0 ⊆ X

sets of variables and ∆ : X → H(X) a declaration. We say that an LTS
I = (S, s0,−→) implements (or models) the expression, and write I |= N ,
if there is x0 ∈ X0 such that s0 ∈ J∆K(x0). We write JN K for the set of
implementations (models) of a ν-calculus expression N . As for DMTS, we
write JxK = J(X, {x},∆)K for x ∈ X, and thorough refinement of expressions
and variables is defined accordingly.2

We are now going to introduce a normal form for ν-calculus expressions.
The purpose of this normal form is twofold. One is to allow us to define modal
refinement for ν-calculus, an analogue to the DMTS modal refinement that
can be seen as a sound approximation of the logical implication, cf. Propo-
sition 8.3. The second purpose is to facilitate a simple translation between
DMTS and ν-calculus expressions, see Section 8.2.1 below.

2Any ν-calculus expression is thoroughly equivalent to one with precisely one initial
state, i.e., X0 a singleton, however this is not true for ν-calculus expressions in normal form
as defined below. See also Section 8.2.5.

153

8. Logical vs. Behavioral Specifications

8.4 Lemma. For any ν-calculus expression N1 = (X1, X
0
1 ,∆1), there exists an-

other expression N2 = (X2, X
0
2 ,∆2) with JN1K = JN2K and such that for any

x ∈ X, ∆2(x) is of the form

∆2(x) =
∧
i∈I

(∨
j∈Ji
〈aij〉xij

)
∧
∧
a∈Σ

[a]
(∨
j∈Ja

ya,j
)

(8.1)

for finite (possibly empty) index sets I, Ji, Ja, for i ∈ I and a ∈ Σ, and all
xij , ya,j ∈ X2. Additionally, for all i ∈ I and j ∈ Ji, there exists j′ ∈ Jaij for
which xij ≤t yaij ,j′. Also if at least one of the Ji = ∅ then Ja = ∅ for all a.

Remark that this normal form includes a semantic check (xij ≤t yaij ,j′),
so it is not entirely syntactic.

Proof: It is shown in [BL92] that any Hennessy-Milner formula is equivalent
to one in so-called strong normal form, i.e., of the form ∨

i∈I(
∧
j∈Ji〈aij〉φij ∧∧

a∈Σ[a]ψi,a) for HML formulas φij , ψi,a which are also in strong normal form,
and such that for all i, j, φij ≤t ψi,aij .

We can replace the φij , ψi,a by (new) variables xij , yi,a and add declara-
tions ∆2(xij) = φij , ∆2(yi,a) = ψi,a to arrive at an expression in which all
formulae are of the form ∆2(x) = ∨

i∈I(
∧
j∈Ji〈aij〉xij ∧

∧
a∈Σ[a]yi,a) and such

that for all i, j, xij ≤t yi,aij .
Now for each such formula, replace (recursively) x by new variables {x̃i |

i ∈ I}, similarly for y, and set ∆2(x̃i) = ∧
j∈Ji〈aij〉

(∨
k x̃

k
ij

)
∧
∧
a∈Σ[a]

(∨
k ỹ

k
i,a

)
.

Using initial variables X0
2 = {x̃i | x ∈ X0

1}, the so-constructed ν-calculus
expression is equivalent to the original one. We know that for all i, j, ∨k x̃kij ≤t∨
k ỹ

k
i,aij

, hence for all i, j, k there exists k′ such that x̃kij ≤t ỹ
k′
i,aij

. We can thus
rename variables and apply the distributivity of 〈·〉 over ∨.

Finally, if at least one of the Ji = ∅ then ∆2 is false and we can simply set
Ja = ∅ for all a without changing the semantics of ∆2. �

As this is a type of conjunctive normal form, it is clear that translating
a ν-calculus expression into normal form may incur an exponential blow-up.

We introduce some notation for ν-calculus expressions in normal form
which will make our life easier later. LetN = (X,X0,∆) be such an expression
and x ∈ X, with ∆(x) = ∧

i∈I
(∨

j∈Ji〈aij〉xij
)
∧
∧
a∈Σ[a]

(∨
j∈Ja ya,j

)
as in the

lemma. Define ♦(x) = {{(aij , xij) | j ∈ Ji} | i ∈ I} and, for each a ∈ Σ,
�a(x) = {ya,j | j ∈ Ja}. Note that now,

∆(x) =
∧

N∈♦(x)

(∨
(a,y)∈N

〈a〉y
)
∧
∧
a∈Σ

[a]
(∨
y∈�a(x)

y
)
.

8.5 Definition. Let N1 = (X1, X
0
1 ,∆1), N2 = (X2, X

0
2 ,∆2) be ν-calculus expres-

sions in normal form and R ⊆ X1×X2. The relation R is a modal refinement
if it holds for all (x1, x2) ∈ R that

154

8.1. Specification Formalisms

• for all a ∈ Σ and every y1 ∈ �a1(x1), there is y2 ∈ �a2(x2) for which
(y1, y2) ∈ R, and

• for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) such that for each (a, y1) ∈ N1,
there exists (a, y2) ∈ N2 with (y1, y2) ∈ R.

We say that N1 modally refines N2, denoted N1 ≤m N2, whenever there exists
a modal refinement R such that for every x0

1 ∈ X0
1 there exists x0

2 ∈ X0
2 for

which (x0
1, x

0
2) ∈ R.

We say that a ν-calculus expression (X,X0,∆) in normal form is an im-
plementation if X0 = {x0} is a singleton, ♦(x) = {{(a, y)} | y ∈ �a(x), a ∈ Σ}
and �a(x) = ∅ for all a /∈ Σ, for all x ∈ X.

We can translate an LTS (S, s0,−→) to a ν-calculus expression (S, S0,∆)
in normal form by setting S0 = {s0} and ♦(s) = {{(a, t)} | s a−→ t} and
�a(s) = {t | s a−→ t} for all s ∈ S, a ∈ Σ. Like for DMTS, this defines an
embedding of LTS into the modal ν-calculus whose image are precisely the
ν-calculus implementations.

We will show below in Theorem 8.12 that for any LTS I and any ν-calculus
expression N in normal form, I |= N iff I ≤m N , hence the fixed-point
semantics of [Lar90b] and our refinement semantics agree. As a corollary
of this result, we get that modal refinement is a sound approximation to
logical implication, i.e., that N1 ≤m N2 implies that for all implementations
I, (I |= N1)⇒ (I |= N2).

8.1.3 Nondeterministic Acceptance Automata
8.6 Definition. A nondeterministic acceptance automaton (AA) is a structure
A = (S, S0,Tran), with S ⊇ S0 finite sets of states and initial states and
Tran : S → 22Σ×S an assignment of transition constraints.

Acceptance automata were first introduced in [Rac07] (see also [Rac08],
where a slightly different language-based approach is taken), based on the
notion of acceptance trees in [Hen85]; however, these are deterministic. We
extend the formalism to a nondeterministic setting here. The following notion
of modal refinement was introduced in [BKL+11].

8.7 Definition. Let A1 = (S1, S
0
1 ,Tran1) and A2 = (S2, S

0
2 ,Tran2) be AA. A

relation R ⊆ S1 × S2 is a modal refinement if it holds for all (s1, s2) ∈ R and
all M1 ∈ Tran1(s1) that there exists M2 ∈ Tran2(s2) such that

∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R ,
∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R .

(8.2)

We say that A1 modally refines A2, and write A1 ≤m A2, whenever there
exists a modal refinement R such that for all s0

1 ∈ S0
1 , there exists s0

2 ∈ S0
2 for

which (s0
1, s

0
2) ∈ R.

155

8. Logical vs. Behavioral Specifications

An AA is an implementation if S0 = {s0} is a singleton and, for all s ∈ S,
Tran(s) = {M} is a singleton. An LTS (S, s0,−→) can be translated to an
AA by setting S0 = {s0} and Tran(s) = {{(a, t) | s a−→ t}}. This defines an
embedding of LTS into AA whose image are precisely the AA implementations.
As for DMTS, we write JAK for the set of implementations of an AA A, and
through refinement and equivalence are defined accordingly.

8.1.4 Hybrid Modal Logic

As our fourth specification formalism, we introduce a hybrid modal logic,
closely related to the Boolean modal transition systems of [BKL+11] and
hybrid in the sense of [Pri68,Bla00]: it contains nominals, and the semantics
of a nominal is given as all sets which contain the nominal.

For a finite set X of nominals, let L(X) be the set of formulae generated
by the abstract syntax L(X) 3 φ := tt | ff | 〈a〉x | ¬φ | φ ∧ φ, for a ∈ Σ and
x ∈ X. The semantics of a formula is a set of subsets of Σ×X, given as follows:
JttK = 2Σ×X , JffK = ∅, J¬φK = 2Σ×X\JφK, J〈a〉xK = {M ⊆ Σ×X | (a, x) ∈M},
and Jφ ∧ ψK = JφK ∩ JψK. We also define disjunction φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2).

An L-expression is a structure E = (X,X0,Φ) consisting of finite sets
X0 ⊆ X of variables and a mapping Φ : X → L(X). Such an expression is an
implementation if JΦ(x)K = {M} is a singleton for each x ∈ X.

8.8 Definition. Let E1 = (X1, X
0
1 ,Φ1) and E2 = (X2, X

0
2 ,Φ2) be L-expressions.

A relation R ⊆ X1 ×X2 is a modal refinement if it holds for all (x1, x2) ∈ R
and all M1 ∈ JΦ1(x1)K that there exists M2 ∈ JΦ2(x2)K such that

• ∀(a, y1) ∈M1 : ∃(a, y2) ∈M2 : (y1, y2) ∈ R,

• ∀(a, y2) ∈M2 : ∃(a, y1) ∈M1 : (y1, y2) ∈ R.

We say that E1 modally refines E2, denoted E1 ≤m E2, whenever there exists
a modal refinement R such that for all x0

1 ∈ X0
1 , there exists x0

2 ∈ X0
2 for

which (x0
1, x

0
2) ∈ R.

We can translate an LTS (S, s0,−→) to an L-expression (S, S0,Φ) by set-
ting S0 = {s0} and Φ(s) = ∧

s
a−→t〈a〉t ∧

∧
s 6 b−→u

¬〈b〉u. This defines an embed-
ding of LTS into L-expressions whose image are precisely the L-implementations.
As for DMTS, we write JEK for the set of implementations of an L-expression
E , and through refinement and equivalence are defined accordingly.

8.9 Remark. As all our four specification formalisms have the same type of im-
plementations, labeled transition systems, we can use thorough refinement
and equivalence cross-formalism. As an example example, for a given DMTS
D and an AA A, the expression D ≤t A is valid. We will use these types of
thorough refinement and equivalence in many places throughout the paper.

156

8.2. Structural Equivalence

DMTS da //

dn

��

AA
ad

oo

al

��

ν-calculus // ν-normal formoo

nd

OO

hybrid modal logic

la

OO

Figure 8.1: Six translations between specification formalisms

8.2 Structural Equivalence
We proceed to show that our four specification formalisms are structurally
equivalent. To this end, we shall expose six translations between them, see
Figure 8.1. Section 8.2.1 is concerned with dn and nd, Section 8.2.2 with al
and la, and Section 8.2.3 with da and ad. We show in Theorems 8.11, 8.13
and 8.14 that all six translations preserve and reflect modal refinement.

8.2.1 DMTS vs. the Modal ν-Calculus
Our first two translations are rather straight-forward. For a DMTS D =
(S, S0, 99K,−→) and all s ∈ S, define ♦(s) = {N | s −→ N} and, for each
a ∈ Σ, �a(s) = {t | s a

99K t}. Then, let

∆(s) =
∧

N∈♦(s)

(∨
(a,t)∈N

〈a〉t
)
∧
∧
a∈Σ

[a]
(∨
t∈�a(s)

t
)

(8.3)

and define the (normal-form) ν-calculus expression dn(D) = (S, S0,∆).
Note how the formula precisely expresses that we demand at least one

of every choice of disjunctive must-transitions (first part) and permit all
may-transitions (second part); this is similar to the characteristic formulae
of [Lar89].

Conversely, for a ν-calculus expression N = (X,X0,∆) in normal form,
let

99K = {(x, a, y) ∈ X × Σ×X | y ∈ �a(x)},
−→ = {(x,N) | x ∈ X,N ∈ ♦(x)}.

and define the DMTS nd(N) = (X,X0, 99K,−→). Note how this is a simple
syntactic translation from diamonds to disjunctive must-transitions and from
boxes to may-transitions. Also, the two translations are inverse to each other:
dn(nd(N)) = N and nd(dn(D)) = D.

8.10 Example. Consider the ν-calculus formula

X =
(
〈a〉(〈b〉X ∧ [a]ff) ∧ [b]ff

)
∨ [a]ff .

157

8. Logical vs. Behavioral Specifications

X1 = 〈a〉Y ∧ [a]tt ∧ [b]ff
X2 = [a]ff ∧ [b]tt
Y = 〈b〉(X1 ∨X2) ∧ [a]ff ∧ [b]tt

X1

ttX2

Y

aa

b

b

b

b

a, b

Figure 8.2: ν-calculus expression in normal form and its DMTS translation,
cf. Example 8.10. The state corresponding to ff is inconsistent and not shown

Converting the formula into the normal form of Lemma 8.4 yields the result
given in Figure 8.2 (left), where both X1 and X2 are initial variables. The
resulting DMTS is illustrated in Figure 8.2 (right).

The following theorem follows easily:

8.11 Theorem. For all DMTS D1, D2, D1 ≤m D2 iff dn(D1) ≤m dn(D2). For
all ν-calculus expressions N1, N2 in normal form, N1 ≤m N2 iff nd(N1) ≤m
nd(N2). �

As a consequence, we can now show that the fixed-point semantics and
our refinement semantics for the modal ν-calculus agree:

8.12 Theorem. For any LTS I and any ν-calculus expression N in normal form,
I |= N iff I ≤m N .

Proof: We show that I ≤m D iff I |= dn(D) for any DMTS D; the claim
then follows because I ≤m N iff I ≤m nd(N) iff I |= dn(nd(N)) = N .

Write I = (I, i0,−→I), D = (S, S0, 99K,−→), and dn(D) = (S, S0,∆).
We start with the only-if part. The proof is done by coinduction. We

define the assignment σ : S → 2I as follows: σ(t) = {j ∈ I | j ≤m t}. We need
to show that for every s ∈ S, σ(s) ⊆ J∆(s)Kσ. Let i ∈ σ(s).

As i ≤m s, we know that (1) ∀s −→ N : ∃i a−→I j, (a, t) ∈ N : j ≤m t and
(2) ∀i a−→I j : ∃s a

99K t : j ≤m t.
Due to (1), we see that for all N ∈ ♦(s), there is i a−→I j and (a, t) ∈ N

such that j ∈ σ(t) and i ∈ J〈a〉tKσ. Hence i ∈ ∧N∈♦(s)
∨

(a,t)∈N J〈a〉t)Kσ =
J
∧
N∈♦(s)

∨
(a,t)∈N 〈a〉t)Kσ.

Due to (2), it holds that for every a ∈ Σ and every i a−→I j, there is t ∈
�a(s) such that j ∈ σ(t) ⊆ J

∨
t∈�a(s) tKσ. Hence i ∈ ∧a∈ΣJ[a](∨t∈�a(s) t)Kσ =

J
∧
a∈Σ[a](∨t∈�a(s) t)Kσ. Altogether, we have shown that i ∈ J∆(s)Kσ.
Clearly, there is s0 ∈ S0 such that i0 ∈ σ(s0). Therefore, I |= dn(D).
For the other direction, define a relation R ⊆ I×S by R = {(j, t) | j |= t}.

We show that R satisfies the conditions of modal refinement.

158

8.2. Structural Equivalence

Let (i, s) ∈ R. As i |= s, we know that (1) ∀N ∈ ♦(s) : ∃(a, t) ∈ N : i |=
〈a〉t and (2) ∀a ∈ Σ : i |= [a](∨t∈�a(s) t).

By (1), we know that for all s −→ N , there is (a, t) ∈ N and i a−→I j such
that j |= t. By (2), it holds that for all i a−→I j, there is s a

99K t so that j |= t.
We have shown that i ≤m s.

Clearly, there is s0 ∈ S0 for which (i0, s0) ∈ R, hence I ≤m D. �

8.2.2 AA vs. Hybrid Modal Logic
Also the translations between AA and our hybrid modal logic are straight-
forward. For an AA A = (S, S0,Tran) and all s ∈ S, let

Φ(s) =
∨

M∈Tran(s)

(∧
(a,t)∈M

〈a〉t ∧
∧

(b,u)/∈M
¬〈b〉u

)
and define the L-expression al(A) = (S, S0,Φ).

For an L-expression E = (X,X0,Φ) and all x ∈ X, let Tran(x) = JΦ(x)K
and define the AA la(E) = (X,X0,Tran).

8.13 Theorem. For all AA A1, A2, A1 ≤m A2 iff al(A1) ≤m al(A2). For all
L-expressions E1, E2, E1 ≤m E2 iff la(E1) ≤m la(E2).

Proof: We show that for any AA (S, S0,Tran) and any L-expression (S, S0,Φ),
Tran(s) = JΦ(s)K for every s ∈ S, for both translations. For the second one,
la, this is clear by definition, and for the first,

JΦ(s)K = J
∨

M∈Tran(s)

(∧
(a,t)∈M

〈a〉t ∧
∧

(b,u)/∈M
¬〈b〉u

)
K

=
⋃

M∈Tran(s)

(⋂
(a,t)∈M

{M ′ | (a, t) ∈M ′} ∩
⋂

(b,u)/∈M
{M ′ | (b, u) /∈M ′}

)
=

⋃
M∈Tran(s)

(
{M ′ | ∀(a, t) ∈M : (a, t) ∈M ′}

∩ {M ′ | ∀(b, u) /∈M : (b, u) /∈M ′}
)

=
⋃

M∈Tran(s)

(
{M ′ |M ⊆M ′} ∩ {M ′ |M ′ ⊆M}

)
=

⋃
M∈Tran(s)

{M} = Tran(s)

as was to be shown. �

8.2.3 DMTS vs. AA
The translations between DMTS and AA are somewhat more intricate. For a
DMTS D = (S, S0, 99K,−→) and all s ∈ S, let

Tran(s) = {M ⊆ Σ× S | ∀(a, t) ∈M : s a
99K t,∀s −→ N : N ∩M 6= ∅}

159

8. Logical vs. Behavioral Specifications

and define the AA da(D) = (S, S0,Tran).
For an AA A = (S, S0,Tran), define the DMTS ad(A) = (D,D0, 99K,−→)

as follows:

D = {M ∈ Tran(s) | s ∈ S} ∪ { }
D0 = {M0 ∈ Tran(s0) | s0 ∈ S0} ∪ { | if ∃s0 ∈ S0 : Tran(s0) = ∅}
−→ =

{(
M, {(a,M ′) |M ′ ∈ Tran(t)}

) ∣∣ (a, t) ∈M,Tran(t) 6= ∅
}
∪{(

M, {(a,)}
)
| (a, t) ∈M,Tran(t) = ∅

}
∪
{(
 , ∅

)}
99K = {(M,a,M ′) | ∃M −→ N : (a,M ′) ∈ N}

Note that the state spaces of A and ad(A) are not the same; the one of ad(A)
may be exponentially larger.

8.14 Theorem. For all DMTS D1, D2, D1 ≤m D2 iff da(D1) ≤m da(D2). For all
AA A1, A2, A1 ≤m A2 iff ad(A1) ≤m ad(A2).

Proof: There are four parts to this proof, two implications to show the first
claim of the theorem and two implications for the second claim.
• D1 ≤m D2 implies da(D1) ≤m da(D2):

Write D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2). We have a

modal refinement relation (in the DMTS sense) R ⊆ S1×S2. Now let (s1, s2) ∈
R and M1 ∈ Tran1(s1), and define

M2 = {(a, t2) | s2
a
99K2 t2,∃(a, t1) ∈M1 : (t1, t2) ∈ R}.

We prove that M2 ∈ Tran2(s2). First we notice that by construction,
indeed s2

a
99K2 t2 for all (a, t2) ∈ M2. Now let s2 −→2 N2; we need to show

that N2 ∩M2 6= ∅.
By DMTS refinement, we have s1 −→1 N1 such that ∀(a, t1) ∈ N1 :

∃(a, t2) ∈ N2 : (t1, t2) ∈ R. We know thatN1∩M1 6= ∅, so let (a, t1) ∈ N1∩M1.
Then there also is (a, t2) ∈ N2 with (t1, t2) ∈ R. But (a, t2) ∈ N2 implies
s2

a
99K2 t2, hence (a, t2) ∈M2.
Now the condition

∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R

in the definition of AA refinement is satisfied by construction. For the inverse
condition, let (a, t1) ∈ M1, then s1

a
99K1 t1, so by DMTS refinement, there is

t2 ∈ S2 with s2
a
99K2 t2 and (t1, t2) ∈ R, whence (a, t2) ∈M2 by construction.

• da(D1) ≤m da(D2) implies D1 ≤m D2:
Let R ⊆ S1 × S2 be a modal refinement relation in the AA sense and

(s1, s2) ∈ R. Let s1
a
99K1 t1 and M1 = {(a, t1)} ∪ ⋃s1−→1N1 N1, then M1 ∈

Tran1(s1) by construction. As R is a modal refinement, this implies that there
is M2 ∈ Tran2(s2) and (a, t2) ∈M2 with (t1, t2) ∈ R, but then also s2

a
99K2 t2

as was to be shown.

160

8.2. Structural Equivalence

Let s2 −→2 N2 and assume, for the sake of contradiction, that there is no
s1 −→1 N1 for which ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R holds. Then
for each s1 −→1 N1, there is an element (aN1 , tN1) ∈ N1 for which there is no
(aN1 , t2) ∈ N2 with (tN1 , t2) ∈ R.

LetM1 = {(aN1 , tN1) | s1 −→1 N1}, thenM1 ∈ Tran1(s1) by construction.
Hence we have M2 ∈ Tran2(s2) satisfying the conditions in the definition of
AA refinement. By construction of Tran2(s2), s2 −→2 N2 and N2 ∩M2 6= ∅,
so let (a, t2) ∈ N2 ∩M2. Then there exists (a, t1) ∈M1 for which (t1, t2) ∈ R,
in contradiction to the definition of M1.
• A1 ≤m A2 implies ad(A1) ≤m ad(A2):

Write A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), with DMTS transla-

tions (D1, D
0
1,−→1, 99K1), (D2, D

0
2,−→2, 99K2). We have a modal refinement

relation (in the AA sense) R ⊆ S1 × S2. Define R′ ⊆ D1 ×D2 by

R′ = {(,M2) |M2 ∈ D2}
∪ {(M1,M2) | ∃(s1, s2) ∈ R : M1 ∈ Tran1(s1),M2 ∈ Tran(s2),

∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R}.

We show that R′ is a modal refinement in the DMTS sense. Let (M1,M2) ∈ R′.
If M1 = then R′ trivially satisfies the modal refinement conditions as

there is no a
99K transition and every M2 −→ N2 is matched by −→ ∅. Let

us henceforth assume that M1 6= .
Let M2 −→2 {(a,)}. By construction of −→2, there is (a, t2) ∈ M2 with

Tran2(t2) = ∅. Then (M1,M2) ∈ R′ implies that there must be (a, t1) ∈ M1
for which (t1, t2) ∈ R. As R is a AA refinement, this means that Tran1(t1) = ∅
and thusM1 −→1 {(a,)}. Clearly, (a,) is matched by (a,) and (,) ∈ R′.

Let M2 −→2 N2 6= {(a,)}. By construction of −→2, there is (a, t2) ∈M2
such that N2 = {(a,M ′2) |M ′2 ∈ Tran2(t2)} 6= ∅. Then (M1,M2) ∈ R′ implies
that there must be (a, t1) ∈M1 for which (t1, t2) ∈ R.

If Tran1(t1) = ∅, we know that M1 −→1 {(a,)}. We can then match
(a,) with arbitrary (a,M ′2) ∈ N2 as (,M ′2) ∈ R′.

If Tran1(t1) 6= ∅, we can define N1 = {(a,M ′1) | M ′1 ∈ Tran1(t1)}, whence
M1 −→1 N1. We show that ∀(a,M ′1) ∈ N1 : ∃(a,M ′2) ∈ N2 : (M ′1,M ′2) ∈ R′.
Let (a,M ′1) ∈ N1, then M ′1 ∈ Tran1(t1). From (t1, t2) ∈ R we hence get M ′2 ∈
Tran2(t2), and then (a,M ′2) ∈ N2 by construction of N2 and (M ′1,M ′2) ∈ R′
due to the conditions of AA refinement (applied to (t1, t2) ∈ R).

Let M1
a
99K1 . We then have M1 −→ {(a,)} which means that there is

(a, t1) ∈M1 with Tran1(t1) = ∅. By (M1,M2) ∈ R′ we get (a, t2) ∈M2, hence
M2 −→2 N2 with some (a,M ′2) ∈ N2 and M2

a
99K M ′2. By definition of R′,

(,M ′2) ∈ R′.
Let M1

a
99K1 M ′1 6= , then we have M1 −→1 N1 for which (a,M ′1) ∈ N1

and by construction of 99K1. This in turn implies that there must be (a, t1) ∈

161

8. Logical vs. Behavioral Specifications

M1 such that N1 = {(a,M ′′1) |M ′′1 ∈ Tran1(t1)} 6= ∅, and then by (M1,M2) ∈
R′, we get (a, t2) ∈ M2 for which (t1, t2) ∈ R. Due to the conditions of
AA refinement, Tran2(t2) 6= ∅. Let N2 = {(a,M ′2) | M ′2 ∈ Tran2(t2)}, then
M2 −→2 N2 and hence M2

a
99K2 M ′2 for all (a,M ′2) ∈ N2. Furthermore, the

argument above shows that there is (a,M ′2) ∈ N2 for which (M ′1,M ′2) ∈ R′.
We miss to show that R′ is initialised. If ∈ D0

1, then (,M0
2) ∈ R′ for

any M0
2 ∈ D0

2. If 6= M0
1 ∈ D0

1, then we have s0
1 ∈ S0

1 with M0
1 ∈ Tran1(s0

1).
As R is initialised, this entails that there is s0

2 ∈ S0
2 with (s0

1, s
0
2) ∈ R, which

gives usM0
2 ∈ Tran2(s0

2) which satisfies the AA refinement conditions, whence
(M0

1 ,M
0
2) ∈ R′.

• ad(A1) ≤m ad(A2) implies A1 ≤m A2:
Let R ⊆ D1 ×D2 be a modal refinement relation in the DMTS sense and

define R′ ⊆ S1 × S2 by

R′ = {(s1, s2) | ∀M1 ∈ Tran1(s1) : ∃M2 ∈ Tran2(s2) : (M1,M2) ∈ R} ;

we will show that R′ is an AA modal refinement.
Observe first that (M1,) ∈ R implies M1 = as is the only state in

D1 that has a must transition −→1 ∅. We shall occasionally refer to this
observation in the following.

Let (s1, s2) ∈ R′ and M1 ∈ Tran1(s1), then by construction of R′, we have
M2 ∈ Tran2(s2) with (M1,M2) ∈ R.

Let (a, t2) ∈M2; we need to find (a, t1) ∈M1 such that (t1, t2) ∈ R′.
If Tran2(t2) = ∅, then M2 −→2 {(a,)}. From (M1,M2) ∈ R we get

M1 −→1 N1 such that all (a,M ′1) ∈ N1 are matched by (a,) with (M ′1,) ∈
R. By the observation above, this means that M ′1 = and thus N1 = {(a,)}
due to the construction. This means that there exists (a, t1) ∈ M1 with
Tran1(t1) = ∅. Hence (t1, t2) ∈ R′.

If Tran2(t2) 6= ∅, define N2 = {(a,M ′2) | M ′2 ∈ Tran2(t2)}, then M2 −→2
N2. Now (M1,M2) ∈ R implies that there must be M1 −→1 N1 satisfying
∀(a,M ′1) ∈ N1 : ∃(a,M ′2) ∈ N2 : (M ′1,M ′2) ∈ R. If N1 = {(a,)}, we have
(a, t1) ∈M1 with Tran1(t1) = ∅ and thus trivially (t1, t2) ∈ R′. Otherwise, we
have (a, t1) ∈M1 such that N1 = {(a,M ′1) |M ′1 ∈ Tran1(t1)}; we only miss to
show that (t1, t2) ∈ R′.

Let M ′1 ∈ Tran1(t1), then (a,M ′1) ∈ N1, hence there is (a,M ′2) ∈ N2
with (M ′1,M ′2) ∈ R, but (a,M ′2) ∈ N2 also entails M ′2 ∈ Tran2(t2); thus
(t1, t2) ∈ R′.

Let now (a, t1) ∈M1; we need to find (a, t2) ∈M2 such that (t1, t2) ∈ R′.
If Tran1(t1) = ∅, then M1 −→1 {(a,)} and M1

a
99K . By modal refine-

ment, we have M2
a
99KM ′2 with (,M ′2) ∈ R. In any case (whether M ′2 = or

not), this means that there exists some (a, t2) ∈M2 and trivially (t1, t2) ∈ R′.
In case Tran1(t1) 6= ∅, define N1 = {(a,M ′1) | M ′1 ∈ Tran1(t1)}, then

N1 6= ∅ and M1 −→1 N1. Now let (a,M ′1) ∈ N1, then M1
a
99K1 M ′1, hence

we have M2
a
99K2 M ′2 for some (M ′1,M ′2) ∈ R by modal refinement. Note that

162

8.2. Structural Equivalence

M ′1 6= implies M ′2 6= due to the observation above. By construction of
99K2, this implies that there is M2 −→2 N2 with (a,M ′2) ∈ N2, and we have
(a, t2) ∈ M2 for which N2 = {(a,M ′′2) | M ′′2 ∈ Tran2(t2)}. We show that
(t1, t2) ∈ R′.

Let M ′′1 ∈ Tran1(t1), then (a,M ′′1) ∈ N1, thus M1
a
99K1 M ′′1 , so that

there is M2
a
99K2 M ′′2 with (M ′′1 ,M ′′2) ∈ R. By construction of 99K2, there is

M2 −→2 N
′
2 with (a,M ′′2) ∈ N ′2, hence also M ′′2 ∈ Tran2(t2).

We miss to show that R′ is initialised. Let s0
1 ∈ S0

1 ; if Tran1(s0
1) = ∅,

then trivially (s0
1, s

0
2) ∈ R′ for any s0

2 ∈ S0
2 . If Tran1(s0

1) 6= ∅, then there is
M0

1 ∈ Tran1(s0
1). As R is initialised, this gets usM0

2 ∈ D2 with (M0
1 ,M

0
2) ∈ R,

but M0
2 ∈ Tran2(s0

2) for some s0
2 ∈ S0

2 , and then (s0
1, s

0
2) ∈ R′. �

8.15 Corollary. For all DMTS D, ν-calculus expressions N , AA A, and L-ex-
pressions E, dn(D) ≡t da(D) ≡t D, nd(N) ≡t N , ad(A) ≡t al(A) ≡t A, and
la(E) ≡t E. �

8.2.4 Translation Complexity
We have shown that our four specification formalisms are structurally equiv-
alent, which will be useful for us from a theoretical point of view. From a
practical point of view however, some of the translations may incur expo-
nential blow-ups, hence care has to be taken. On the other hand, all our
translations can be implemented in an on-the-fly manner, only creating states
when necessary.

We already noticed that the translation of ν-calculus expressions into nor-
mal form may incur an exponential blow-up, so this also affects our translation
from the modal ν-calculus to DMTS. When considering only normal-form ex-
pressions, the translations to and from DMTS incur no blow-ups.

When translating from AA to our hybrid modal logic, we see that, due
to the complementation (b, u) /∈M , the length of a formula Φ(s) is quadratic
in the representation of Tran(s). For the reverse translation, the number of
Tran constraints can be exponential in the number of states. The worst case
is Φ(s) = tt, which gets translated to Tran(s) = 22Σ×S .

8.16 Remark. There is a direct translation from DMTS to hybrid modal logic:
for a DMTS D = (S, S0, 99K,−→), define dl(D) = (S, S0,Φ) with

Φ(s) =
∧

s−→N

∨
(a,t)∈N

〈a〉t ∧
∧
s 6
a
99Ku

¬〈a〉u

for all s ∈ S. This translation is again quadratic, and da(D) = la(dl(D)).

The translations between DMTS and AA may involve exponential blow-
ups both ways. For the first translation, we can see this by considering the one-
state DMTS ({s}, {s}, 99K,−→) with 99K = {(s, a, s) | a ∈ Σ} and −→ = ∅.
Then Tran(s) = 22Σ×S .

163

8. Logical vs. Behavioral Specifications

The fact that also the translation from AA to DMTS may be exponential in
space is evident from the definition. To see that this blow-up is unavoidable,
we expose a special property of the Tran-sets arising in the DMTS-to-AA
translation.

8.17 Lemma. Let D = (S, S0, 99K,−→) be a DMTS and s ∈ S. For all M1,M2 ∈
Tran(s) and all M ⊆ Σ× S with M1 ⊆M ⊆M1 ∪M2, also M ∈ Tran(s).

Proof: For i = 1, 2, since Mi ∈ Tran(s), we know that

• for all (a, t) ∈Mi, s
a
99K t, and

• for all s −→ N , there is (a, t) ∈Mi ∩N .

Now as M ⊆ M1 ∪M2, it directly follows that for all (a, t) ∈ M , we have
s

a
99K t. Moreover, since M1 ⊆ M , we also have that for all s −→ N , there

exists (a, t) ∈M ∩N . As a consequence, M ∈ Tran(s). �

Using this, we can show the following.

8.18 Proposition. There exists a one-state AA A for which any DMTS D ≡t A
has at least 2n−1 states, where n is the size of the alphabet Σ.

Proof: Let Σ = {a1, . . . , an} andA = ({s0}, {s0},Tran) the AA with Tran(s0) =
{M ⊆ Σ × {s0} | ∃k : |M | = 2k} the transition constraint containing all dis-
junctive choices of even cardinality. Let D = (T, T 0, 99K,−→) be a DMTS
with D ≡t A; we claim that D must have at least 2n−1 initial states.

Assume, for the purpose of contradiction, that T 0 = {t01, . . . , t0m} withm <
2n−1. AsD ≡t A, we must have⋃mi=1 Tran(t0i) = {M ⊆ Σ×T | ∃k : |M | = 2k},
so that there is an index j ∈ {1, . . . ,m} for which Tran(t0j) = {M1,M2}
contains two different disjunctive choices from Tran(s0). By Lemma 8.17,
also M ∈ Tran(t0j) for any M with M1 ⊆ M ⊆ M1 ∪M2. But M1 ∪M2 has
greater cardinality than M1, so that there will be an M ∈ Tran(t0j) with odd
cardinality. �

Figure 8.3 sums up the translation complexities.

8.2.5 Initial States
We finish this section with a justification for why we allow our specifications
to have several (or possibly zero) initial states. The first lemma shows that
for AA, and up to thorough refinement, this is inessential; due to their close
relationship, this also holds for L-expressions.

8.19 Lemma. For any AA A1, there is an AA A2 = (S2, S
0
2 ,Tran2) with S0

2 = {s0
2}

a singleton and A1 ≡t A2.

164

8.2. Structural Equivalence

DMTS X //

L

��

Q

&&

AA
X

oo

Q

��

ν-calculus X // ν-normal form
L

oo

L

OO

hybrid modal logic

X

OO

Figure 8.3: Complexity of the translations between specification formalisms.
“L” stands for linear (no blow-up), “Q” for quadratic blow-up, and “X” for
exponential blow-up

Proof: Write A1 = (S1, S
0
1 ,Tran1). If S0

1 = ∅, we can let S2 = S0
2 = {s0

2}
and Tran2(s0

2) = ∅. Otherwise, we let S2 = S1 ∪ {s0
2}, where s0

2 is a new
state, and Tran2(s) = Tran1(s) for s ∈ S1, Tran2(s0

2) = ⋃
s01∈S

0
1
Tran1(s0

1). Let
R = idS1 ∪{(s0

1, s
0
2) | s0

1 ∈ S0
1}, then R is easily seen to be a modal refinement

showing A1 ≤m A2.
We show that A2 ≤t A1. Let I = (S, s0,−→) ∈ JA2K, then we have a

modal refinement R2 ⊆ S ×S2, i.e., such that for all (s, s2) ∈ R2, there exists
M2 ∈ Tran2(s2) for which

∀s a−→ t : ∃(a, t2) ∈M2 : (t, t2) ∈ R2 ,

∀(a, t2) ∈M2 : ∃s a−→ t : (t, t2) ∈ R2 .
(8.4)

Now (s0, s0
2) ∈ R2 implies that there must be M2 ∈ Tran2(s0

2) for which (8.4)
holds, but by definition of Tran2(s0

2), this entails that there is s0
1 ∈ S0

1 for
which M2 ∈ Tran1(s0

1). Define R1 ⊆ S × S1 by

R1 = {(s, s2) | (s, s2) ∈ R2, s2 6= s0
2} ∪ {(s0, s0

1)} ,

then R1 is a modal refinement showing I ≤m A1. �

In order to show that the above statement does not hold for DMTS, we
expose a special property of DMTS with single initial states, cf. [BKLS09,
Example 7.8]. Recall that for LTS I1 = (S1, s

0
1,−→1), I2 = (S2, s

0
2,−→2),

their nondeterministic sum is given by I1 + I2 = (S, s0,−→) with S = S1 ∪
S2 ∪ {s0} (with the unions disjoint), where s0 is a new state, and transitions
s

a−→ t iff s
a−→1 t or s a−→2 t together with s0 a−→ t for all t with s0

1
a−→1 t

or s0
2

a−→2 t.

8.20 Lemma. If D = (S, {s0}, 99K,−→) is a DMTS with a single initial state and
I1, I2 ∈ JDK, then also I1 + I2 ∈ JDK.

Proof: Let i01 and i02 be the initial states of I1 and I2, respectively. Let further
i0 be the initial state of I1 + I2. Assume that we have modal refinements R1

165

8. Logical vs. Behavioral Specifications

D

a

b

I1

a

I2

b

Figure 8.4: DMTS D with two initial states and its two implementations I1,
I2

and R2 such that (i01, s0) ∈ R1 and (i02, s0) ∈ R2. Let R = R1 ∪R2 ∪{(i0, s0)}.
Clearly, R is a modal refinement witnessing I1 + I2 ≤m D.

Now let D be the DMTS, with two initial states, depicted in Figure 8.4,
then JDK = {I1, I2} as also seen in Figure 8.4, but I1 + I2 /∈ JDK. Hence D is
not thoroughly equivalent to any DMTS with a single initial state.

Applying the construction from the proof of Lemma 8.19 to the AA gen-
erated by the DMTS in Figure 8.4 gives an AA A2 = (S2, {s0

2},Tran2) with
Tran2(s0

2) = {{(a, s1)}, {(b, t1)}} (where s1 and t1 are the target states of the
a and b transitions in D, respectively). This specifies an exclusive disjunction:
one of a and b has to be implemented, but not both. This also serves to show
that Lemma 8.20 does not hold for AA.

8.21 Corollary. There is a DMTS D1 for which there is no DMTS D2 = (S2, S
0
2 ,

99K,−→) with S0
2 = {s0

2} a singleton and D1 ≡t D2. �

Due to their close relationship with DMTS, this property also holds for ν-
calculus expressions in normal form: there exist ν-calculus expressions which
are not equivalent to any normal-form ν-calculus expression with a single ini-
tial variable. (Of course, omitting “normal form” would make this statement
invalid; as disjunction is part of the syntax, any ν-calculus expression is thor-
oughly equivalent to one with only one initial variable.)

We also remark that the above argument can easily be extended to show
that for any k ∈ N, there exists a DMTS with k+ 1 initial states which is not
thoroughly equivalent to any DMTS with at most k initial states.

Using again the example in Figure 8.4, we can also show that the statement
in Lemma 8.19 does not hold when thorough equivalence is replaced by modal
equivalence. Let A1 = da(D), with initial states s0 and t0, be the AA transla-
tion of the DMTS in Figure 8.4 and assume that there exists an AA A2 with
single initial state s0

2 for which A2 ≤m A1. Then there is a modal refinement
R with (s0

2, s
0), (s0

2, t
0) ∈ R. Let M2 ∈ Tran2(s0

2), then by (s0
2, s

0) ∈ R, there
must be some (a, t2) ∈M2 with (t2, s1) ∈ R. By (s0

2, t
0) ∈ R, this implies that

there must be (a, t1) ∈ Tran1(t0), a contradiction.

166

8.3. Specification Theory

8.3 Specification Theory
Behavioral specifications typically come equipped with operations which al-
low for compositional reasoning, viz. conjunction, composition and quotient,
cf. [BDH+12]. On deterministic MTS, these operations can be given easily
using simple structural operational rules. For non-deterministic systems this
is significantly harder.

We remark that composition and quotient operators are well-known from
some logics, such as, e.g., linear [Gir87] or spatial logic [CC03], and were ex-
tended to quite general contexts [CLM11]. However, whereas these operators
are part of the formal syntax in those logics, for us they are simply opera-
tions on logical expressions (or DMTS, or AA). Consequently, composition is
generally only a sound over-approximation of the semantic composition.

Given the structural equivalence of DMTS, the modal ν-calculus, AA, and
our hybrid modal logic exposed in the previous section, it suffices to introduce
the operations for one of the four types of specifications. On the other hand,
we will often state properties for all four types of specifications at the same
time, letting S stand for a specification of any type.

8.3.1 Disjunction and Conjunction
Disjunction of specifications is easily defined as we allow multiple initial states.
For DMTS D1 = (S1, S

0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2), we can hence

define D1 ∨D2 = (S1 ∪ S2, S
0
1 ∪ S0

2 , 99K1 ∪ 99K2,−→1 ∪−→2) (with all unions
disjoint). Similar definitions are available for the other types of specifications,
and disjunction commutes with the translations.

Conjunction for DMTS is an extension of the construction from [BCK11]
for multiple initial states. Given two DMTS D1 = (S1, S

0
1 , 99K1,−→1), D2 =

(S2, S
0
2 , 99K2,−→2), we define D1 ∧ D2 = (S, S0, 99K,−→) with S = S1 × S2,

S0 = S0
1 × S0

2 , and

• (s1, s2) a
99K (t1, t2) iff s1

a
99K1 t1 and s2

a
99K2 t2,

• for all s1 −→1 N1, (s1, s2) −→ {(a, (t1, t2)) | (a, t1) ∈ N1, s2
a
99K2 t2},

• for all s2 −→2 N2, (s1, s2) −→ {(a, (t1, t2)) | (a, t2) ∈ N2, s1
a
99K1 t1}.

For AA, conjunction can be defined using auxiliary projection functions
πi : 2Σ×S1×S2 → 2Σ×Si given by

π1(M) ={(a, s1) | ∃s2 ∈ S2 : (a, s1, s2) ∈M} ,
π2(M) ={(a, s2) | ∃s1 ∈ S1 : (a, s1, s2) ∈M} .

Then for AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), we let A1 ∧ A2 =

(S, S0,Tran), with S = S1 × S2, S0 = S0
1 × S0

2 and Tran((s1, s2)) = {M ⊆
Σ× S | π1(M) ∈ Tran1(s1), π2(M) ∈ Tran2(s2)}.

167

8. Logical vs. Behavioral Specifications

We can also define conjunction for L-expressions, using similar auxiliary
mappings on formulae. For sets X1, X2 and i ∈ {1, 2}, we define ρi : L(Xi)→
L(X1 ×X2) inductively, by

• ρi(tt) = tt, ρi(ff) = ff , ρi(¬φ) = ¬ρi(φ), ρi(φi ∧ φ2) = ρi(φi) ∧ ρi(φ2),

• ρ1(〈a〉x1) = ∨
x2∈X2〈a〉(x1, x2),

• ρ2(〈a〉x2) = ∨
x1∈X1〈a〉(x1, x2).

Then, for L-expressions E1 = (X1, X
0
1 ,Φ1), E2 = (X2, X

0
2 ,Φ2), we let E1∧E2 =

(X1 ×X2, X
0
1 ×X0

2 ,Φ) with Φ((x1, x2)) = ρ1(Φ1(x1)) ∧ ρ2(Φ2(x2)).

8.22 Lemma. For all DMTS D1, D2, AA A1, A2, and L-expressions E1, E2,
da(D1∧D2) = da(D1)∧da(D2), al(A1∧A2) = al(A1)∧al(A2), and la(E1∧E2) =
la(E1) ∧ la(E2).

Note that above makes no statement about the ad translation; due to the
change of state space during the translation, equality does not hold here.

Proof: The last two claims follow easily once one notices that for i ∈ {1, 2}
and all M , M |= ρi(φ) iff πi(M) |= φ. To show the first claim, let D1 =
(S1, S

0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) be DMTS, with AA trans-

lations da(D1) = (S1, S
0
1 ,Tran1) and da(D2) = (S2, S

0
2 ,Tran2). Write A∧ =

da(D1 ∧ D2) and A∧ = da(D1) ∧ da(D2); we show that A∧ = A∧.
First, remark that A∧ and A∧ have precisely the same state space S1×S2

and initial states S0
1 × S0

2 . We now show that they have the same transition
constraints. Let Tran∧ (resp. Tran∧) be the transition constraints mapping of
A∧ (resp. A∧). Let (s1, s2) ∈ S1 × S2 and M ∈ Tran∧(s1, s2).

By construction of Tran∧, there must be M1 ∈ Tran1(s1) and M2 ∈
Tran2(s2) such that π1(M) = M1 and π2(M) = M2. We show that M ∈
Tran∧(s1, s2). Let (a, (t1, t2)) ∈M . Since π1(M) = M1 and π2(M) = M2, we
have (a, t1) ∈ M1 and (a, t2) ∈ M2. As a consequence, there are transitions
s1

a
99K t1 and s2

a
99K t2 in D1 and D2, respectively. Thus, by construction,

there is a transition (s1, s2) a
99K (t1, t2) in D1 ∧ D2.

Let (s1, s2) −→ N in D1 ∧ D2. By construction, N is such that either (1)
there exists N1 such that s1 −→ N1 in D1 and N = {(a, (t1, t2)) | (a, t1) ∈
N1, (s1, s2) a

99K (t1, t2)}, or (2) there exists N2 such that s2 −→ N2 in D2 and
N = {(a, (t1, t2)) | (a, t2) ∈ N2, (s1, s2) a

99K (t1, t2)}. Assume that (1) holds
(case (2) being symmetric). Since M1 ∈ Tran1(s1), there must be (a, t1) ∈
N1 ∩M1. As π1(M) = M1, there must be t2 ∈ S2 such that (a, (t1, t2)) ∈M .
As a consequence, there is (a, (t1, t2)) ∈M ∩N .

We have shown that M ∈ Tran∧(s1, s2). Similarly, we can show that for
all M ∈ Tran∧(s1, s2), we also have M ∈ Tran∧(s1, s2). We can thus conclude
that Tran∧ = Tran∧, hence A∧ = A∧. �

168

8.3. Specification Theory

8.23 Theorem. For all specifications S1, S2, S3,

• S1 ∨ S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3,

• S1 ≤m S2 ∧ S3 iff S1 ≤m S2 and S1 ≤m S3,

• JS1 ∨ S2K = JS1K ∪ JS2K, and JS1 ∧ S2K = JS1K ∩ JS2K.

Proof: The proof falls into six parts. We show the second statement of the
theorem separately for DMTS and for AA. For the other formalisms, the
statement then follows by structural equivalence.
• S1 ∨ S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3:

Any modal refinement R ⊆ (S1 ∪ S2) × S3 splits into two refinements
R1 ⊆ S1 × S3, R2 ⊆ S2 × S3 and vice versa.
• S1 ≤m S2 ∧ S3 is implied by S1 ≤m S2 and S1 ≤m S3:

We first show this proof for DMTS. Let Si = (Si, S0
i , 99Ki,−→i), for i =

1, 2, 3, be DMTS and R2 ⊆ S1 × S2, R3 ⊆ S1 × S3 modal refinements and
define R = {(s1, (s2, s3)) | (s1, s2) ∈ R1, (s1, s3) ∈ R3} ⊆ S1× (S2×S3). Then
R is initialised.

Now let (s1, (s2, s3)) ∈ R, then (s1, s2) ∈ R2 and (s1, s3) ∈ R3. Assume
that s1

a
99K1 t1, then by S1 ≤m S2, we have s2

a
99K2 t2 with (t1, t2) ∈ R2.

Similarly, by S1 ≤m S3, we have s3
a
99K3 t3 with (t1, t3) ∈ R3. But then also

(t1, (t2, t3)) ∈ R, and (s2, s3) a
99K (t2, t3) by definition.

Assume that (s2, s3) −→ N . Without loss of generality we can assume
that there is s2 −→2 N2 such that N = {(a, (t2, t3)) | (a, t2) ∈ N2, s3

a
99K3 t3}.

By S1 ≤m S2, we have s1 −→1 N1 such that

∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R2 (8.5)

Let (a, t1) ∈ N1, then also s1
a
99K1 t1, so by S1 ≤m S3, there is s3

a
99K3 t3

with (t1, t3) ∈ R3. By (8.5), we also have (a, t2) ∈ N2 such that (t1, t2) ∈ R2,
but then (a, (t2, t3)) ∈ N and (t1, (t2, t3)) ∈ R.
• S1 ≤m S2 ∧ S3 implies S1 ≤m S2 and S1 ≤m S3:

Let R ⊆ S1 × (S2 × S3) be a (DMTS) modal refinement. We show that
S1 ≤m S2, the proof of S1 ≤m S3 being entirely analogous. Define R2 =
{(s1, s2) | ∃s3 ∈ S3 : (s1, (s2, s3)) ∈ R} ⊆ S1 × S2, then R2 is initialised.

Let (s1, s2) ∈ R2, then we must have s3 ∈ S3 such that (s1, (s2, s3)) ∈ R.
Assume that s1

a
99K1 t1, then also (s2, s3) a

99K (t2, t3) and (t1, (t2, t3)) ∈ R. By
construction we have s2

a
99K2 t2 and s3

a
99K3 t3. Moreover, by definition of R2,

(t1, t2) ∈ R2.
Assume that s2 −→2 N2, then by construction of S2∧S3, (s2, s3) −→ N =

{(a, (t2, t3)) | (a, t2) ∈ N2, s3
a
99K3 t3}. By S1 ≤m S2 ∧ S3, we have s1 −→1 N1

such that ∀(a, t1) ∈ N1 : ∃(a, (t2, t3)) ∈ N : (t1, (t2, t3)) ∈ R.

169

8. Logical vs. Behavioral Specifications

Let (a, t1) ∈ N1, then we have (a, (t2, t3)) ∈ N for which (t1, (t2, t3)) ∈ R.
By construction of N , this implies that there are (a, t2) ∈ N2 and s3

a
99K3 t3.

Moreover, by definition of R2, (t1, t2) ∈ R.
• A1 ≤m A2 ∧ A3 is implied by A1 ≤m A2 and A1 ≤m A3:

Now we show the second part of the lemma for AA. LetAi = (Si,S0
i ,Trani),

for i = 1, 2, 3, be AA and R2 ⊆ S1 × S2, R3 ⊆ S1 × S3 modal refinements and
define R = {(s1, (s2, s3)) | (s1, s2) ∈ R1, (s1, s3) ∈ R3} ⊆ S1× (S2×S3). Then
R is initialised.

Let (s1, (s2, s3)) ∈ R, then (s1, s2) ∈ R2 and (s1, s3) ∈ R3. Let M1 ∈
Tran1(s1), then we have M2 ∈ Tran2(s2) and M3 ∈ Tran3(s3) such that the
pairs M1,M2 and M1,M3 verify the conditions (8.2) in Definition 8.7. Let
M = {(a, (t2, t3)) | (a, t2) ∈M2, (a, t3) ∈M3} ⊆ Σ× S.

We show that π2(M) = M2 and, similarly, π3(M) = M3: It is clear that
π2(M) ⊆M2, so let (a, t2) ∈M2. By the refinement R2, there is (a, t1) ∈M1,
so by the refinement R3, there is (a, t3) ∈M3, but then (a, t2) ∈ π2(M). Using
π2(M) = M2 and π3(M) = M3, we can now conclude thatM ∈ Tran((s2, s3)).

Let (a, t1) ∈ M1, then we have (a, t2) ∈ M2 and (a, t3) ∈ M3 such that
(t1, t2) ∈ R2 and (t1, t3) ∈ R3. But then (t1, (t2, t3)) ∈ R and (a, (t2, t3)) ∈M .

Let (a, (t2, t3)) ∈ M , then (a, t2) ∈ M2 and (a, t3) ∈ M3. By the re-
finements R2 and R3, we have (a, t1) ∈ M1 such that (t1, t2) ∈ R2 and
(t1, t3) ∈ R3, but then also (t1, (t2, t3)) ∈ R.
• A1 ≤m A2 ∧ A3 implies A1 ≤m A2 and A1 ≤m A3:

Let R ⊆ S1 × (S2 × S3) be a (AA) modal refinement. We show that
A1 ≤m A2; the proof of A1 ≤m A3 is similar. Define R2 = {(s1, s2) | ∃s3 ∈
S3 : (s1, (s2, s3)) ∈ R} ⊆ S1 × S2, then R2 is initialised.

Let (s1, s2) ∈ R2, then there is t3 ∈ S3 with (t1, (t2, t3)) ∈ R. Let M1 ∈
Tran1(s1), then we haveM ∈ Tran((s2, s3)) such that the pairM1,M satisfies
conditions (8.2). Let M2 = π2(M) ∈ Tran2(s2).

Let (a, t1) ∈M1, then there is (a, (t2, t3)) ∈M such that (t1, (t2, t3)) ∈ R;
hence (t1, t2) ∈ R and (a, t2) ∈M2.

Let (a, t2) ∈ M2, then there is t3 ∈ S3 such that (a, (t2, t3)) ∈ M . But
then we also have (a, t1) ∈M1 such that (t1, (t2, t3)) ∈ R, thus (t1, t2) ∈ R2.
• JS1 ∨ S2K = JS1K ∪ JS2K and JS1 ∧ S2K = JS1K ∩ JS2K:
JS1 ∧ S2K = JS1K ∩ JS2K is clear from what we just proved: for all im-

plementations I, I ≤m S1 ∧ S2 iff I ≤m S1 and I ≤m S2. For the other
part, it is clear by construction that for any implementation I, any witness
R for I ≤m S1 is also a witness for I ≤m S1 ∨ S2, and similarly for S2, hence
JS1K ∪ JS2K ⊆ JS1 ∨ S2K.

To show the other inclusion, we note that an initialised refinement R wit-
nessing I ≤m S1 ∨ S2 must relate the initial state of I either to an initial
state of S1 or to an initial state of S2. In the first case, and by disjointness,
R witnesses I ≤m S1, in the second, I ≤m S2. Note how it is essential here

170

8.3. Specification Theory

s ta a

b c b c

Figure 8.5: DMTS S and T whose composition cannot be captured precisely

that implementations have but one initial state; this part of the proof would
break down if we were to allow several initial states for implementations. �

8.24 Corollary. With operations ∨ and ∧, each of our four classes of specifications
forms a bounded distributive lattice up to ≡m.

Proof: The bottom elements (up to ≡m) in the lattices are given by spec-
ifications with empty initial state sets. The top elements are the DMTS
({s0}, {s0}, {(s0, a, s0) | a ∈ Σ}, ∅) and its respective translations. The other
lattice properties follow from Theorem 8.23.

We miss to verify distributivity. Let Ai = (Si, S0
i ,Trani), for i = 1, 2, 3,

be AA. The set of states of both A1 ∧ (A2 ∨A3) and (A1 ∧A2)∨ (A1 ∧A3) is
S1×(S2∪S3) = S1×S2∪S1×S3, and one easily sees that the identity relation
is a two-sided modal refinement. Things are similar for the other distributive
law. �

8.3.2 Composition

The composition operator for a specification theory is to mimic, at specifica-
tion level, the parallel composition of implementations. That is to say, if ‖ is a
composition operator for implementations (LTS), then the goal is to extend ‖
to specifications such that for all specifications S1, S2,

JS1‖S2K =
{
I1‖I2 | I1 ∈ JS1K, I2 ∈ JS2K

}
. (8.6)

For simplicity, we use CSP-style synchronisation for parallel composition
of LTS, however, our results readily carry over to other types of composi-
tion. Analogously to the situation for MTS [BKLS09], we have the following
negative result:

8.25 Theorem. There is no operator ‖, for any of our specification formalisms,
which satisfies (8.6).

Proof: We show that there exist DMTS S and T such that there is no DMTS
D with JDK = JSK‖JT K := {I‖J | I ∈ JSK,J ∈ JT K}. They are given in
Figure 8.5; S has initial state s, while T has initial state t. Note that in fact,
S and T are MTS, i.e., no disjunctive must transitions are used.

171

8. Logical vs. Behavioral Specifications

ji0i1i2
· · ·

in
· · · a

b c

aaaaaa

Figure 8.6: Implementation state space in the proof of Theorem 8.25

Ikl

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

a

a

a

a

a

a

a

a

a

a

a

a

b c

b c

Figure 8.7: The nondeterministic sum of Ik and Il, unfolded

We make the following observations about implementations of S and T .
They always admit one or more infinite runs labeled with a’s with one-step b
or c branches. Moreover, all infinite runs in these implementations are of this
form. To each infinite a-run of an implementation we assign its signature, that
is a word over 2{b,c} that describes which one-step branches are available at
each step. This means that every implementation of S has runs with signatures
from {{b}, {b, c}}ω, while every implementation of T has runs with signatures
from {{c}, {b, c}}ω.

We now construct an implementation state space as illustrated in Fig-
ure 8.6. Consider the implementations I1, I2, . . . that share the same state
space and have the initial state i1, i2, . . . , respectively. The implementation
In has only one a-run with the signature ∅n{b, c}∅ω. Note that In is the com-
position of an implementation of S that has only one a-run with the signature
{b}n{b, c}{b}ω and an implementation of T that has only one a-run with the
signature {c}n{b, c}{c}ω.

Assume now that there exists a DMTS D with JDK = JSK‖JT K. As all
In belong to JDK and there is only a finite number of initial states of D,
there has to be at least one initial state of D, say d, such that there exists
a modal refinement R containing both (ik, d) and (il, d) for some numbers
k < l. Let Dd be created from D by changing the set of initial states to the
singleton {d}. As both Ik ≤m Dd and Il ≤m Dd and Dd has only one initial
state, we know by Lemma 8.20 that also Ikl = Ik + Il ≤m Dd. The unfolding
of this implementation is illustrated in Figure 8.7.

We now argue that Ikl /∈ JSK‖JT K. We actually show that it cannot even

172

8.3. Specification Theory

be bisimilar to any I‖J with I ∈ JSK and J ∈ JT K. Let us assume that there
exist such I and J . We make the following observations:

• I has to contain at least one a-run with signature {b}k{b, c}{b}ω. Oth-
erwise, it would be impossible to create the Ik part of Ikl.

• J has to contain at least one a-run with signature {c}l{b, c}{c}ω. Oth-
erwise, it would be impossible to create the Il part of Ikl.

However, these observations mean that I‖J contains at least one a-run with
signature ∅k{c}∅l−k−1{b}∅ω. It is thus not bisimilar to Ikl. �

Given that we cannot have (8.6), the revised goal is to have a sound com-
position operator for which the right-to-left inclusion holds in (8.6). For AA
A1 = (S1, S

0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), we define A1‖A2 = (S, S0,Tran)

with S = S1 × S2, S0 = S0
1 × S0

2 , and for all (s1, s2) ∈ S, Tran(s1, s2) =
{M1‖M2 | M1 ∈ Tran1(s1),M2 ∈ Tran2(s2)}, where M1‖M2 = {(a, (t1, t2)) |
(a, t1) ∈M1, (a, t2) ∈M2}. Composition for DMTS is defined using the trans-
lations to and from AA; note that this may incur an exponential blow-up.

8.26 Lemma. Up to ≡m, the operator ‖ on AA is associative and commutative,
distributes over ∨, and has unit U, where U is the LTS ({s}, s,−→) with
s

a−→ s for all a ∈ Σ.

Proof: Associativity and commutativity are clear. To show distributivity
over ∨, let Ai = (Si, S0

i ,Trani), for i = 1, 2, 3, be AA. We prove that A1‖(A1∨
A3) ≡m A1‖A2 ∨ A1‖A3; right-distributivity will follow by commutativity.
The state spaces of both sides are S1 × S2 ∪ S1 × S3, and it is easily verified
that the identity relation is a two-sided modal refinement.

For the claim that A‖U ≡m A for all AA A = (S, S0,Tran), let u be the
unique state of U and defineR = {((s, u), s) | s ∈ S} ⊆ S×U×S. We show that
R is a two-sided modal refinement. Let ((s, u), s) ∈ R and M ∈ Tran(s, u),
then there must be M1 ∈ Tran(s) for which M = M1‖(Σ × {u}). Thus
M1 = {(a, t) | (a, (t, u)) ∈ M}. Then any element of M has a corresponding
one in M1, and vice versa, and their states are related by R. For the other
direction, let M1 ∈ Tran(s), then M = M1‖(Σ × {u}) = {(a, (t, u)) | (a, t) ∈
M1} ∈ Tran(s, u), and the same argument applies. �

The next theorem is one of independent implementability, as it ensures
that a composition of refinements is a refinement of compositions:

8.27 Theorem. For all specifications S1, S2, S3, S4, S1 ≤m S3 and S2 ≤m S4
imply S1‖S2 ≤m S3‖S4.

173

8. Logical vs. Behavioral Specifications

D1

s1

t1

u1

a

b

a

D2

s2 t2

u2

a

a

a

D1‖D2

s t

u

a

a

a

Figure 8.8: Two DMTS and the reachable parts of the DMTS translation of
their composition. Here, s = {(a, (t1, t2)), (a, (t1, u2))}, t = {(a, (t1, t2))} and
u = ∅

s0

s1

s2

a

a

t0

t1

t2

a

a

s0, t0

s1, t1

s1, t2

s2, t1

s2, t2

a

a

a

a

Figure 8.9: Two MTS and their MTS composition according to [Lar89]

Proof: Let S1 ≤m S3 and S2 ≤m S4, then S1 ∨ S3 ≡m S3 and S2 ∨ S4 ≡m S4.
By distributivity,

S3‖S4 ≡m (S1 ∨ S3)‖(S2 ∨ S4)
≡m S1‖S2 ∨ S1‖S4 ∨ S3‖S2 ∨ S3‖S4 ,

thus
S1‖S2 ∨ S1‖S4 ∨ S3‖S2 ≤m S3‖S4 .

But
S1‖S2 ≤m S1‖S2 ∨ S1‖S4 ∨ S3‖S2 ,

finishing the argument. �

8.28 Example. An example of composition is shown in Figure 8.8. Here the
DMTS translation of D1‖D2 has two initial states; it can be shown that no
DMTS with a single initial state is thoroughly equivalent.

Remark that AA composition is more precise than the composition for
MTS introduced in [Lar89]. The MTS composition is given by the following
rules: (s1, s2) a

99K (t1, t2) whenever s1
a
99K t1 and s2

a
99K t2, (s1, s2) a−→

(t1, t2) whenever s1
a−→ t1 and s2

a−→ t2. The difference between the two
compositions is illustrated in Figure 8.9. The figure shows two MTS and their

174

8.3. Specification Theory

MTS composition; for their AA composition,

Tran(s0, t0) =
{
{(a, (s1, t1))},

{(a, (s1, t1)), (a, (s1, t2))}, {(a, (s1, t1)), (a, (s2, t1))},
{(a, (s1, t1)), (a, (s1, t2)), (a, (s2, t1)), (a, (s2, t2))}

}
. (8.7)

The AA translation of their MTS composition has eight transition constraints
instead of four; note how the four constraints in (8.7) precisely correspond to
the four implementation choices for s0 and t0.

It can easily be shown that generally, AA composition is a refinement
of MTS composition. The following lemma shows a stronger relationship,
namely that the MTS composition is a conservative approximation of the AA
composition.

8.29 Lemma. LetM1,M2,M3 be MTS and let ‖M and ‖A be the MTS and AA
composition, respectively. It holds that M1‖MM2 ≤m M3 iff M1‖AM2 ≤m
M3.

Proof: LetMi = (S0
i , {s0

i }, 99Ki,−→i) be MTS for i = 1, 2, 3. In the follow-
ing, we use the notation s1‖As2 to denote the states (s1, s2) ofM1‖AM2 and
similarly for ‖M.

For an MTS translated into AA, the Tran sets have a special structure,
namely, for all states s, Tran(s) always has a maximal element {(a, t) | s a

99K t}
and a minimal element {(a, t) | s a−→ t} (with respect to set inclusion;
cf. Lemma 8.17 for the similar property for DMTS). Furthermore, we note that
Tran(s1‖As2) ⊆ Tran(s1‖Ms2) and, moreover, Tran(s1‖As2) also has a min-
imal and a maximal element and these elements correspond to the minimal
and maximal element of Tran(s1‖Ms2).

The fact thatM1‖AM2 ≤m M1‖MM2 follows from the observation that
Tran(s1‖As2) ⊆ Tran(s1‖Ms2) for all (s1, s2). This proves the ‘only-if’ part of
the lemma.

To prove the ‘if’ part of the lemma, we let R = {(s1‖Ms2, s3) | s1‖As2 ≤m
s3} and show that it is a modal refinement relation witnessingM1‖MM2 ≤m
M3. Let (s1‖Ms2, s3) ∈ R.

• Let s1‖Ms2
a
99K t1‖Mt2. Then (a, t1‖Mt2) belongs to the maximal element

of Tran(s1‖Ms2), which is also in Tran(s1‖As2). Due to s1‖As2 ≤m s3
we have some N ∈ Tran(s3) with (a, t3) ∈ N such that t1‖At2 ≤m t3.
Thus s3

a
99K t3 and (t1‖Mt2, t3) ∈ R.

• Let s3
a−→ t3. Then all elements of Tran(s3) contain (a, t3). If we now

chose the minimal element M ∈ Tran(s1‖As2) then it has to contain
(a, t1‖At2) such that (t1‖At2 ≤m t3). This means that s1‖Ms2

a−→ t1‖Mt2
and (t1‖Mt2, t3) ∈ R. �

175

8. Logical vs. Behavioral Specifications

8.3.3 Quotient
The quotient operator for a specification theory is used to synthesise specifi-
cations for components of a composition. Hence it is to have the property, for
all specifications S, S1 and all implementations I1, I2, that

I1 ∈ JS1K and I2 ∈ JS/S1K imply I1‖I2 ∈ JSK. (8.8)

Furthermore, S/S1 is to be as permissive as possible.

Quotient for MTS

Before we describe the general construction of the quotient, we start with
a simpler construction that works for the important special case of MTS.
However, MTS are not closed under quotient, cf. [Lar90a, Thm. 5.5]; we show
that the quotient of two MTS will generally be a DMTS.

Recall that MTS have only one initial state and all their must transitions
are singletons. LetM1 = (S1, s

0
1, 99K1,−→1) andM2 = (S2, s

0
2, 99K2,−→2) be

MTS. We defineM1/M2 = (S, s0, 99K,−→) with S = 2S1×S2 , s0 = {(s0
1, s

0
2)},

and the transition relations given as follows.
For s = {(s1

1, s
1
2), . . . , (sn1 , sn2)} ∈ S we say that a ∈ Σ is permissible from

s if for all i = 1, . . . , n either si1
a
99K or si2

a
X99K.

For a permissible from s and i ∈ {1, . . . , n}, let {ti,12 , . . . , ti,mi2 } = {t2 ∈ S2 |
si2

a
99K t2} be an enumeration of the possible states in S2 after an a-transition

from si2. We then define the set of possible transitions from s under a as
pta(s) =

{
{(ti,j1 , ti,j2) | i = 1, . . . , n, j = 1, . . . ,mi}

∣∣ ∀i, j : si1
a
99K ti,j1

}
.

The transitions of s are now given as follows: for every a permissible from
s and every t ∈ pta(s), let s a

99K t. Furthermore, for every si1
a−→ t1 let

s −→ {(a,M) ∈ {a} × pta(s) | ∃t2 : (t1, t2) ∈M, si2
a−→ t2}.

Note that as a special case we obtain ∅ a
99K ∅ for all a ∈ Σ and there are

no must transitions from ∅.

8.30 Example. We illustrate the construction on an example. Let S and T be the
MTS on the top of Figure 8.10. We construct S/T , displayed below; this can
be further simplified into the system on the bottom.

First we construct the may-successors of s0/t0. Both b and c are admissible
due to t0 b

X99K and t0
c
X99K and thus with pt()b(s0/t0) = pt()c(s0/t0) = {∅}.

Consequently, the only successor here is ∅. Further, a is also admissible due
to s0 a

99K. For may-transitions under a, we have to consider all mappings
of successors of t0 to successors of s0, namely {s1/t1, s1/t2}, {s1/t1, s2/t2},
{s2/t1, s1/t2}, and {s2/t1, s2/t2}. Besides, since there is a must-transition
from s0 (to s1), we create a disjunctive must-transition to all successors that
can be used to yield this must-transition s0 a−→ s1 when composed with the
must-transition t0 a−→ t1. These are all successors where t1 is mapped to s1,
hence the first two.

176

8.3. Specification Theory

t0
t1a

t2a

•b

•
c

s0
s1a

s2a

•
b

{s0/t0}

{s1/t1, s1/t2}

{s1/t1, s2/t2}
a

{•/•}
b

b

{s2/t1, s1/t2}
a

b

{s2/t1, s2/t2}

a

∅

a

b

a

a

b, c
a, b, c

a, b, c

{s0/t0}

{s1/t1, s2/t2}
a

{s2/t1, s2/t2}
a

∅

b

a

a
b, c

a, b, c

Figure 8.10: Two nondeterministic MTS, their quotient, and its simplification
by pruning

Further, {s1/t1, s2/t2} is obliged to have a must under b so that it refines
s1 when composed with t1, but cannot have any c in order to match s2 when
composed with t2. Similarly, {s2/t1, s2/t2} has neither c nor b.

The first and third successor of s0/t0 deserve special attention. Firstly,
{s1/t1, s1/t2} has (apart from a may-transition under a) transitions under b:
may to {•/•} and two musts. Both musts are due to s1, but the first one
because of s1 in s1/t1 (leading to {•/•}) and the second one because of s1 in
s1/t2 (leading to an empty disjunction because t2 6−→). The empty disjunction
is drawn as a line not branching anywhere. Note that it is very different from a
may-transition to ∅ and cannot be implemented. States with such a transition
are drawn in gray here and called inconsistent.

Secondly, {s2/t1, s1/t2} is inconsistent for the same reason: it requires to
refine s1 by a composition with t2. As t2 has no must under b, the composition
has none either, hence the must of s1 can never be matched.

We have seen that the construction may produce empty must-disjunctions
and thus also inconsistent states, i.e., states s such that s −→ ∅. Since in-
consistent states have no implementations, their presence in the system is
useless and we can remove them from the system using the procedure of prun-

177

8. Logical vs. Behavioral Specifications

ing. This procedure produces a more readable system that has the same
set of implementations and, moreover, is modally refining the original sys-
tem. The procedure is standard for MTS, see e.g. [BJL+12a]; here we de-
scribe its straightforward adaptation for DMTS. The procedure exhaustively
repeats the following: if there is an inconsistent state s, then remove it to-
gether with all its outgoing transitions (both may and must) and incoming
may-transitions, and each remaining must-transition t −→ D is modified into
t −→ D \ (Σ× {s}); intuitively, we are removing the incoming must-branches
(not the whole transitions). This may of course turn other states inconsistent
and thus the procedure is repeated until there are no more inconsistent states.

8.31 Example. When we apply pruning to the quotient in the previous example,
we obtain the system on the bottom of Figure 8.10. Here the gray inconsis-
tent states are removed and the disjunctive must from {s0/t0} leads only to
{s1/t1, s2/t2}.

Now it is easy to see that T‖(S/T) ≡m S in this case.

Recall from Lemma 8.29 that the MTS composition is a conservative ap-
proximation to the AA composition. This means that the following theorem
holds regardless of which of the two compositions is used.

8.32 Theorem. For all MTS specifications M1, M2 and M3, M1‖M2 ≤m M3
iffM2 ≤m M3/M1.

Proof: In this proof only, let ‖ denote MTS composition.
Write Mi = (Si, s0

i , 99Ki,−→i) for i = 1, 2, 3. We use the following nota-
tion to help distinguish states ofM1‖M2 andM3/M1. The states ofM1‖M2
are denoted by s1‖s2 instead of (s1, s2) while the states of M3/M1 are de-
noted by {s3/s1, . . .} instead of {(s3, s1), . . .}. We also note that for states of
M3/M1, s ⊇ t implies s ≤m t due to the construction.

Now assume that M2 ≤m M3/M1 and let R = {(s1‖s2, s3) | s2 ≤m
{s3/s1}}. We show that R is a witness for M1‖M2 ≤m M3, i.e., that it
satisfies the conditions of Definition 8.2. Let (s1‖s2, s3) ∈ R.

• Let s1‖s2
a
99K t1‖t2. As s2 ≤m {s3/s1} this means that {s3/s1}

a
99K

{t13/t11, . . . , tk3/tk1} = t and t2 ≤m t. Due to the construction of {s3/s1},
we know that there is an index j for which tj1 = t1 and s3

a
99K tj3. Let

t3 = tj3. As t ⊇ {t3/t1}, t ≤m {t3/t1}. Therefore, since t2 ≤m t, we have
t2 ≤m {t3/t1} and thus (t1 ‖ t2, t3) ∈ R.

• Let s3
a−→ t3. This means that {s3/s1} −→ U = {(a, u) ∈ {a} ×

pta({s3/s1}) | ∃t1 : t3/t1 ∈ u, s1
a−→ t1}. As s2 ≤m {s3/s1}, we know

that s2
a−→ t2 and t2 ≤m u for some (a, u) ∈ U . Due to the construction

of U we know that there exists t1 such that t3/t1 ∈ u with s1
a−→ t1.

Thus s1‖s2
a−→ t1‖t2. Again, as u ⊇ {t3/t1}, t2 ≤m {t3/t1}. Therefore,

(t1 ‖ t2, t3) ∈ R.

178

8.3. Specification Theory

Assume, for the other direction of the proof, that M1 ‖ M2 ≤m M3.
Define

R = {(s2, {s1
3/s

1
1, . . . , s

n
3/s

n
1}) | ∀i = 1, . . . , n : si1 ‖ s2 ≤m si3} ;

note that (s2, ∅) ∈ R for all s2 ∈ S2. We show that R is a witness for
M2 ≤m M3/M1. Let (s2, s) ∈ R with s = {s1

3/s
1
1, . . . , s

n
3/s

n
1}.

• Let s2
a
99K t2. If there is no i such that si1

a
99K then s a

99K ∅ and (t2, ∅) ∈
R. Otherwise, for each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,mi} such that
si1

a
99K ti,j1 consider that we have si1‖s2

a
99K ti,j1 ‖t2 and as si1‖s2 ≤m si3 we

also have a corresponding si3
a
99K ti,j3 with ti,j1 ‖t2 ≤m ti,j3 . We fix these

ti,j3 for each i and j. Let t = {ti,j3 /ti,j1 | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}}.
Clearly, s a

99K t and (t2, t) ∈ R.

• Let s −→ U (note that this means that s 6= ∅) and let si3
a−→ ti3 be the

corresponding must transition in the construction. As si1‖s2 ≤m si3, this
means that s2

a−→ t2 and si1
a−→ ti1 such that ti1‖t2 ≤m ti3. This also

means that s2
a
99K t2. We thus build t as we did in the previous case

where for i, j such that ti,j1 = ti1 we choose the corresponding ti,j3 to be
ti3. Clearly (t2, t) ∈ R. �

Quotient for AA

We now introduce the general quotient operator for AA. The construction
is similar to the previous one, with the notions of permissibility and pta(s)
adapted to the more general setting.

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA and define A1/A2 =

(S, S0,Tran), with S = 2S1×S2 . To define the set of initial states, let us first
enumerate the initial states of A2 as follows: S0

2 = {s0,1
2 , . . . , s0,p

2 }. The set of
initial states is given by all possible assignments of states from S0

1 to states
of S0

2 , formally: S0 =
{
{(s0,q

1 , s0,q
2) | q ∈ {1, . . . , p}}

∣∣ ∀q : s0,q
1 ∈ S0

1
}
.

The assignment of transition constraints Tran is given as follows. Let
Tran(∅) = 2Σ×{∅}. For s = {(s1

1, s
1
2), . . . , (sn1 , sn2)} ∈ S, say that a ∈ Σ is

permissible from s if it holds for all i = 1, . . . , n that there is M1 ∈ Tran1(si1)
and t1 ∈ S1 for which (a, t1) ∈ M1, or else there is no M2 ∈ Tran2(si2) and
t2 ∈ S2 with (a, t2) ∈M2.

Let us now fix a nonempty s = {(s1
1, s

1
2), . . . , (sn1 , sn2)} ∈ S. We intro-

duce some notation that we are going to use throughout this construction and
the following proof to denote the successor states of si2 for all i. For each
si2 let Tran2(si2) = {M i,1

2 , . . . ,M i,mi
2 } be a fixed enumeration of Tran2(si2).

For each a permissible from s and for each M i,j
2 we further fix an enumera-

tion of all states in M i,j
2 after an a-transition: {t2 ∈ S2 | (a, t2) ∈ M i,j

2 } =
{ti,j,a,1, . . . , ti,j,a,ri,j,a}. This means that ti,j,a,k is the kth state (out of ri,j,a)

179

8. Logical vs. Behavioral Specifications

with an a-transition in M i,j
2 , which is the jth member of Tran2(si2), where si2

is the state in the ith pair in s.
For a permissible from s, we define

pta(s) =
{
{(ti,j,a,k1 , i, j, ti,j,a,k2) | i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . , ri,j,a}∣∣ ∀i, j, k : ∃M1 ∈ Tran1(si1) : (a, ti,j,a,k1) ∈M1

}
,

the set of all sets of possible assignments of next-a states from si1 to next-a
states from si2. Note that unlike the case of MTS quotient, we also keep
the indices i, j in the assignments. We further define pt(s) = {(a, x) |
a permissible from s, x ∈ pta(s)}.

To deal with the elements of pta(s) we define the following auxiliary opera-
tions. The first operation ` allows us to “forget” the indices i, j and is defined
as follows: `(x) = {(t1, t2) | ∃i, j : (t1, i, j, t2) ∈ x}. The operation can be
naturally lifted to subsets of pt(s) as follows: `(N) = {(a, `(x)) | (a, x) ∈ N}
where N ⊆ pt(s).

The second operation is a type of projection that given the two indices
i, j and the state ti,j,a,k2 produces the next-a state of s1 assigned in the
given element x of pta(s). Note that the projection is defined uniquely:
x � (i, j, ti,j,a,k2) = ti,j,a,k1 where x = {. . . , (ti,j,a,k1 , i, j, ti,j,a,k2), . . .}. The projec-
tion operation can also be lifted to subsets N of pt(s) and setsM2 ∈ Tran2(s2

i)
as follows: N � (i, j,M2) = {(a, x � (i, j, t2)) | (a, t2) ∈ M2}. Note that the
result of this operation is then a set of elements of the form (a, t3) where t3 is
an a-successor of s3.

Having the two auxiliary operations, we can then finally define

Tran(s) = {`(N) | N ⊆ pt(s),∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,mj} :
N � (i, j,M i,j

2) ∈ Tran3(si3)} . (8.9)

8.33 Theorem. For all specifications S1, S2, S3, S1‖S2 ≤m S3 iff S2 ≤m S3/S1.

Proof: We show the proof for AA. Let A1 = (S1, S
0
1 ,Tran1) and A2 =

(S2, S
0
2 ,Tran2), A3 = (S3, S

0
3 ,Tran3); we show that A1‖A2 ≤m A3 iff A2 ≤m

A3/A1.
We use the notation introduced in the proof of Theorem 8.32, i.e., s1‖s2

instead of (s1, s2) when speaking about states of A1‖A2 and {s3/s1, . . .} in-
stead of {(s3, s1), . . .} when speaking about states of A3/A1. We further note
that by construction, s ⊇ t implies s ≤m t for all s, t ∈ 2S3×S1 .

Now assume that A2 ≤m A3/A1 and let R = {(s1‖s2, s3) | s2 ≤m {s3/s1}};
we show that R is a witness for A1‖A2 ≤m A3.

Let (s1‖s2, s3) ∈ R and M‖ ∈ Tran‖(s1‖s2). Then M‖ = M1‖M2 with
M1 ∈ Tran1(s1) and M2 ∈ Tran2(s2). As s2 ≤m {s3/s1}, we can pair M2 with
an M/ ∈ Tran/({s3/s1}), such that the conditions in (8.2) are satisfied (see
Definition 8.7).

180

8.3. Specification Theory

Note that, as M1 ∈ Tran1(s1), there exists some j such that M1 = M1,j
1 ,

i.e., M1 is the jth element of Tran(s1) in the enumeration as described in
the construction of the quotient. Further note that M‖ = `(N) for some
N ⊆ pt({s3/s1}) satisfying the conditions in (8.9).

We now define M3 = N � (1, j,M1) and show that (8.2) holds for the pair
M‖,M3:

• Let (a, t1‖t2) ∈ M‖, then there are (a, t1) ∈ M1 and (a, t2) ∈ M2.
By (8.2) applied to the pair M2, M/, there is (a, t) ∈ M/ such that
t2 ≤m t. This means that there is (a, x) ∈ N such that t = `(x).
Due to the construction of pt({s3/s1}) there has to be some t3 such
that (t3, 1, j, t1) ∈ x. Due to the definition of M3, this means that
(a, t3) ∈ M3. We also know that t ⊇ {t3/t1}, hence t ≤m {t3/t1}, and
together with t2 ≤m t we get t2 ≤m {t3/t1}. Thus (t1‖t2, t3) ∈ R.

• Let (a, t3) ∈ M3. This means that there is some (a, x) ∈ N with
(t3, 1, j, t1) ∈ x and (a, t1) ∈ M1. Therefore, `(x) = t ∈ M/ with
t3/t1 ∈ t. Due to (8.2) applied to M2, M/, there has to be a corre-
sponding (a, t2) ∈ M2 such that t2 ≤m t. Thus (a, t1‖t2) ∈ M‖ and
again by t ⊇ {t3/t1} we have t2 ≤m {t3/t1} and hence (t1‖t2, t3) ∈ R.

It remains to show that R is initialised. Let ŝ0
1‖ŝ0

2 be an initial state of
A1‖A2. By A2 ≤m A3/A1 we know that ŝ0

2 ≤m s0 for some s0 ∈ S0. We then
take ŝ0

3 ∈ S0
3 such that ŝ0

3/ŝ
0
1 ∈ s0 (there has to be exactly one due to the

definition of s0). We then have s0 ⊇ {ŝ0
3/ŝ

0
1} and thus s0 ≤m {ŝ0

3/ŝ
0
1}. This

means that ŝ0
2 ≤m {ŝ0

3/ŝ
0
1} and hence (ŝ0

1‖ŝ0
2, ŝ

0
3) ∈ R.

Assume, for the other direction of the proof, that A1‖A2 ≤m A3. Define
R ⊆ S2 × 2S3×S1 by

R = {(s2, {s1
3/s

1
1, . . . , s

n
3/s

n
1}) | ∀i = 1, . . . , n : si1‖s2 ≤m si3} ;

we show that R is a witness for A2 ≤m A3/A1. We first note that (s2, ∅) ∈ R
for all s2. Let now (s2, s) ∈ R, with nonempty s = {s1

3/s
1
1, . . . , s

n
3/s

n
1}, and

M2 ∈ Tran2(s2).
Note that for every M i,j

1 ∈ Tran(si1) we can build M i,j
‖ = M i,j

1 ‖M2, and
as si1‖s2 ≤m si3, there has to be a corresponding M3 ∈ Tran(si3) satisfying the
conditions of (8.2). We fix such M3 for every i, j and denote it by M i,j

3 .
We are going to build a subset N of pt(s). To that end, we first define an

auxiliary notion of an adequate element of pt(s) with respect to (a, t2) ∈ M2
as follows. Let (a, x) ∈ pt(s). We say that (a, x) is adequate w.r.t. (a, t2) if
for every i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}, and k ∈ {1, . . . , ri,j,a}, the projection
t3 = x � (i, j, ti,j,k1) satisfies (a, t3) ∈M i,j

3 and ti,j,k1 ‖t2 ≤m t3.
Clearly, if we have (a, x) adequate w.r.t. (a, t2), then (t2, `(x)) ∈ R.
We can now define

N = {(a, x) ∈ pt(s) | ∃(a, t2) ∈M2 : (a, x) is adequate w.r.t. (a, t2)} .

181

8. Logical vs. Behavioral Specifications

We first need to show that `(N) ∈ Tran/(s). Let i ∈ {1, . . . , n} and
j ∈ {1, . . . ,mj}. We want to show that N � (i, j,M i,j

1) = M i,j
3 . Let first

(a, t3) ∈ N � (i, j,M i,j
1). This means that there is some (a, x) ∈ N with

x = (t3, i, j, ti,j,k1). Due to the definition of N , (a, t3) ∈M i,j
3 . Let now (a, t3) ∈

M i,j
3 . Recall that the pair M i,j

1 ‖M2, M i,j
3 satisfies (8.2). This means that

for (a, t3) ∈ M i,j
3 there exists (a, ti,j,k1 ‖t2) ∈ M i,j

1 ‖M2 such that ti,j,k1 ‖t2 ≤m
t3. Hence (a, (t3, i, j, ti,j,k1)) is adequate w.r.t. (a, t2) and thus (a, t3) ∈ N �
(i, j,M i,j

1).
We now show that the pairM2,M = `(N) satisfies the conditions of (8.2).

• Let (a, t2) ∈M2. We need to show that there exists (a, x) ∈ N adequate
w.r.t. (a, t2). Recall that the pair M i,j

1 ‖M2, M i,j
3 satisfies (8.2) for every

i, j. For every (a, ti,j,k1 ‖t2) there thus has to be (a, t3) ∈ M i,j
3 with

ti,j,k1 ‖t2 ≤m t3. We fix such t3 for every i, j, k and denote it by ti,j,k3 .
We then set x = {(ti,j,k3 , i, j, ti,j,k1 | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}, k ∈
{1, . . . , ri,j,a}. Clearly (a, x) ∈ N and (a, x) is adequate w.r.t. (a, t2). As
noted above, we have (t2, `(x)) ∈ R.

• Let (a, t) ∈ M . This means that there is some (a, x) ∈ N such that
t = `(x). Due to the definition of N , there exists (a, t2) ∈ M2 such
that (a, x) is adequate w.r.t. (a, t2). Again, as noted above, we have
(t2, t) = (t2, `(x)) ∈ R.

It remains to show that R is initialised. Let s0
2 be an initial state of A2.

By A1‖A2 ≤m A3 we know that for every s0,q
1 ∈ S0

1 (recall the enumeration
of initial states in the construction of the quotient) there exists s0

3 ∈ S0
3 such

that s0,q
1 ‖s0

2 ≤m s0
3. Let us fix for every q such s0

3 and denote it by s0,q
3 . Let

then s0 = {s0,q
3 /s0,q

1 | q ∈ {1, . . . , p}}. Clearly, s0 is an initial state of A3/A1
and (s0

2, s
0) ∈ R. �

As a corollary, we get (8.8): If I2 ∈ JS/S1K, i.e., I2 ≤m S/S1, then
S1‖I2 ≤m S, which using I1 ≤m S1 and Theorem 8.27 implies I1‖I2 ≤m
S1‖I2 ≤m S. The reverse implication in Theorem 8.33 implies that S/S1 is as
permissive as possible.

8.34 Corollary. With operations ∧, ∨, ‖ and /, each of our four classes of speci-
fications forms a commutative residuated lattice up to ≡m.

Proof: We have already seen in Corollary 8.24 that the class of AA forms
a lattice, up to ≡m, under ∧ and ∨, and by Theorem 8.33, / is the residual,
up to ≡m, of ‖. All other properties (such as distributivity of ‖ over ∨ or
N‖⊥ ≡m ⊥) follow. �

182

8.4. Related Work

8.4 Related Work

The modal ν-calculus is equivalent to the Hennessy-Milner logic with great-
est fixed points, which arises from Hennessy-Milner logic (HML) [HM85] by
introducing variables and greatest fixed points. If also least fixed points are
allowed, one arrives at the full modal µ-calculus [SdB69,Pra81,Koz83]. Janin
and Walukiewicz have in [JW95] introduced an automata-like representation
for the modal µ-calculus which seems related to our AA.

DMTS have been proposed as solutions to algebraic process equations in
Larsen and Xinxin’s [LX90b] and further investigated also as a specification
formalism [Lar90a,BCK11]. The DMTS formalism is a member of the modal
transition systems (MTS) family and as such has also received attention re-
cently. The MTS formalisms have proven to be useful in practice. Industrial
applications started with Bruns’ [Bru97] where MTS have been used for an
air-traffic system at Heathrow airport. Besides, MTS classes are advocated as
an appropriate base for interface theories by Raclet et.al. in [RBB+09] and
for product line theories in Nyman’s [Nym08]. Further, an MTS based soft-
ware engineering methodology for design via merging partial descriptions of
behavior has been established by Uchitel and Chechik in [UC04] and methods
for supervisory control of MTS shown by Darondeau et.al. in [DDM10]. Tool
support is quite extensive, e.g., [BLS95,DFFU07,BML11,KS13b].

Over the years, many extensions of MTS have been proposed, surveyed
in more detail in [Kře17, FLLT14, FLT14a]. While MTS can only specify
whether or not a particular transition is required, some extensions equip MTS
with more general abilities to describe what combinations of transitions are
possible. These include DMTS [LX90b], Fecher and Schmidt’s 1-MTS [FS08]
allowing to express exclusive disjunction, OTS [BK10] capable of express-
ing positive Boolean combinations, and Boolean MTS [BKL+11] covering all
Boolean combinations. The last one is closely related to our AA as well as
hybrid modal logic [Pri68,Bla00]. Our results show that all these formalisms
are at most as expressive as DMTS.

Larsen has shown in [Lar89] that any finite acyclic MTS is equivalent
to a HML formula (without recursion or fixed points), the characteristic
formula of the given MTS, cf. (8.3). Conversely, Boudol and Larsen show
in [BL92] that any consistent and prime HML formula is equivalent to a MTS.3
Here we extend these results to ν-calculus formulae, and show that any such
formula is equivalent to a DMTS, solving a problem left open in [LX90b].
Hence the modal ν-calculus supports full compositionality and decomposition
in the sense of [Lar90a]. This finishes some of the work started in [Lar89,
BL92, Lar90a]. Recently, the graphical representability of a variant of alter-
nating simulation called covariant-contravariant simulation has been studied

3A HML formula is prime if implying a disjunction means implying one of the alterna-
tives.

183

8. Logical vs. Behavioral Specifications

in [AFdFE+13].
Quotients are related to decomposition of processes and properties, an is-

sue which has received considerable attention through the years. In [LX90b],
a solution to bisimulation C(X) ∼ P for a given process P and context C is
provided (as a DMTS). This solves the quotienting problem P/C for the spe-
cial case where both P and C are processes. This is extended in [LX90a] to the
setting where the context C can have several holes and C(X1, . . . , Xn) must
satisfy a ν-calculus property Q. However, C remains to be a process context,
not a specification context. Our specification context allows for arbitrary spec-
ifications, representing infinite sets of processes and process equations. Other
extensions use infinite conjunctions [FvGdW06], probabilistic processes [GF12]
or processes with continuous time and space [CLM11].

Quotient operators, or guarantee or multiplicative implication as they are
called there, are also well-known from various logical formalisms. Indeed,
the algebraic properties of our parallel composition ‖ and quotient / resem-
ble closely those of multiplicative conjunction & and implication (in linear
logic [Gir87], and of spatial conjunction and implication in spatial logic [CC03]
and separation logic [Rey02,ORY01]. For these and other logics, proof systems
have been developed which allow one to reason about expressions containing
these operators. In these logics, & and (are first-class operators on par
with the other logical operators, and their semantics are defined as certain
sets of processes. In contrast, for AA and hence, via the translations, also
for ν-calculus, ‖ and / are derived operators, and we provide constructions to
reduce any expression which contains them, to one which does not. This is im-
portant from the perspective of reuse of components and useful in industrial
applications. To the best of our knowledge, there are no other such reduc-
tions of quotient for the synchronisation type of composition in the context of
specifications.

8.5 Conclusion

In this chapter we have introduced a general specification framework whose ba-
sis consists of four different but equally expressive formalisms: one of a graph-
ical behavioral kind (DMTS), one logic-based (ν-calculus) and two intermedi-
ate languages between the former two (AA and hybrid modal logic). We have
shown their structural equivalence.

The established connection implies several consequences. On the one hand,
it allows for a graphical representation of ν-calculus. Further, composition on
DMTS can be transferred to the modal ν-calculus, hence turning it into a
modal process algebra. On the other hand, such a correspondence identifies
a class of modal transition systems with a natural expressive power and pro-
vides another justification of this formalism. Further, this class is closed under
both conjunction and disjunction, a requirement raised by component-based

184

8.5. Conclusion

design methods. However, it is not closed under complement and difference.4
Nevertheless, since DMTS are closed under conjunction, disjunction and com-
position, we still have a positive Boolean process algebra.

Altogether, we have shown that the framework possesses a rich algebraic
structure that includes logical (conjunction, disjunction) and behavioral oper-
ations (parallel composition and quotient) and forms a complete specification
theory in the sense of [Lar90a,BDH+12].

Moreover, the construction of the quotient solves an open problem in the
area of MTS. All attempts to find the quotient for variants of MTS so far
have been limited to the much simpler deterministic case [Rac08]. Here we
have given the first solution to the quotient on nondeterministic specifications:
first, a quotient construction for MTS, and then a quotient for general DMTS.
Due to the established correspondence, the quotient can be applied also to ν-
calculus formulae. We remark that all our translations and constructions are
based on a new normal form for ν-calculus expressions, and that turning
a ν-calculus expression into normal form may incur an exponential blow-up.
However, the translations and constructions preserve the normal form, so that
this translation only need be applied once in the beginning.

4Previous results on difference [SCU11] are incorrect due to a mistake in [FU08] on
conjunction of MTS, see [Kře14, p. 36].

185

9 Compositionality for Quantitative
Specifications1

This chapter continues and finishes the work of Chapter 7. It extends the
quantitative theory of that chapter to the disjunctive modal transition systems
(DMTS) of Chapter 8 and shows that also in the quantitative setting, DMTS
are closely related to acceptance automata and the modal ν-calculus. The
quantitative theory of DMTS is shown to be rather pleasant, with better
properties than for pure MTS.

9.1 Structured Labels
Let Σ be a poset with partial order 4. We think of 4 as label refinement, so
that if a 4 b, then a is less permissive (more restricted) than b.

9.1 Definition. A label a ∈ Σ is an implementation label if b 4 a implies b = a
for all b ∈ Σ. The set of implementation labels is denoted Γ, and for a ∈ Σ,
we let JaK = {b ∈ Γ | b 4 a} denote the set of its implementations.

Hence a is an implementation label iff a cannot be further refined. Note
that a 4 b implies JaK ⊆ JbK for all a, b ∈ Σ.

9.2 Example. A trivial but important example of our label structure is the dis-
crete one in which label refinement 4 is equality (and Γ = Σ). This is equiv-
alent to the “standard” case of unstructured labels.

A typical label set in quantitative applications consists of a discrete com-
ponent and real-valued weights. For specifications, weights are replaced by
(closed) weight intervals, so that Σ = U × {[l, r] | l ∈ R ∪ {−∞}, r ∈
R ∪ {∞}, l ≤ r} for a finite set U , cf. [BFJ+13, BJL+12a]. Label refine-
ment is given by (u1, [l1, r1]) 4 (u2, [l2, r2]) iff u1 = u2 and [l1, r1] ⊆ [l2, r2],
so that labels are more refined if they specify smaller intervals; thus, Γ =
U × {[x, x] | x ∈ R} ≈ U ×R.

For a quite general setting, we can instead start with an arbitrary set Γ
of implementation labels, let Σ = 2Γ, the powerset, and 4 = ⊆ be subset

1This chapter is based on the journal paper [FKLT18] published in Soft Computing.

187

9. Compositionality for Quantitative Specifications

inclusion. Then JaK = a for all a ∈ Σ. (Hence we identify implementation
labels with one-element subsets of Σ.)

9.1.1 Label operations
Specification theories come equipped with several standard operations that
make compositional software design possible [BDH+12]: conjunction for merg-
ing viewpoints covering different system’s aspects [UC04,BDCU13], structural
composition for running components in parallel, and quotient to synthesize
missing parts of systems [LX90b]. In order to provide them for DMTS, we
first need the respective atomic operations on their action labels.

We hence assume that Σ comes equipped with a partial conjunction,
i.e., an operator 7 : Σ× Σ ⇀ Σ for which it holds that

(1) if a1 7 a2 is defined, then a1 7 a2 4 a1 and a1 7 a2 4 a2, and

(2) if a3 4 a1 and a3 4 a2, then a1 7 a2 is defined and a3 4 a1 7 a2.

Note that by these properties, any two partial conjunctions on Σ have to agree
on elements for which they are both defined.

9.3 Example. For discrete labels, the unique conjunction operator is given by

a1 7 a2 =
{
a1 if a1 = a2 ,

undef. otherwise .

Indeed, by property (2), a1 7 a2 must be defined for a1 = a2, and by (1), if
a1 7 a2 = a3 is defined, then a3 = a1 and a3 = a2.

For labels in U × {[l, r] | l, r ∈ R, l ≤ r}, the unique conjunction is

(u1, [l1, r1])7 (u2, [l2, r2]) =
{
undef. if u1 6= u2 or [l1, r1] ∩ [l2, r2] = ∅ ,
(u1, [l1, r1] ∩ [l2, r2]) otherwise .

To see uniqueness, let ai = (ui, [li, ri]) for i = 1, 2, 3. Using property (2), we see
that a17a2 must be defined when u1 = u2 and [l1, r1]∩ [l2, r2] 6= ∅, and by (2),
if a1 7 a2 = a3 is defined, then u3 = u1 and u3 = u2, and [l3, r3] ⊆ [l1, r1],
[l3, r3] ⊆ [l2, r2] imply [l1, r1] ∩ [l2, r2] 6= ∅.

Finally, for the case of specification labels as sets of implementation labels,
the unique conjunction is a1 7 a2 = a1 ∩ a2.

For structural composition and quotient of specifications, we assume a
partial label synchronization operator � : Σ × Σ ⇀ Σ which specifies how to
compose labels. We assume � to be associative and commutative, with the
following technical property which we shall need later: For all a1, a2, b1, b2 ∈ Σ
with a1 4 a2 and b1 4 b2, a1�b1 is defined iff a2�b2 is, and if both are defined,
then a1 � b1 4 a2 � b2.

188

9.2. Specification Formalisms

9.4 Example. For discrete labels, the conjunction of Example 9.3 is the same as
CSP-style composition, i.e., a � b = a if a = b and undefined otherwise, but
other compositions can easily be defined.

For labels in U×{[l, r] | l, r ∈ R, l ≤ r}, several useful label synchronization
operators may be defined for different applications. One is given by addition
of intervals, i.e.,

(u1, [l1, r1]) +
� (u2, [l2, r2]) =

{
undef. if u1 6= u2 ,

(u1, [l1 + l2, r1 + r2]) otherwise ,

for example modeling computation time of actions on a single processor. An-
other operator, useful in scheduling, uses maximum instead of addition:

(u1, [l1, r1]) ∨� (u2, [l2, r2]) =
{
undef. if u1 6= u2 ,

(u1, [max(l1, l2),max(r1, r2)]) otherwise .

For set-valued specification labels, we may take any synchronization oper-
ator � given on implementation labels Γ and lift it to one on Σ by a1 � a2 =
{b1 � b2 | b1 ∈ Ja1K, b2 ∈ Ja2K}.

9.2 Specification Formalisms
In this section we introduce the specification formalisms which we use in the
rest of the paper. The universe of models for our specifications is the one of
standard labeled transition systems. For simplicity of exposition, we work only
with finite specifications and implementations, but most of our results extend
to the infinite (but finitely branching) case.

A labeled transition system (LTS) is a structure I = (S, s0,−→) consisting
of a finite set S of states, an initial state s0 ∈ S, and a transition relation
−→ ⊆ S × Γ × S. We usually write s a−→ t instead of (s, a, t) ∈ −→. Note
that transitions are labeled with implementation labels.

9.2.1 Disjunctive Modal Transition Systems
A disjunctive modal transition system (DMTS) is a structure D = (S, S0,
99K,−→) consisting of finite sets S ⊇ S0 of states and initial states, respec-
tively, may-transitions 99K ⊆ S × Σ × S, and disjunctive must-transitions
−→ ⊆ S × 2Σ×S . It is assumed that for all (s,N) ∈ −→ and (a, t) ∈ N there
is (s, b, t) ∈ 99K with a 4 b.

Note that we allow multiple (or zero) initial states. We write s a
99K t in-

stead of (s, a, t) ∈ 99K and s −→ N instead of (s,N) ∈ −→.
A DMTS (S, S0, 99K,−→) is an implementation if 99K ⊆ S×Γ×S, −→ =

{(s, {(a, t)}) | s a
99K t}, and S0 = {s0} is a singleton; DMTS implementations

are hence isomorphic to LTS.

189

9. Compositionality for Quantitative Specifications

DMTS were introduced in [LX90b] in the context of equation solving,
or quotient of specifications by processes and are used e.g., in [BCK11] for
LTL model checking. They are a natural extension of modal transition sys-
tems [LT88], which are DMTS in which all disjunctive must-transitions s −→
N lead to singletons N = {(a, t)}; in fact, DMTS are the closure of MTS
under quotient [LX90b].

We introduce a notion of modal refinement of DMTS with structured la-
bels. For discrete labels, it coincides with the classical definition [LX90b].

9.5 Definition. Let D1 = (S1, S
0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) be

DMTS. A relation R ⊆ S1 × S2 is a modal refinement if it holds for all
(s1, s2) ∈ R that

• for all s1
a1
99K1 t1 there is s2

a2
99K2 t2 such that a1 4 a2 and (t1, t2) ∈ R,

and

• for all s2 −→2 N2 there is s1 −→1 N1 such that for all (a1, t1) ∈ N1
there is (a2, t2) ∈ N2 with a1 4 a2 and (t1, t2) ∈ R.

D1 refines D2, denoted D1 ≤m D2, if there exists an initialized modal refine-
ment R, i.e., one for which it holds that for every s0

1 ∈ S0
1 there is s0

2 ∈ S0
2 for

which (s0
1, s

0
2) ∈ R.

Note that this definition reduces to the one of [LX90b,BCK11] for discrete
labels (cf. Example 9.2).

We write D1 ≡m D2 if D1 ≤m D2 and D2 ≤m D1. The implementation
semantics of a DMTS D is JDK = {I ≤m D | I implementation}. This is,
thus, the set of all LTS which satisfy the specification given by the DMTS D.
We say that D1 thoroughly refines D2, and write D1 ≤t D2, if JD1K ⊆ JD2K.

The below proposition, which follows directly from transitivity of modal
refinement, shows that modal refinement is sound with respect to thorough
refinement; in the context of specification theories, this is what one would ex-
pect. It can be shown that modal refinement is also complete for deterministic
DMTS [BKLS09], but we will not need this here.

9.6 Proposition. For all DMTS D1, D2, D1 ≤m D2 implies D1 ≤t D2. �

9.2.2 Acceptance automata
An acceptance automaton (AA) is a structure A = (S, S0,Tran), with S ⊇ S0

finite sets of states and initial states and Tran : S → 22Σ×S an assignment of
transition constraints. The intuition is that a transition constraint Tran(s) =
{M1, . . . ,Mn} specifies a disjunction of n choices M1, . . . ,Mn as to which
transitions from s have to be implemented.

An AA is an implementation if S0 = {s0} is a singleton and it holds for all
s ∈ S that Tran(s) = {M} ⊆ 2Γ×S is a singleton; hence AA implementations

190

9.2. Specification Formalisms

are isomorphic to LTS. Acceptance automata were first introduced in [Rac07],
based on the notion of acceptance trees in [Hen85]; however, there they are
restricted to be deterministic. We employ no such restriction here.

Let A1 = (S1, S
0
1 ,Tran1) and A2 = (S2, S

0
2 ,Tran2) be AA. A relation

R ⊆ S1 × S2 is a modal refinement if it holds for all (s1, s2) ∈ R and all
M1 ∈ Tran1(s1) that there exists M2 ∈ Tran2(s2) such that

∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2 : a1 4 a2, (t1, t2) ∈ R ,
∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1 : a1 4 a2, (t1, t2) ∈ R .

(9.1)

The definition reduces to the one of [Rac07] in case labels are discrete. We
will write M1 4R M2 if M1, M2, R satisfy (9.1).

In Chapter 8 we have introduced translations between DMTS and AA. For
a DMTS D = (S, S0, 99K,−→) and s ∈ S, let Tran(s) = {M ⊆ Σ×S | ∀(a, t) ∈
M : s a

99K t,∀s −→ N : N ∩M 6= ∅} and define the AA da(D) = (S, S0,Tran).
For an AA A = (S, S0,Tran), define the DMTS ad(A) = (D,D0, 99K,−→) by

D = {M ∈ Tran(s) | s ∈ S} ,
D0 = {M0 ∈ Tran(s0) | s0 ∈ S0} ,
−→ =

{(
M, {(a,M ′) |M ′ ∈ Tran(t)}

) ∣∣ (a, t) ∈M
}
,

99K = {(M,a,M ′) | ∃M −→ N : (a,M ′) ∈ N} .

Theorem 8.14 is easily extended to our case of structured labels:

9.7 Theorem. For all DMTS D1, D2 and AA A1, A2, D1 ≤m D2 iff da(D1) ≤m
da(D2) and A1 ≤m A2 iff ad(A1) ≤m ad(A2). �

This structural equivalence will allow us to freely translate forth and back
between DMTS and AA in the rest of the paper. Note, however, that the
state spaces of A and ad(A) are not the same; the one of ad(A) may be
exponentially larger. Proposition 8.18 shows that this blow-up is unavoidable.

From a practical point of view, DMTS are a somewhat more useful spec-
ification formalism than AA. This is because they are usually more compact
and easily drawn and due to their close relation to the modal ν-calculus, see
below.

9.2.3 The Modal ν-Calculus

The modal ν-calculus [FP07] is the maximal-fixed point fragment of the modal
µ-calculus [Koz83], i.e., the modal µ-calculus without negation and without
the minimal fixed point operator. This is also sometimes called Hennessy-
Milner logic with maximal fixed points and represented using equation sys-
tems in Hennessy-Milner logic with variables, see [Lar90b,AILS07]. We will
use this representation below. In Chapter 8 we have introduced translations

191

9. Compositionality for Quantitative Specifications

between DMTS and the modal ν-calculus, showing that for discrete labels,
these formalisms are structurally equivalent.

For a finite set X of variables, let H(X) be the set of Hennessy-Milner
formulae, generated by the abstract syntax H(X) 3 φ ::= tt | ff | x | 〈a〉φ |
[a]φ | φ ∧ φ | φ ∨ φ, for a ∈ Σ and x ∈ X. A ν-calculus expression is a
structure N = (X,X0,∆), with X0 ⊆ X sets of variables and ∆ : X → H(X)
a declaration.

We recall the greatest fixed point semantics of ν-calculus expressions from
[Lar90b], but extend it to structured labels. Let (S, S0,−→) be an LTS, then
an assignment is a mapping σ : X → 2S . The set of assignments forms a
complete lattice with order σ1 v σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and lowest
upper bound

(⊔
i∈I σi

)
(x) = ⋃

i∈I σi(x).
The semantics of a formula in H(X) is a function from assignments to

subsets of S defined as follows: JttKσ = S, JffKσ = ∅, JxKσ = σ(x), Jφ∧ψKσ =
JφKσ ∩ JψKσ, Jφ ∨ ψKσ = JφKσ ∪ JψKσ, and

J〈a〉φKσ = {s ∈ S | ∃s b−→ t : b ∈ JaK, t ∈ JφKσ},

J[a]φKσ = {s ∈ S | ∀s b−→ t : b ∈ JaK⇒ t ∈ JφKσ}.

The semantics of a declaration ∆ is then the assignment defined by

J∆K =
⊔
{σ : X → 2S | ∀x ∈ X : σ(x) ⊆ J∆(x)Kσ};

the greatest (pre)fixed point of ∆.
An LTS I = (S, s0,−→) implements (or models) the expressionN , denoted

I |= N , if there is x0 ∈ X0 such that s0 ∈ J∆K(x0).
In Chapter 8 we have introduced another semantics for ν-calculus expres-

sions, which is given by a notion of refinement, like for DMTS and AA. For
this we recall the normal form for ν-calculus expressions:

9.8 Lemma. For any ν-calculus expression N1 = (X1, X
0
1 ,∆1), there exists an-

other N2 = (X2, X
0
2 ,∆2) with JN1K = JN2K and such that for any x ∈ X,

∆2(x) is of the form

∆2(x) =
∧
i∈I

(∨
j∈Ji
〈aij〉xij

)
∧
∧
a∈Σ

[a]
(∨
j∈Ja

ya,j
)

for finite (possibly empty) index sets I, Ji, Ja and all xij , ya,j ∈ X2. �

As this is a type of conjunctive normal form, it is clear that translating a
ν-calculus expression into normal form may incur an exponential blow-up.

We introduce some notation for ν-calculus expressions in normal form. Let
N = (X,X0,∆) be such an expression and x ∈ X, with

∆(x) =
∧
i∈I

(∨
j∈Ji
〈aij〉xij

)
∧
∧
a∈Σ

[a]
(∨
j∈Ja

ya,j
)

192

9.2. Specification Formalisms

as in the lemma. Define ♦(x) = {{(aij , xij) | j ∈ Ji} | i ∈ I} and, for each
a ∈ Σ, �a(x) = {ya,j | j ∈ Ja}. Intuitively, ♦(x) collects all 〈a〉-requirements
from x, whereas �a(x) specifies the disjunction of [a]-properties which must
hold from x. Note that now,

∆(x) =
∧

N∈♦(x)

(∨
(a,y)∈N

〈a〉y
)
∧
∧
a∈Σ

[a]
(∨
y∈�a(x)

y
)
. (9.2)

Let N1 = (X1, X
0
1 ,∆1), N2 = (X2, X

0
2 ,∆2) be ν-calculus expressions in

normal form and R ⊆ X1 × X2. The relation R is a modal refinement if it
holds for all (x1, x2) ∈ R that

• for all a1 ∈ Σ and y1 ∈ �a1
1 (x1) there is a2 ∈ Σ and y2 ∈ �a2

2 (x2) with
a1 4 a2 and (y1, y2) ∈ R, and

• for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) such that for all (a1, y1) ∈ N1
there exists (a2, y2) ∈ N2 with a1 4 a2 and (y1, y2) ∈ R.

We say that a ν-calculus expression (X,X0,∆) in normal form is an im-
plementation if X0 = {x0} is a singleton, ♦(x) = {{(a, y)} | y ∈ �a(x), a ∈ Σ}
and �a(x) = ∅ for all a /∈ Γ, for all x ∈ X.

We can translate a LTS (S, S0,−→) to a ν-calculus expression (S, S0,∆)
in normal form by setting ♦(s) = {{(a, t)} | s a−→ t} and �a(s) = {t | s a−→ t}
for all s ∈ S, a ∈ Σ. This defines a bijection between LTS and ν-calculus
implementations, hence, like for DMTS and AA, an embedding of LTS into
the modal ν-calculus.

We have shown in Chapter 8 that for discrete labels, the refinement se-
mantics and the fixed point semantics of the modal ν-calculus agree; the proof
can easily be extended to our case of structured labels:

9.9 Theorem. For any LTS I and any ν-calculus expression N in normal form,
I |= N iff I ≤m N . �

For a DMTS D = (S, S0, 99K,−→) and all s ∈ S, let ♦(s) = {N | s −→ N}
and, for each a ∈ Σ, �a(s) = {t | s a

99K t}. Define the (normal-form) ν-
calculus expression dn(D) = (S, S0,∆), with ∆ given as in (9.2). For a ν-
calculus expression N = (X,X0,∆) in normal form, let 99K = {(x, a, y) ∈
X × Σ × X | y ∈ �a(x)}, −→ = {(x,N) | x ∈ X,N ∈ ♦(x)} and define the
DMTS nd(N) = (X,X0, 99K,−→). Given that these translations are entirely
syntactic, the following theorem is not a surprise:

9.10 Theorem. For DMTS D1, D2 and ν-calculus expressions N1, N2, D1 ≤m D2
iff dn(D1) ≤m dn(D2) and N1 ≤m N2 iff nd(N1) ≤m nd(N2). �

193

9. Compositionality for Quantitative Specifications

9.3 Specification theory
Structural specifications typically come equipped with operations which per-
mit compositional reasoning, viz. conjunction, structural composition, and
quotient, cf. [BDH+12]. On deterministic MTS, these operations can be given
easily using simple structural operational rules (for such semantics of weighted
systems, see for instance [KS13a]). For non-deterministic specifications this
is significantly harder; in [BDF+13] it is shown that DMTS and AA permit
these operations and, additionally but trivially, disjunction. Here we show
how to extend these operations on non-deterministic systems to our setting
with structured labels.

We remark that structural composition and quotient operators are well-
known from some logics, such as, e.g., linear [Gir87] or spatial logic [CC03],
see also [CLM11] for a stochastic extension. However, whereas these operators
are part of the formal syntax in those logics, for us they are simply operations
on logical expressions (or DMTS, or AA).

Given the equivalence of DMTS, AA and the modal ν-calculus exposed
in the previous section, we will often state properties for all three types of
specifications at the same time, letting S stand for any of the three types.
For definitions and proofs, we are free to use the type of specification which is
most well suited for the context; we will use DMTS for the logical operations
(Section 9.3.1) and AA for the structural operations (Sections 9.3.2 and 9.3.3).

9.3.1 Disjunction and conjunction

Disjunction of specifications is easily defined, as we allow for multiple initial
states. For two DMTSD1 = (S1, S

0
1 , 99K1,−→1) andD2 = (S2, S

0
2 , 99K2,−→2),

we can hence define D1 ∨ D2 = (S1 ∪ S2, S
0
1 ∪ S0

2 , 99K1 ∪ 99K2,−→1 ∪ −→2)
(with all unions disjoint).

For conjunction, we let D1 ∧ D2 = (S1 × S2, S
0
1 × S0

2 , 99K,−→), with

• (s1, s2) a17a2
99K (t1, t2) whenever s1

a1
99K1 t1, s2

a2
99K2 t2 and a1 7 a2 is

defined,

• for all s1 −→ N1, (s1, s2) −→ {(a17a2, (t1, t2)) | (a1, t1) ∈ N1, s2
a2
99K2 t2,

a1 7 a2 defined},

• for all s2 −→ N2, (s1, s2) −→ {(a17a2, (t1, t2)) | (a2, t2) ∈ N2, s1
a1
99K1 t1,

a1 7 a2 defined}.

The following theorem generalizes Theorem 8.23 to structured labels. Also
its proof is a generalization, but our structured labels do introduce some extra
difficulties.

9.11 Theorem. For all specifications S1, S2, S3,

194

9.3. Specification theory

• S1 ∨ S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3,

• S1 ≤m S2 ∧ S3 iff S1 ≤m S2 and S1 ≤m S3,

• JS1 ∨ S2K = JS1K ∪ JS2K, and JS1 ∧ S2K = JS1K ∩ JS2K.

Proof: The proof that S1∨S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3 is trivial: any
modal refinement R ⊆ (S1∪S2)×S3 splits into two refinements R1 ⊆ S1×S3,
R2 ⊆ S2 × S3 and vice versa.

For the proof of the second claim, which we show for DMTS, we prove the
back direction first. Let R2 ⊆ S1 × S2, R3 ⊆ S1 × S3 be initialized (DMTS)
modal refinements which witness S1 ≤m S2 and S1 ≤m S3, respectively. Define
R = {(s1, (s2, s3)) | (s1, s2) ∈ R2, (s1, s3) ∈ R3} ⊆ S1 × (S2 × S3), then R is
initialized.

Now let (s1, (s2, s3)) ∈ R, then (s1, s2) ∈ R2 and (s1, s3) ∈ R3. Assume
that s1

a1
99K1 t1, then by S1 ≤m S2, we have s2

a2
99K2 t2 with a1 4 a2 and

(t1, t2) ∈ R2. Similarly, by S1 ≤m S3, we have s3
a3
99K3 t3 with a1 4 a3

and (t1, t3) ∈ R3. But then also a1 4 a2 7 a3 and (t1, (t2, t3)) ∈ R, and
(s2, s3) a27a3

99K (t2, t3) by definition.
Assume that (s2, s3) −→ N . Without loss of generality we can assume that

there is s2 −→2 N2 such thatN = {(a27a3, (t2, t3)) | (a2, t2) ∈ N2, s3
a3
99K3 t3}.

By S1 ≤m S2, we have s1 −→1 N1 such that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2 :
a1 4 a2, (t1, t2) ∈ R2.

Let (a1, t1) ∈ N1, then also s1
a1
99K1 t1, so by S1 ≤m S3, there is s3

a3
99K3 t3

with a1 4 a3 and (t1, t3) ∈ R3. By the above, we also have (a2, t2) ∈ N2 such
that a1 4 a2 and (t1, t2) ∈ R2, but then (a2 7 a3, (t2, t3)) ∈ N , a1 4 a2 ∧ a3,
and (t1, (t2, t3)) ∈ R.

For the other direction of the second claim, let R ⊆ S1 × (S2 × S3) be
an initialized (DMTS) modal refinement which witnesses S1 ≤m S2 ∧ S3. We
show that S1 ≤m S2, the proof of S1 ≤m S3 being entirely analogous. Define
R2 = {(s1, s2) | ∃s3 ∈ S3 : (s1, (s2, s3)) ∈ R} ⊆ S1 × S2, then R2 is initialized.

Let (s1, s2) ∈ R2, then we must have s3 ∈ S3 such that (s1, (s2, s3)) ∈ R.
Assume that s1

a1
99K1 t1, then also (s2, s3) a

99K (t2, t3) for some a with a1 4 a

and (t1, (t2, t3)) ∈ R. By construction we have s2
a2
99K2 t2 and s3

a3
99K3 t3 such

that a = a2 7 a3, but then a1 4 a2 7 a3 4 a2 and (t1, t2) ∈ R2.
Assume that s2 −→2 N2, then by construction we have (s2, s3) −→ N =

{(a2 7 a3, (t2, t3)) | (a2, t2) ∈ N2, s3
a3
99K3 t3}. By S1 ≤m S2 ∧ S3, there is

s1 −→1 N1 such that ∀(a1, t1) ∈ N1 : ∃(a, (t2, t3)) ∈ N : a1 4 a, (t1, (t2, t3)) ∈
R.

Let (a1, t1) ∈ N1, then we have (a, (t2, t3)) ∈ N for which a1 4 a and
(t1, (t2, t3)) ∈ R. By construction ofN , this implies that there are (a2, t2) ∈ N2

and s3
a3
99K3 t3 such that a = a2 7 a3, but then a1 4 a2 7 a3 4 a2 and

(t1, t2) ∈ R.

195

9. Compositionality for Quantitative Specifications

D1

D2

s1 s2

t1 t2

a

b

Figure 9.1: Two simple DMTS

As to the last claims of the theorem, JS1 ∧ S2K = JS1K ∩ JS2K is clear from
what we just proved: for all implementations I, I ≤m S1 ∧ S2 iff I ≤m S1
and I ≤m S2. For the other part, it is clear by construction that for any
implementation I, any witness R for I ≤m S1 is also a witness for I ≤m S1∨S2,
and similarly for S2, hence JS1K ∪ JS2K ⊆ JS1 ∨ S2K.

To show that also JS1K ∪ JS2K ⊇ JS1 ∨ S2K, we note that an initialized
refinement R witnessing I ≤m S1 ∨ S2 must relate the initial state of I either
to an initial state of S1 or to an initial state of S2. In the first case, and by
disjointness, R witnesses I ≤m S1, in the second, I ≤m S2. �

With bottom and top elements given by ⊥ = (∅, ∅, ∅) and > = ({s}, {s},
Tran>) with Tran>(s) = 22Σ×{s} , our classes of specifications form bounded
distributive lattices up to ≡m.

9.3.2 Structural composition
For AA A1 = (S1, S

0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), their structural composi-

tion is A1‖A2 = (S1 × S2, S
0
1 × S0

2 ,Tran), with Tran((s1, s2)) = {M1 �M2 |
M1 ∈ Tran1(s1),M2 ∈ Tran2(s2)} for all s1 ∈ S1, s2 ∈ S2, where M1 �M2 =
{(a1 � a2, (t1, t2)) | (a1, t1) ∈M1, (a2, t2) ∈M2, a1 � a2 defined}.

Remark a subtle difference between conjunction and structural compo-
sition, which we expose for discrete labels and CSP-style composition: for
the DMTS D1, D2 shown in Figure 9.1, both D1 ∧ D2 and D1‖D2 have only
one state, but Tran(s1 ∧ t1) = ∅ and Tran(s1‖t1) = {∅}, so that D1 ∧ D2 is
inconsistent, whereas D1‖D2 is not.

This definition extends the structural composition defined for modal tran-
sition systems, with structured labels, in [FL14a]. For DMTS specifications
(and hence also for ν-calculus expressions), the back translation from AA to
DMTS entails an exponential explosion.

9.12 Theorem. Up to ≡m, the operator ‖ is associative, commutative and mono-
tone.

Proof: Associativity and commutativity are clear by associativity and com-
mutativity of �. Monotonicity is equivalent to the assertion that (up to
≡m) ‖ distributes over the least upper bound ∨; one easily sees that for
all specifications S1, S2, S3, the identity is a two-sided modal refinement
S1‖(S2 ∨ S3) ≡m S1‖S2 ∨ S1‖S3. �

196

9.3. Specification theory

9.13 Corollary (Independent implementability). For all specifications S1, S2,
S3, S4, S1 ≤m S3 and S2 ≤m S4 imply S1‖S2 ≤m S3‖S4. �

9.3.3 Quotient
Because of non-determinism, we have to use a power set construction for the
quotient, as opposed to conjunction and structural composition where product
is sufficient. For AA A3 = (S3, S

0
3 ,Tran3), A1 = (S1, S

0
1 ,Tran1), the quotient

is A3/A1 = (S, {s0},Tran), with S = 2S3×S1 and s0 = {(s0
3, s

0
1) | s0

3 ∈ S0
3 , s

0
1 ∈

S0
1}. States in S will be written {s1

3/s
1
1, . . . , s

n
3/s

n
1)}. Intuitively, this denotes

that such state when composed with si1 conforms to si3 for each i; we call this
consistency here.

We now define Tran. First, Tran(∅) = 2Σ×{∅}, so ∅ is universal. For any
other state s = {s1

3/s
1
1, . . . , s

n
3/s

n
1} ∈ S, its set of permissible labels is defined

by

pl(s) =
{
a2 ∈ Σ

∣∣ ∀i = 1, . . . , n : ∀(a1, t1) ∈∈ Tran1(si1) :
∃(a3, t3) ∈∈ Tran3(si3) : a1 � a2 4 a3

}
,

that is, a label is permissible iff it cannot violate consistency. Here we use the
notation x ∈∈ z as a shortcut for ∃y : x ∈ y ∈ z.

Now for each a ∈ pl(s) and each i ∈ {1, . . . , n}, let {t1 ∈ S1 | (a, t1) ∈∈
Tran1(ti1)} = {ti,11 , . . . , ti,mi1 } be an enumeration of all the possible states in S1
after an a-transition. Then we define the set of all sets of possible assignments
of next-a states from si3 to next-a states from si1:

pta(s) =
{
{(ti,j3 , ti,j1) | i = 1, . . . , n, j = 1, . . . ,mi}∣∣ ∀i : ∀j : (a, ti,j3) ∈∈ Tran3(si3)

}
These are all possible next-state assignments which preserve consistency. Now
let pt(s) = ⋃

a∈pl(s) pta(s) and define

Tran(s) =
{
M ⊆ pt(s)

∣∣ ∀i = 1, . . . , n :
∀M1 ∈ Tran1(si1) : ∃M3 ∈ Tran3(si3) : M .M1 4R M3

}
,

where M .M1 = {(a1 � a, ti3) | (a, {t13/t11, . . . , tk3/tk1)}) ∈M, (a1, t
i
1) ∈M1}, to

guarantee consistency no matter which element of Tran1(si1), s is composed
with.

9.14 Example. Figure 9.2 shows two simple specifications and their quotient un-
der +

�, i.e., using addition of intervals for label synchronization (see Exam-
ple 9.4). During the construction and the translation back to DMTS, many
states were eliminated as they were inconsistent (their Tran-set was empty).
For instance, there is no may transition to state {s2/t2}, because when it is

197

9. Compositionality for Quantitative Specifications

s0

s1
(send, [1, 2])

s2(send, [2, 3])

•
early

•
late

t0 t1
(send, [1, 2])

•
early

late

early

{s0/t0}
{s1/t1}

{s2/t1}
∅

Σ
(send, [0, 0])

(send, [1, 1])

late, (send,]0, 1[), (send,]1,∞])

Σ \ {late}

early

Σ \ {early}

late

Figure 9.2: Two DMTS (top and center) and their quotient (bottom)

composed with t2 there is no guarantee of a late-transition, hence no guarantee
to refine s2.

Note that in order to have a finite representation of the quotient, we have
to extend the label set to allow intervals which are not closed; for instance,
the may-transition (send,]1,∞]) from {s0/t0} to ∅ comprises the fact that
pta({s0/t0}) = ∅ for all a = (send, [x,∞]) with x > 1. This can be formalized
by introducing a (partial) label quotient operator � : Σ × Σ ⇀ Σ which is
adjoint to label synchronization �, see Chapter 7.

9.15 Theorem. For all specifications S1, S2, S3, S1‖S2 ≤m S3 iff S2 ≤m S3/S1.

Proof: We show the proof for AA; for DMTS and ν-calculus expressions
it will follow through the translations. Let A1 = (S1, S

0
1 ,Tran1), A2 =

(S2, S
0
2 ,Tran2), A3 = (S3, S

0
3 ,Tran3); we show that A1‖A2 ≤m A3 iff A2 ≤m

A3/A1.
We assume that the elements of Tran1(s1) are pairwise disjoint for each

s1 ∈ S1; this can be achieved by, if necessary, splitting states.
First we note that by construction, s ⊇ t implies s ≤m t for all s, t ∈ S.
Assume that A2 ≤m A3/A1 and let R = {(s2, s3/s1) | s2 ≤m s3/s1} be the

witnessing refinement relation. Let R′ = {(s1‖s2, s3) | (s2, s3/s1) ∈ R} (for

198

9.3. Specification theory

readability, we abuse notation here and write (s1‖s2, s3) instead of (s1, s2, s3));
we show that R′ is a witness for A1‖A2 ≤m A3.

Let (s1‖s2, s3) ∈ R′ and M‖ ∈ Tran‖(s1‖s2). Then M‖ = M1‖M2 with
M1 ∈ Tran1(s1) and M2 ∈ Tran2(s2). As s2 ≤m s3/s1, we can pair M2 with a
set M/ ∈ Tran/(s3/s1) such that M2 4R M/.

Let M3 = M/ . M1. We show that M‖ 4R′ M3:

• Let (a, t1‖t2) ∈ M‖, then there are a1, a2 ∈ Σ with a = a1 � a2 and
(a1, t1) ∈ M1, (a2, t2) ∈ M2. By M2 4R M/, there is (a′2, t) ∈ M/ such
that a2 4 a′2 and t2 ≤m t. Note that a3 = a1 � a′2 is defined and a 4 a3.
Write t = {t13/t11, . . . , tn3/tn1}. By construction, there is an index i for
which ti1 = t1, hence (a3, t

i
3) ∈M3. Also, t ⊇ {ti3/ti1}, hence t2 ≤m ti3/t

i
1

and consequently (t1‖t2, t3) ∈ R′.

• Let (a3, t3) ∈ M3, then there are (a′2, t) ∈ M/ and (a1, t1) ∈ M1 such
that a3 = a1 � a′2 and t3/t1 ∈ t. By M2 4R M/, there is (a2, t2) ∈ M2
for which a2 4 a′2 and t2 ≤m t. Note that a = a1 � a2 is defined and
a 4 a3. Thus (a, t1‖t2) ∈M‖, and by t ⊇ {t3/t1}, t2 ≤m t3/t1.

Assume, for the other direction of the proof, that A1‖A2 ≤m A3 and let
R = {(s1‖s2, s3) | s1‖s2 ≤m s2} (again abusing notation) be the witnessing
refinement relation. Define R′ ⊆ S2 × 2S3×S1 by

R =
{
(s2, {s1

3/s
1
1, . . . , s

n
3/s

n
1})

∣∣ ∀i = 1, . . . , n : (si1‖s2, s
i
3) ∈ R} ;

we show that R′ is a witness for A2 ≤m A3/A1. Let (s2, s) ∈ R′, with
s = {s1

3/s
1
1, . . . , s

n
3/s

n
1}, and M2 ∈ Tran2(s2).

For every i = 1, . . . , n, write the set Tran1(si1) = {M i,1
1 , . . . ,M i,mi

1 }. By
assumption, M i,j1

1 ∩M i,j2
1 = ∅ for j1 6= j2, hence every (a1, t1) ∈∈ Tran1(si1)

is contained in a unique M i,δi(a1,t1)
1 ∈ Tran1(si1).

For every j = 1, . . . ,mi, letM i,j = M i,j
1 ‖M2 ∈ Tran‖(si1‖s2). By si1‖s2 ≤m

si3, we have M i,j
3 ∈ Tran3(si3) such that M i,j 4R M

i,j
3 .

Now define

M =
{
(a2, t)

∣∣ ∃(a2, t2) ∈M2 : ∀t3/t1 ∈ t : ∃i, a1, a3 : (a1, t1) ∈∈ Tran1(si1),

(a3, t3) ∈M i,δi(a1,t1)
3 , a1 � a2 4 a3, t1‖t2 ≤m t3} . (9.3)

We need to show that M ∈ Tran/(s).
Let i ∈ {1, . . . , n} andM i,j

1 ∈ Tran1(si1); we claim thatM .M i,j
1 4R′ M

i,j
3 .

Let (a3, t3) ∈M .M i,j
1 , then a3 = a1 � a2 for some a1, a2 such that t3/t1 ∈ t,

(a1, t1) ∈ M i,j
1 and (a2, t) ∈ M . By disjointness, j = δi(a1, t1), hence by

definition of M , (a3, t3) ∈M i,j
3 as was to be shown.

For the reverse inclusion, let (a3, t3) ∈M i,j
3 . By M i,j 4R M

i,j
3 and defini-

tion of M i,j , there are (a1, t1) ∈M i,j
1 and (a2, t2) ∈M2 for which a1�a2 4 a3

199

9. Compositionality for Quantitative Specifications

and t1‖t2 ≤m t3. Thus j = δi(a1, t1), so that there must be (a2, t) ∈ M for
which t3/t1 ∈ t, but then also (a1 � a2, t3) ∈M .M i,j

1 .
We show that M2 4R′ M .

• Let (a2, t2) ∈M2. For every i = 1, . . . , n and every (a1, t1) ∈∈ Tran1(ti1),
we can use M i,j 4R M

i,j
3 and choose an element (ηi(a1, t1), τi(a1, t1)) ∈

M
i,δi(a1,t1)
3 for which t1‖t2 ≤m τi(a1, t1) and a1 � a2 4 ηi(a1, t1). Let

t = {τi(a1, t1)/t1 | i = 1, . . . , n, (a1, t1) ∈∈ Tran1(ti1)}, then (a2, t) ∈ M
and (t2, t) ∈ R′.

• Let (a2, t) ∈ M , then we have (a2, t2) ∈ M2 satisfying the conditions
in (9.3). Hence t1‖t2 ≤m t3 for all t3/t1 ∈ t, so that (t2, t) ∈ R′. �

9.4 Robust Specification Theories
We proceed to lift the results of the previous sections to a quantitative setting,
where the Boolean notions of modal and thorough refinement are replaced
by refinement distances. We have shown in previous chapters that a good
setting for quantitative analysis is given by the one of recursively specified
trace distances on an abstract complete lattice L. In order to extend this
to specification theories, we enrich L with an addition like in Chapter 7 and
require it to be a (commutative) quantale, see below.

Denote by Σ∞ = Σ∗ ∪ Σω the set of finite and infinite traces over Σ.

9.4.1 Recursively specified trace distances

Recall that a (commutative) quantale consists of a complete lattice (L,vL)
and a commutative, associative addition operation �L which distributes over
arbitrary suprema; we denote by ⊥L, >L the bottom and top elements of
L. We call a function d : X × X → L, for a set X and a quantale L,
an L-hemimetric if it satisfies d(x, x) = ⊥L for all x ∈ X and d(x, z) vL
d(x, y) �L d(y, z) for all x, y, z ∈ X.

L-hemimetrics are generalizations of distances: for L = R≥0 ∪ {∞} the
extended real line, an (R≥0∪{∞})-hemimetric is simply an extended hemimet-
ric, i.e., a function d : X ×X → R≥0 ∪ {∞} which satisfies d(x, x) = 0 for all
x ∈ X and the triangle inequality d(x, z) ≤ d(x, y) +d(y, z) for all x, y, z ∈ X.
If d also is symmetric, i.e., satisfies d(x, y) = d(y, x) for all x, y ∈ X, then d is
usually called a pseudometric. If d also satisfies the principle of separability,
or indiscernibility of identicals, i.e., such that d(x, y) = 0 implies x = y, it is
called a metric.

A recursive trace distance specification (L, eval, dLtr, F) consists of a quan-
tale L, a quantale morphism eval : L → R≥0 ∪ {∞}, an L-hemimetric
dLtr : Σ∞ × Σ∞ → L (called lifted trace distance), and a distance iterator

200

9.4. Robust Specification Theories

function F : Σ × Σ × L → L. For our purposes, F must be monotone in
the third and anti-monotone in the second coordinate and satisfy an extended
triangle inequality: for all a, b, c ∈ Σ and α, β ∈ L, F (a, b, α)�L F (b, c, β) wL
F (a, c, α�L β).

F is to specify dLtr recursively in the sense that for all a, b ∈ Σ and all
σ, τ ∈ Σ∞ (and with “.” denoting concatenation),

dLtr(a.σ, b.τ) = F (a, b, dLtr(σ, τ)) . (9.4)

The trace distance associated with such a distance specification is dtr : Σ∞ ×
Σ∞ → R≥0 given by dtr = eval ◦ dLtr.

Note that dLtr specializes to a distance on labels (because Σ ⊆ Σ∞);
we require that this is compatible with label refinement in the sense that
a 4 b implies dLtr(a, b) = ⊥L. Then (9.4) implies that whenever a 4 b, then
F (a, b,⊥L) = dLtr(a, b) = ⊥L. As an inverse property, we say that F is recur-
sively separating if F (a, b, α) = ⊥L implies that a 4 b and α = ⊥L.

9.16 Example. We have shown in previous chapters that all commonly used trace
distances obey recursive characterizations as above. We give a few examples,
all of which are recursively separating:

The point-wise distance from [dAFH+05] has L = R≥0 ∪ {∞}, eval = id
and

dLtr(a.σ, b.τ) = max(d(a, b), dLtr(σ, τ)) ,
where d : Σ × Σ → R≥0 ∪ {∞} is a hemimetric on labels. For the label set
Σ = U×{[l, r] | l ∈ R∪{−∞}, r ∈ R∪{∞}, l ≤ r} from Example 9.2, one use-
ful example of such a hemimetric is d((u1, [l1, r1]), (u2, [l2, r2])) = supx1∈[l1,r1]
infx2∈[l2,r2] |x1 − x2| = max(l2 − l1, r1 − r2, 0) if u1 = u2 and ∞ otherwise.

The discounting distance, also used in [dAFH+05], again uses L = R≥0 ∪
{∞} and eval = id, but

dLtr(a.σ, b.τ) = d(a, b) + λdLtr(σ, τ)

for a constant λ ∈ [0, 1[.
For the limit-average distance used in [ČHR12] and other papers, L =

(R≥0 ∪ {∞})N, eval(α) = lim infj∈N α(j), and

dLtr(a.σ, b.τ)(j) = 1
j+1d(a, b) + j

j+1d
L

tr(σ, τ)(j − 1) .

It is clear that limit-average distance has no recursive specification which uses
L = R≥0 ∪ {∞} as for the other distances above. Intuitively, the quantale
(R≥0∪{∞})N has to be used to memorize how many symbols one has seen in
the sequences σ, τ . This and other examples show that using general quantales
in recursive trace distance specifications instead of simply L = R≥0 ∪ {∞} is
necessary.

The discrete trace distance is given by dtr(σ, τ) = 0 if σ 4 τ and ∞
otherwise (here we have extended 4 to traces in the obvious way). It has a

201

9. Compositionality for Quantitative Specifications

recursive characterization with L = R≥0 ∪ {∞}, eval = id, and dtr(a.σ, b.τ) =
dtr(σ, τ) if a 4 b and ∞ otherwise.

For the rest of this paper, we fix a recursively specified trace distance.

9.4.2 Refinement distances
We lift the notions of modal refinement, for all our formalisms, to distances.
Conceptually, this is done by replacing “∀” quantifiers by “sup” and “∃” by
“inf” in the definitions, and then using the distance iterator to introduce a
recursive functional whose least fixed point is the distance.

9.17 Definition. The lifted refinement distance on the states of DMTS D1 =
(S1, S

0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) is the least fixed point to

the equations

dLm(s1, s2) = max


sup
s1

a1
99Kt1

inf
s2

a2
99Kt2

F (a1, a2, d
L
m(t1, t2)) ,

sup
s2−→N2

inf
s1−→N1

sup
(a1,t1)∈N1

inf
(a2,t2)∈N2

F (a1, a2, d
L
m(t1, t2)) ,

for s1 ∈ S1, s2 ∈ S2. For AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), the

right-hand side is replaced by

sup
M1∈Tran1(s1)

inf
M2∈Tran2(s2)

max


sup

(a1,t1)∈M1

inf
(a2,t2)∈M2

F (a1, a2, d
L
m(t1, t2)) ,

sup
(a2,t2)∈M2

inf
(a1,t1)∈M1

F (a1, a2, d
L
m(t1, t2)) ,

and for ν-calculus expressions N1 = (X1, X
0
1 ,∆1), N2 = (X2, X

0
2 ,∆2) in nor-

mal form, it is

max


sup

a1∈Σ,y1∈�
a1
1 (x1)

inf
a2∈Σ,y2∈�

a2
2 (x2)

F (a1, a2, d
L
m(y1, y2)) ,

sup
N2∈♦2(x2)

inf
N1∈♦1(x1)

sup
(a1,y1)∈N1

inf
(a2,y2)∈N2

F (a1, a2, d
L
m(y1, y2)) .

Using Tarski’s fixed point theorem, one easily sees that the lifted refine-
ment distances are indeed well-defined. (Here one needs monotonicity of F in
the third coordinate, together with the fact that sup and inf are monotonic.)

Note that we define the distances using least fixed points, as opposed to
the greatest fixed point definition of standard refinement. Informally, this is
because our order is reversed: we are not interested in maximizing refinement
relations, but in minimizing refinement distance.

The lifted refinement distance between specifications is defined by

dLm(S1,S2) = sup
s01∈S

0
1

inf
s02∈S

0
2

dLm(s0
1, s

0
2) .

202

9.4. Robust Specification Theories

Analogously to thorough refinement, there is also a lifted thorough refinement
distance, given by dLth(S1,S2) = supI1∈JS1K infI2∈JS2K d

L
m(I1, I2).

Using the eval function, one gets distances dm = eval ◦ dLm and dth =
eval ◦ dLth, with values in R≥0 ∪ {∞}, which will be the ones one is interested
in for concrete applications.

We recall the notion of refinement family from Chapter 7 and extend it to
specifications. We give the definition for AA only; for DMTS and the modal
ν-calculus it is similar.

9.18 Definition. A refinement family from A1 to A2, for AA A1 = (S1, S
0
1 ,Tran1),

A2 = (S2, S
0
2 ,Tran2), is an L-indexed family of relations R = {Rα ⊆ S1×S2 |

α ∈ L} with the property that for all α ∈ L with α 6= >L, all (s1, s2) ∈ Rα,
and all M1 ∈ Tran1(s1), there is M2 ∈ Tran2(s2) such that

• ∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2, β ∈ L : (t1, t2) ∈ Rβ, F (a1, a2, β) v α,

• ∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1, β ∈ L : (t1, t2) ∈ Rβ, F (a1, a2, β) v α.

9.19 Lemma. For all AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), there exists

a refinement family R from A1 to A2 such that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2
for which (s0

1, s
0
2) ∈ RdLm(A1,A2).

We say that a refinement family as in the lemma witnesses dLm(A1,A2).

Proof: Define R by Rα = {(s1, s2) | dLm(s1, s2) vL α}. First, as (s0
1, s

0
2) ∈

RdLm(s01,s02) for all s0
1 ∈ S0

1 , s0
2 ∈ S0

2 , it is indeed the case that for all s0
1 ∈ S0

1 ,
there is s0

2 ∈ S0
2 for which

(s0
1, s

0
2) ∈ RdLm(A1,A2) = Rmax

s01∈S
0
1

min
s02∈S

0
2
dLm(s01,s02) .

Now let α ∈ L with α 6= >L and (s1, s2) ∈ Rα. Let M1 ∈ Tran1(s1). We
have dLm(s1, s2) vL α, hence there is M2 ∈ Tran2(s2) such that

α wL max


sup

(a1,t1)∈M1

inf
(a2,t2)∈M2

F (a1, a2, d
L
m(t1, t2)) ,

sup
(a2,t2)∈M2

inf
(a1,t1)∈M1

F (a1, a2, d
L
m(t1, t2)) .

But this entails that for all (a1, t1) ∈ M1, there is (a2, t2) ∈ M2 and β =
dLm(t1, t2) with F (a1, a2, β) vL α, and that for all (a2, t2) ∈ M2, there is
(a1, t1) ∈M1 and β = dLm(t1, t2) such that F (a1, a2, β) vL α. �

The following quantitative extension of Theorems 9.7 and 9.10 shows that
our translations preserve and reflect refinement distances.

203

9. Compositionality for Quantitative Specifications

9.20 Theorem. For all DMTS D1,D2, all AA A1, A2 and all ν-calculus expres-
sions N1, N2:

dLm(D1,D2) = dLm(da(D1), da(D2))
dLm(A1,A2) = dLm(ad(A1), ad(A2))
dLm(D1,D2) = dLm(dn(D1), dn(D2))
dLm(N1,N2) = dLm(nd(N1),nd(N2))

Proof:
dLm(da(D1), da(D2)) vL dLm(D1,D2):

Let D1 = (S1, S
0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) be DMTS.

There exists a DMTS refinement family R = {Rα ⊆ S1 × S2 | α ∈ L} such
that for all s0

1 ∈ S0
1 , there is s0

2 ∈ S0
2 with (s0

1, s
0
2) ∈ RdLm(D1,D2). We show that

R is an AA refinement family.
Let α ∈ L and (s1, s2) ∈ Rα. Let M1 ∈ Tran1(s1) and define

M2 =
{
(a2, t2) | s2

a2
99K2 t2,∃(a1, t1) ∈M1 : ∃β ∈ L :

(t1, t2) ∈ Rβ, F (a1, a2, β) vL α
}
.

The condition

∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1, β ∈ L : (t1, t2) ∈ Rβ, F (a1, a2, β) v α

is satisfied by construction. For the inverse condition, let (a1, t1) ∈ M1, then
s1

a1
99K1 t1, and as R is a DMTS refinement family, this implies that there is

s2
a2
99K2 t2 and β ∈ L for which (t1, t2) ∈ Rβ and F (a1, a2, β) vL α, so that

(a2, t2) ∈M2 by construction.
We are left with showing that M2 ∈ Tran2(s2). First we notice that by

construction, indeed s2
a2
99K2 t2 for all (a2, t2) ∈ M2. Now let s2 −→ N2; we

need to show that N2 ∩M2 6= ∅.
We have s1 −→ N1 such that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L :

(t1, t2) ∈ Rβ, F (a1, a2, β) vL α. We know that N1 ∩M1 6= ∅, so let (a1, t1) ∈
N1 ∩M1. Then there is (a2, t2) ∈ N2 and β ∈ L such that (t1, t2) ∈ Rβ and
F (a1, a2, β) vL α. But (a2, t2) ∈ N2 implies s2

a2
99K2 t2, hence (a2, t2) ∈M2.

dLm(D1,D2) vL dLm(da(D1), da(D2)):
Let D1 = (S1, S

0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) be DMTS.

There exists an AA refinement family R = {Rα ⊆ S1 × S2 | α ∈ L} such that
for all s0

1 ∈ S0
1 , there is s0

2 ∈ S0
2 for which (s0

1, s
0
2) ∈ RdLm(da(D1),da(D2)). We

show that R is a DMTS refinement family. Let α ∈ L and (s1, s2) ∈ Rα.
Let s1

a1
99K1 t1, then we cannot have s1 −→ ∅. LetM1 = {(a1, t1)}∪⋃{N1 |

s1 −→ N1}, then M1 ∈ Tran1(s1) by construction. This implies that there
is M2 ∈ Tran2(s2), (a2, t2) ∈ M2 and β ∈ L such that (t1, t2) ∈ Rβ and
F (a1, a2, β) vL α, but then also s2

a2
99K t2 as was to be shown.

204

9.4. Robust Specification Theories

Let s2 −→ N2 and assume, for the sake of contradiction, that there is
no s1 −→ N1 for which ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈
Rβ, F (a1, a2, β) vL α holds. Then for each s1 −→ N1, there is an element
(aN1 , tN1) ∈ N1 such that ∃(a2, t2) ∈ N2, β ∈ L : (tN1 , t2) ∈ Rβ, F (aN1 , a2,
β) vL α does not hold.

Let M1 = {(aN1 , tN1) | s1 −→ N1}, then M1 ∈ Tran1(s1) by construction.
Hence we have M2 ∈ Tran2(s2) such that ∀(a2, t2) ∈ M2 : ∃(a1, t2) ∈ M1, β ∈
L : (t1, t2) ∈ Rβ, F (a1, a2, β) v α. Now N2 ∩ M2 6= ∅, so let (a2, t2) ∈
N2 ∩M2, then there is (a1, t1) ∈ M1 and β ∈ L such that (t1, t2) ∈ Rβ and
F (a1, a2, β) vL α, in contradiction to how M1 was constructed.
dLm(ad(A1), ad(A2)) vL dLm(A1,A2):

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA, with DMTS trans-

lations ad(A1) = (D1, D
0
1,−→1, 99K1), ad(A2) = (D2, D

0
2,−→2, 99K2). There

is an AA refinement family R = {Rα ⊆ S1 × S2 | α ∈ L} such that for all
s0

1 ∈ S0
1 , there is s0

2 ∈ S0
2 with (s0

1, s
0
2) ∈ RdLm(A1,A2).

Define a relation family R′ = {R′α ⊆ D1 ×D2 | α ∈ L} by

R′α =
{
(M1,M2)

∣∣ ∃(s1, s2) ∈ Rα : M1 ∈ Tran1(s1),M2 ∈ Tran(s2),
∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2, β ∈ L :

(t1, t2) ∈ Rβ, F (a1, a2, β) vL α ,
∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1, β ∈ L :

(t1, t2) ∈ Rβ, F (a1, a2, β) vL α
}
.

We show that R′ is a witness for dLm(ad(A1), ad(A2)) vL dLm(A1,A2). Let
α ∈ L and (M1,M2) ∈ R′α.

Let M2 −→2 N2. By construction of −→, there is (a2, t2) ∈M2 such that
N2 = {(a2,M

′
2) | M ′2 ∈ Tran2(t2)}. Then (M1,M2) ∈ R′α implies that there

must be (a1, t1) ∈M1 and β ∈ L such that (t1, t2) ∈ Rβ and F (a1, a2, β) vL α.
Let N1 = {(a1,M

′
1) |M ′1 ∈ Tran1(t1)}, then M1 −→1 N1.

We show that ∀(a1,M
′
1) ∈ N1 : ∃(a2,M

′
2) ∈ N2 : (M ′1,M ′2) ∈ R′β: Let

(a1,M
′
1) ∈ N1, then M ′1 ∈ Tran1(t1). From (t1, t2) ∈ Rβ we get M ′2 ∈

Tran2(t2) such that

∀(b1, u1) ∈M ′1 : ∃(b2, u2) ∈M ′2, γ ∈ L : (u1, u2) ∈ Rγ , F (b1, b2, γ) vL β ,
∀(b2, u2) ∈M ′2 : ∃(b1, u1) ∈M ′1, γ ∈ L : (u1, u2) ∈ Rγ , F (b1, b2, γ) vL β ,

hence (M ′1,M ′2) ∈ R′β; also, (a2,M
′
2) ∈ N2 by construction of N2.

Let M1
a1
99K1 M ′1, then we have M1 −→1 N1 for which (a1,M

′
1) ∈ N1 by

construction of 99K1. This in turn implies that there must be (a1, t1) ∈ M1
such that N1 = {(a1,M

′′
1) | M ′′1 ∈ Tran1(t1)}. By (M1,M2) ∈ R′α, we get

(a2, t2) ∈ M2 and β ∈ L such that (t1, t2) ∈ Rβ and F (a1, a2, β) vL α. Let
N2 = {(a2,M

′
2) | M ′2 ∈ Tran2(t2)}, then M2 −→2 N2 and hence M2

a2
99K2 M ′2

205

9. Compositionality for Quantitative Specifications

for all (a2,M
′
2) ∈ N2. By the same arguments as above, there is (a2,M

′
2) ∈ N2

for which (M ′1,M ′2) ∈ R′β.
We miss to show that R′ is initialized. LetM0

1 ∈ D0
1, then we have s0

1 ∈ S0
1

with M0
1 ∈ Tran1(s0

1). As R is initialized, this entails that there is s0
2 ∈ S0

2
with (s0

1, s
0
2) ∈ RdLm(A1,A2), which gives us M0

2 ∈ Tran2(s0
2) which satisfies the

conditions in the definition of R′dLm(A1,A2), whence (M0
1 ,M

0
2) ∈ R′dLm(A1,A2).

dLm(A1,A2) vL dLm(ad(A1), ad(A2)):
Let A1 = (S1, S

0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA, with DMTS trans-

lations ad(A1) = (D1, D
0
1,−→1, 99K1), ad(A2) = (D2, D

0
2,−→2, 99K2). There

is a DMTS refinement family R = {Rα ⊆ D1 ×D2 | α ∈ L} such that for all
M0

1 ∈ D0
1, there exists M0

2 ∈ D0
2 with (M0

1 ,M
0
2) ∈ RdLm(ad(A1),ad(A2)).

Define a relation family R′ = {R′α ⊆ S1 × S2 | α ∈ L} by

R′α =
{
(s1, s2)

∣∣ ∀M1 ∈ Tran1(s1) : ∃M2 ∈ Tran2(s2) : (M1,M2) ∈ Rα
}

;

we will show that R′ is a witness for dLm(A1,A2) vL dLm(ad(A1), ad(A2)).
Let α ∈ L, (s1, s2) ∈ R′α and M1 ∈ Tran1(s1), then by construction of R′,

we have M2 ∈ Tran2(s2) with (M1,M2) ∈ Rα.
Let (a2, t2) ∈ M2 and define N2 = {(a2,M

′
2) | M ′2 ∈ Tran2(t2)}, then

M2 −→2 N2. Now (M1,M2) ∈ Rα implies that there must be M1 −→1
N1 satisfying ∀(a1,M

′
1) ∈ N1 : ∃(a2,M

′
2) ∈ N2, β ∈ L : (M ′1,M ′2) ∈ Rβ,

F (a1, a2, β) vL α. We have (a1, t1) ∈ M1 such that N1 = {(a1,M
′
1) | M ′1 ∈

Tran1(t1)}; we only miss to show that (t1, t2) ∈ R′β for some β ∈ L for which
F (a1, a2, β) vL α. Let M ′1 ∈ Tran1(t1), then (a1,M

′
1) ∈ N1, hence there is

(a2,M
′
2) ∈ N2 and β ∈ L such that (M ′1,M ′2) ∈ Rβ and F (a1, a2, β) v α, but

(a2,M
′
2) ∈ N2 also entails M ′2 ∈ Tran2(t2).

Let (a1, t1) ∈ M1 and define N1 = {(a1,M
′
1) | M ′1 ∈ Tran1(t1)}, then

M1 −→1 N1. Now let (a1,M
′
1) ∈ N1, then M1

a1
99K1 M ′1, hence we have

M2
a2
99K2 M ′2 and β ∈ L such that (M ′1,M ′2) ∈ Rβ and F (a1, a2, β) vL α. By

construction of 99K2, this implies that there isM2 −→2 N2 with (a2,M
′
2) ∈ N2,

and we have (a2, t2) ∈M2 for which N2 = {(a2,M
′′
2) |M ′′2 ∈ Tran2(t2)}. Now

if M ′′1 ∈ Tran1(t1), then (a1,M
′′
1) ∈ N1, hence there is (a2,M

′′
2) ∈ N2 with

(M ′′1 ,M ′′2) ∈ Rβ, but (a,M ′′2) ∈ N2 also gives M ′′2 ∈ Tran2(t2).
We miss to show that R′ is initialized. Let s0

1 ∈ S0
1 and M0

1 ∈ Tran1(s0
1).

As R is initialized, this gets us M0
2 ∈ D2 with (M0

1 ,M
0
2) ∈ RdLm(ad(A1),ad(A2)),

but M0
2 ∈ Tran2(s0

2) for some s0
2 ∈ S0

2 , and then (s0
1, s

0
2) ∈ R′dLm(ad(A1),ad(A2)).

dLm(dn(D1), dn(D2)) vL dLm(D1,D2):
Let D1 = (S1, S

0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) be DMTS,

with ν-calculus translations dn(D1) = (S1, S
0
1 ,∆1) and dn(D2) = (S2, S

0
2 ,∆2).

There is a DMTS refinement family R = {Rα ⊆ S1 × S2 | α ∈ L} such that
for all s0

1 ∈ S0
1 , there exists s0

2 ∈ S0
2 for which (s0

1, s
0
2) ∈ RdLm(D1,D2).

206

9.4. Robust Specification Theories

Let α ∈ L, (s1, s2) ∈ Rα, a1 ∈ Σ, and t1 ∈ �a1
1 (s1). Then s1

a1
99K1 t1, hence

we have s2
a2
99K2 t2 and β ∈ L with (t1, t2) ∈ Rβ and F (a1, a2, β) vL α, but

then also t2 ∈ �a2
2 (s2).

Let N2 ∈ ♦2(s2), then also s2 −→2 N2, so that there must be s1 −→1 N1
such that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈ Rβ, F (a1, a2, β) vL
α, but then also N1 ∈ ♦1(s1).
dLm(D1,D2) vL dLm(dn(D1), dn(D2)):

Let D1 = (S1, S
0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2) be DMTS,

with ν-calculus translations dn(D1) = (S1, S
0
1 ,∆1) and dn(D2) = (S2, S

0
2 ,∆2).

There is a ν-calculus refinement family R = {Rα ⊆ S1×S2 | α ∈ L} such that
for all s0

1 ∈ S0
1 , there exists s0

2 ∈ S0
2 for which (s0

1, s
0
2) ∈ RdLm(D1,D2).

Let α ∈ L and (s1, s2) ∈ Rα, and assume that s1
a1
99K1 t1. Then t1 ∈

�a1
1 (s1), so that there is a2 ∈ Σ, t2 ∈ �a2

2 (s2) and β ∈ L for which (t1, t2) ∈ Rβ
and F (a1, a2, β) vL α, but then also s2

a2
99K2 t2.

Assume that s2 −→2 N2, then N2 ∈ ♦2(s2). Hence there is N1 ∈ ♦1(s1)
so that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈ Rβ, F (a1, a2, β) vL α,
but then also s1 −→1 N1.
dLm(nd(N1),nd(N2)) vL dLm(N1,N2):

Let N1 = (X1, X
0
1 ,∆1), N2 = (X2, X

0
2 ,∆2) be ν-calculus expressions in

normal form, with DMTS translations nd(N1) = (X1, X
0
1 , 99K1,−→1) and

nd(N2) = (X2, X
0
2 , 99K2,−→2). There is a ν-calculus refinement family R =

{Rα ⊆ X1×X2 | α ∈ L} such that for all x0
1 ∈ X0

1 , there is x0
2 ∈ X0

2 for which
(x0

1, x
0
2) ∈ RdLm(N1,N2).

Let α ∈ L and (x1, x2) ∈ Rα, and assume that x1
a1
99K1 y1. Then y1 ∈

�a1
1 (x1), hence there are a2 ∈ Σ, y2 ∈ �a2

2 and β ∈ L such that (y1, y2) ∈ Rβ
and F (a1, a2, β) vL α, but then also x2

a2
99K2 y2.

Assume that x2 −→2 N2, then N2 ∈ ♦2(x2). Hence there must be
N1 ∈ ♦1(x1) such that ∀(a1, y1) ∈ N1 : ∃(a2, y2) ∈ N2, β ∈ L : (y1, y2) ∈
Rβ, F (a1, a2, β) vL α, but then also x1 −→1 N1.
dLm(N1,N2) vL dLm(nd(N1),nd(N2)):

Let N1 = (X1, X
0
1 ,∆1), N2 = (X2, X

0
2 ,∆2) be ν-calculus expressions in

normal form, with DMTS translations nd(N1) = (X1, X
0
1 , 99K1,−→1) and

nd(N2) = (X2, X
0
2 , 99K2,−→2). There is a DMTS refinement family R =

{Rα ⊆ X1×X2 | α ∈ L} such that for all x0
1 ∈ X0

1 , there is x0
2 ∈ X0

2 for which
(x0

1, x
0
2) ∈ RdLm(N1,N2).

Let α ∈ L, (x1, x2) ∈ Rα, a1 ∈ Σ, and y1 ∈ �a1
1 (x1). Then x1

a1
99K1 y1,

hence we have x2
a2
99K2 y2 and β ∈ L so that (y1, y2) ∈ Rβ and F (a1, a2, β) vL

α, but then also y1 ∈ �a2
2 (x2).

Let N2 ∈ ♦2(x2), then also x2 −→2 N2. Hence we must have x1 −→1 N1
with ∀(a1, y1) ∈ N1 : ∃(a2, y2) ∈ N2, β ∈ L : (y1, y2) ∈ Rβ, F (a1, a2, β) vL α,
but then also N1 ∈ ♦1(x1). �

207

9. Compositionality for Quantitative Specifications

9.4.3 Properties
We sum up some important properties of our distances.

9.21 Proposition. For all specifications S1, S2, S1 ≤m S2 implies dLm(S1,S2) =
⊥L, and S1 ≤t S2 implies dLth(S1,S2) = ⊥L. If F is recursively separating,
then dLm(S1,S2) = ⊥L implies S1 ≤m S2.

Proof: We show the proposition for AA. First, if A1 ≤m A2, with A1 =
(S1, S

0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), then there is an initialized refinement

relation R ⊆ S1×S2, i.e., such that for all (s1, s2) ∈ R and allM1 ∈ Tran1(s1),
there is M2 ∈ Tran2(s2) for which

• ∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2 : a1 4 a2, (t1, t2) ∈ R and

• ∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1 : a1 4 a2, (t1, t2) ∈ R.

Defining R′ = {R′α | α ∈ L} by R′α = R for all α ∈ L, we see that R′ is an
initialized refinement family which witnesses dLm(A1,A2) = ⊥L.

We have shown thatA1 ≤m A2 implies dLm(A1,A2) = ⊥L. Now ifA1 ≤t A2
instead, then for all I ∈ JA1K, also I ∈ JA2K, hence dLth(A1,A2) = ⊥L.

To show the last property, assume F to be recursively separating. Define
R ⊆ S1 × S2 by R = {(s1, s2) | dLm(s1, s2) = ⊥L}; we show that R is a witness
for A1 ≤m A2. By dLm(A1,A2) = ⊥L, R is initialized.

Let (s1, s2) ∈ R and M1 ∈ Tran1(s1), then there is M2 ∈ Tran2(s2) such
that

∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2, β1 ∈ L :
dLm(t1, t2) vL β1, F (a1, a2, β1) = ⊥L ,

∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1, β1 ∈ L :
dLm(t1, t2) vL β1, F (a1, a2, β1) = ⊥L .

As F is recursively separating, we must have a1 4 a2 in both these equations
and β1 = β2 = ⊥L. But then (t1, t2) ∈ R, hence R is indeed a witness for
A1 ≤m A2. �

9.22 Proposition. The functions dLm and dLth are L-hemimetrics, and dm, dth are
hemimetrics.

Proof: We show the proof for AA. The properties that dLm(A,A) = ⊥L and
dLth(A,A) = ⊥L follow from Proposition 9.21.

We show the triangle inequality for dLm. The triangle inequality for dLth
will then follow from standard arguments used to show that the Hausdorff
metric satisfies the triangle inequality, see for example [AB07, Lemma 3.72].
Let A1 = (S1, S

0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), A3 = (S3, S

0
3 ,Tran3) be AA

and R1 = {R1
α ⊆ S1 × S2 | α ∈ L}, R2 = {R2

α ⊆ S2 × S3 | α ∈ L} refinement

208

9.4. Robust Specification Theories

families such that ∀s0
1 ∈ S0

1 : ∃s0
2 ∈ S0

2 : (s0
1, s

0
2) ∈ R1

dLm(A1,A2) and ∀s0
2 ∈ S0

2 :
∃s0

3 ∈ S0
3 : (s0

2, s
0
3) ∈ R2

dLm(A2,A3).
Define R = {Rα ⊆ S1 × S3 | α ∈ L} by

Rα =
{
(s1, s3)

∣∣ ∃α1, α2 ∈ L, s2 ∈ S2 :
(s1, s2) ∈ R1

α1 , (s2, s3) ∈ R2
α2 , α1 �L α2 = α

}
.

Then for all s0
1 ∈ S0

1 there is s0
3 ∈ S0

3 such that (s0
1, s

0
3) ∈ RdLm(A1,A2)�LdLm(A2,A3);

we show that R is a refinement family from A1 to A2.
Let α ∈ L and (s1, s3) ∈ Rα, then we have α1, α2 ∈ L and s2 ∈ S2 such

that α1 �L α2 = α, (s1, s2) ∈ R1
α1 and (s2, s3) ∈ R2

α2 . Let M1 ∈ Tran1(s1),
then we have M2 ∈ Tran2(s2) such that

∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2, β1 ∈ L :
(t1, t2) ∈ R1

β1 , F (a1, a2, β1) vL α1 , (9.5)
∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1, β1 ∈ L :

(t1, t2) ∈ R1
β1 , F (a1, a2, β1) vL α1 . (9.6)

This in turn implies that there is M3 ∈ Tran3(s3) with

∀(a2, t2) ∈M2 : ∃(a3, t3) ∈M3, β2 ∈ L :
(t2, t3) ∈ R2

β2 , F (a2, a3, β2) vL α2 , (9.7)
∀(a3, t3) ∈M3 : ∃(a2, t2) ∈M2, β2 ∈ L :

(t2, t3) ∈ R2
β2 , F (a2, a3, β2) vL α2 . (9.8)

Now let (a1, t1) ∈ M1, then we get (a2, t2) ∈ M2, (a3, t3) ∈ M3 and
β1, β2 ∈ L as in (9.5) and (9.7). Let β = β1 �L β2, then (t1, t3) ∈ Rβ, and
by the extended triangle inequality for F , F (a1, a3, β) vL F (a1, a2, β1) �L
F (a2, a3, β2) vL α1 �L α2 = α.

Similarly, given (a3, t3) ∈M3, we can apply (9.8) and (9.6) to get (a1, t1) ∈
M1 and β ∈ L such that (t1, t3) ∈ Rβ and F (a1, a3, β) vL α.

We have shown that dLm and dLtr are L-hemimetrics. Using monotonicity of
the eval function, it follows that dm and dtr are hemimetrics. �

9.23 Proposition. For the discrete distances, ddiscm (S1,S2) = 0 if S1 ≤m S2 and
∞ otherwise. Similarly, ddiscth (S1,S2) = 0 if S1 ≤t S2 and ∞ otherwise.

Proof: We show the proposition for AA. We already know that, also for the
discrete distances, A1 ≤m A2 implies dm(A1,A2) = 0 and that A1 ≤t A2
implies dth(A1,A2) = 0. We show that dm(A1,A2) = 0 implies A1 ≤m A2.
Let R = {Rα ⊆ S1 × S2 | α ∈ L} be a refinement family such that ∀s0

1 ∈ S0
1 :

∃s0
2 ∈ S0

2 : (s0
1, s

0
2) ∈ R0. We show that R0 is a witness for A1 ≤m A2; it is

clearly initialized.

209

9. Compositionality for Quantitative Specifications

Let (s1, s2) ∈ R0 and M1 ∈ Tran1(s1), then we have M2 ∈ Tran2(s2) such
that

∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2, β ∈ L : (t1, t2) ∈ Rβ, F (a1, a2, β) = 0 ,
∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1, β ∈ L : (t1, t2) ∈ Rβ, F (a1, a2, β) = 0 .

(9.9)

Using the definition of the distance, we see that the condition F (a1, a2, β) = 0
is equivalent to a1 4 a2 and β = 0, hence (9.9) degenerates to

∀(a1, t1) ∈M1 : ∃(a2, t2) ∈M2 : (t1, t2) ∈ R0, a1 4 a2 ,

∀(a2, t2) ∈M2 : ∃(a1, t1) ∈M1 : (t1, t2) ∈ R0, a1 4 a2 ,

which are exactly the conditions for R0 to be a modal refinement.
Again by definition, we see that for any AA A1, A2, either dm(A1,A2) = 0

or dm(A1,A2) =∞, hence A1 6≤m A2 implies that dm(A1,A2) =∞.
To show the last part of the proposition, we notice that

dth(A1,A2) = sup
I1∈JA1K

inf
I2∈JA2K

dm(I1, I2)

=
{

0 if ∀I1 ∈ JA1K : ∃I2 ∈ JA2K : I1 ≤m I2 ,

∞ otherwise ,

=
{

0 if JA1K ⊆ JA2K ,
∞ otherwise .

Hence dth(A1,A2) = 0 if A1 ≤t A2 and dth(A1,A2) =∞ otherwise. �

As a quantitative analogy to the implication from (Boolean) modal refine-
ment to thorough refinement (see Proposition 9.6), the next theorem shows
that thorough refinement distance is bounded above by modal refinement dis-
tance. Note that for the discrete trace distance (and using Proposition 9.23),
this is equivalent to the Boolean statement.

9.24 Theorem. For all specifications S1, S2, dLth(S1,S2) vL dLm(S1,S2).

Proof: We prove the statement for AA; for DMTS and ν-calculus expressions
it then follows from Theorem 9.20.

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2). We have a refinement

family R = {Rα ⊆ S1 × S2 | α ∈ L} such that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2
with (s0

1, s
0
2) ∈ RdLm(A1,A2). Let I = (S, S0, T) ∈ JA1K, i.e., I ≤m A1.

Let R1 ⊆ S × S1 be an initialized modal refinement, and define a relation
family R2 = {R2

α ⊆ S × S2 | α ∈ L} by R2
α = R1 ◦ Rα = {(s, s2) | ∃s1 ∈ S :

(s, s1) ∈ R1, (s1, s2) ∈ Rα. We define a LTS I2 = (S2, S
0
2 , T2) as follows:

For all α ∈ L with α 6= >L and (s, s2) ∈ R2
α: We must have s1 ∈ S1 with

(s, s1) ∈ R1 and (s1, s2) ∈ Rα. Then there is M1 ∈ Tran1(s1) such that

210

9.4. Robust Specification Theories

• for all s a−→ t, there is (a, t1) ∈M1 with (t, t1) ∈ R1,

• for all (a1, t1) ∈M1, there is s a−→ t with (t, t1) ∈ R1.

This in turn implies that there is M2 ∈ Tran2(s2) satisfying the conditions in
Definition 9.18. For all (a2, t2) ∈M2: add a transition s2

a2−→ t2 to T2.
We show that the identity relation {(s2, s2) | s2 ∈ S2} is a witness for

I2 ≤m A2. Let s2 ∈ S2 and s2
a2−→ t2. By construction, there is an M2 ∈

Tran2(s2) with (a2, t2) ∈M2, and for all (a′2, t′2) ∈M2, s2
a′2−→ t′2.

We show that R2 is a witness for dLm(I, I2); clearly, R2 is initialized. Let
α ∈ L with α 6= >L and (s, s2) ∈ R2

α, then there is s1 ∈ S1 with (s, s1) ∈ R1

and (s1, s2) ∈ Rα. We also have M1 ∈ Tran1(s1) such that

• for all s a−→ t, there is (a, t1) ∈M1 with (t, t1) ∈ R1,

• for all (a, t1) ∈M1, there is s a−→ t with (t, t1) ∈ R1

and thus M2 ∈ Tran2(s2) satisfying the conditions in Definition 9.18.
Let s a−→ t, then there is (a, t1) ∈ M1 with (t, t1) ∈ R1, hence also

(a2, t2) ∈ M2 and β ∈ L with (t1, t2) ∈ Rβ and F (a, a2, β) vL α. But
then (t, t2) ∈ R2

β, and s2
a2−→ t2 by construction.

Let s2
a2−→ t2. By construction, there is an M2 ∈ Tran2(s2) with (a2, t2) ∈

M2. This implies that there is M1 ∈ Tran1(s1), β ∈ L and (a1, t1) ∈ M1
with (t1, t2) ∈ Rβ and F (a1, a2, β) v α. But then there is also s a1−→ t with
(t, t1) ∈ R1, hence (t, t2) ∈ R2

β. �

9.4.4 Disjunction and conjunction
In order to generalize the properties of Theorem 9.11 to our quantitative
setting, we introduce a notion of relaxed implementation semantics:

9.25 Definition. The α-relaxed implementation semantics of S, for a specification
S and α ∈ L, is

JSKα = {I implementation | dLm(I,S) v α} .

Hence, JSKα comprises all labeled transition systems which are implemen-
tations of S up to α. Note that by Proposition 9.21 and for F recursively
separating, JSK⊥L = JSK.

9.26 Theorem. For all specifications S1, S2, S3 and α ∈ L,

• dLm(S1 ∨ S2,S3) = max(dLm(S1,S3), dLm(S2,S3)),

• dLm(S1,S2 ∧ S3) wL max(dLm(S1,S2), dLm(S1,S3)),

• JS1 ∨ S2Kα = JS1Kα ∪ JS2Kα, and

211

9. Compositionality for Quantitative Specifications

• JS1 ∧ S2Kα ⊆ JS1Kα ∩ JS2Kα.

Proof: We show the proof for DMTS.
The proof that dLm(D1 ∨ D2,D3) = max(dLm(D1,D3), dLm(D2,D3)) is triv-

ial: any refinement family witnessing dLm(D1 ∨D2,D3) splits into two families
witnessing dLm(D1,D3) and dLm(D2,D3) and vice versa.

To show that dLm(D1,D2 ∧ D3) wL max(dLm(D1,D2), dLm(D1,D3)), let R =
{Rα ⊆ S1 × (S2 × S3) | α ∈ L} be a witness for dLm(D1,D2 ∧ D3) and define
R2 = {R2

α ⊆ S1 × S2 | α ∈ L} by R2
α = {(s1, s2) | ∃s3 ∈ S3 : (s1, (s2, s3)) ∈

Rα} for all α ∈ L.
Let s0

1 ∈ S0
1 , then we have (s0

2, s
0
3) ∈ S0

2 × S0
3 so that (s0

1, (s0
2, s

0
3)) ∈

RdLm(D1,D2∧D3), hence also (s0
1, s

0
2) ∈ R2

dLm(D1,D2∧D3).
Let α ∈ L and (s1, s2) ∈ R2

α, then we have s3 ∈ S3 for which (s1, (s2, s3)) ∈
Rα. Assume first that s1

a1
99K t1, then there is (s2, s3) a

99K (t2, t3) and β ∈ L
such that F (a1, a, β) vL α and (t1, (t2, t3)) ∈ Rβ, hence (t1, t2) ∈ R2

β. By
construction of D2∧D3, there are s2

a2
99K t2 and s3

a3
99K t3 such that a = a27a3,

but then by anti-monotonicity, F (a1, a2, β) vL F (a1, a, β) v α.
Now assume s2 −→ N2, then, by construction, (s2, s3) −→ N = {(a2 7

a3, (t2, t3)) | (a2, t2) ∈ N2, s3
a3
99K3 t3}. Hence we have s1 −→1 N1 such that

∀(a1, t1) ∈ N1 : ∃(a, (t2, t3)) ∈ N, β ∈ L : F (a1, a, β) vL α, (t1, (t2, t3)) ∈ Rβ.
Let (a1, t1) ∈ N1, then we have (a, (t2, t3)) ∈ N and β ∈ L for which

F (a1, a, β) vL α and (t1, (t2, t3)) ∈ Rβ, hence (t1, t2) ∈ R2
β. By construction

of N , this implies that there are (a2, t2) ∈ N2 and s3
a3
99K3 t3 such that

a = a2 7 a3, but then by anti-monotonicity, F (a1, a2, β) vL F (a1, a, β) v α.
We have shown that dLm(D1,D2 ∧ D3) vL dLm(D1,D2). The proof of

dLm(D1,D2 ∧ D3) vL dLm(D1,D3) is entirely analogous.
The inclusion JD1∧D2Kα ⊆ JD1Kα∩ JD2Kα is clear now: If I ∈ JD1∧D2Kα,

i.e., dLm(I,D1 ∧ D2) vL α, then also dLm(I,D1) vL α and dLm(I,D2) vL α,
thus I ∈ JD1Kα ∩ JD2Kα.

To show that JD1∨D2Kα = JD1Kα∪ JD2Kα, one notices, like in the proof of
Theorem 9.11, that for any LTS I, any refinement family witnessing dLm(I,D1)
or dLm(I,D2) is also a witness for dLm(I,D1 ∨ D2) and vice versa. �

The below example shows why the inclusions above cannot be replaced
by equalities. To sum up, disjunction is quantitatively sound and complete,
whereas conjunction is only quantitatively sound.

9.27 Example. For the point-wise or discounting distances, the DMTS in Fig-
ure 9.3 are such that dm(I,D1) = 1 and dm(I,D2) = 1, but dm(I,D1 ∧D2) =
∞. Hence dm(I,D1∧D2) 6= max(dm(I,D1), dm(I,D2)), and I ∈ JD1K1∩JD2K1,
but I /∈ JD1 ∧ D2K1.

212

9.4. Robust Specification Theories

I
a, 2

D1
a, [0, 1]

D2
a, [3, 4]

D1 ∧ D2

Figure 9.3: LTS I together with DMTS D1, D2 and their conjunction.
For the point-wise or discounting distances, dm(I,D1) = dm(I,D2) = 1, but
dm(I,D1 ∧ D2) =∞

9.4.5 Structural composition and quotient

We proceed to devise a quantitative generalization of the properties of struc-
tural composition and quotient exposed in Section 9.3. To this end, we need
to use a uniform composition bound on labels:

Let P : L× L→ L be a function which is monotone in both coordinates,
has P (α,⊥L) = P (⊥L, α) = α and P (α,>L) = P (>L, α) = >L for all α ∈ L.
We require that for all a1, b1, a2, b2 ∈ Σ and α, β ∈ L with F (a1, a2, α) 6= >L
and F (b1, b2, β) 6= >L, a1 � b1 is defined iff a2 � b2 is, and if both are defined,
then

F (a1 � b1, a2 � b2, P (α, β)) vL P (F (a1, a2, α), F (b1, b2, β)) . (9.10)

Note that (9.10) implies that

dLtr(a1 � a2, b1 � b2) vL P (dLtr(a1, b1), dLtr(a2, b2)) . (9.11)

Hence P provides a uniform bound on distances between synchronized labels,
and (9.10) extends this property so that it holds recursively. Also, this is
a generalization of the condition that we imposed on � in Section 9.1; it is
shown in [FL14a, p. 18] that it holds for all common label synchronizations.

Remark that P can be understood as a (generalized) modulus of continu-
ity [Con] for the partial function f : Σ × Σ ⇀ Σ given by label synchroniza-
tion f(a, b) = a� b: with that notation, (9.11) asserts that the distance from
f(a1, a2) to f(b1, b2) is bounded by P applied to the distance from (a1, a2) to
(b1, b2).

The following theorems show that composition is uniformly continuous
(i.e., a quantitative generalization of independent implementability; Corol-
lary 9.13) and that quotient preserves and reflects refinement distance (a
quantitative generalization of Theorem 9.15).

9.28 Theorem (Independent implementability). For all specifications S1, S2,
S3, S4, dLm(S1‖S2,S3‖S4) vL P (dLm(S1,S3), dLm(S2,S4)).

213

9. Compositionality for Quantitative Specifications

Proof: We show the proof for AA. For i = 1, 2, 3, 4, let Ai = (Si, S0
i ,Trani).

Let R1 = {R1
α ⊆ S1 × S3 | α ∈ L}, R2 = {R2

α ⊆ S2 × S4 | α ∈ L} be
refinement families such that ∀s0

1 ∈ S0
1 : ∃s0

3 ∈ S0
3 : (s0

1, s
0
3) ∈ R1

dLm(A1,A3) and
∀s0

2 ∈ S0
2 : ∃s0

4 ∈ S0
4 : (s0

2, s
0
4) ∈ R2

dLm(A2,A4). Define R = {Rα ⊆ (S1 × S2) ×
(S3 × S4) | α ∈ L} by

Rα =
{
((s1, s2), (s3, s4))

∣∣ ∃α1, α2 ∈ L :
(s1, s3) ∈ R1

α1 , (s2, s4) ∈ R2
α2 , P (α1, α2) vL α

}
,

then it is clear that ∀(s0
1, s

0
2) ∈ S0

1×S0
2 : ∃(s0

3, s
0
4) ∈ S0

3×S0
4 : ((s0

1, s
0
2), (s0

3, s
0
4)) ∈

RP (dLm(A1,A3),dLm(A2,A4)). We show that R is a refinement family from A1‖A2
to A3‖A4.

Let α ∈ L and ((s1, s2), (s3, s4)) ∈ Rα, then we have α1, α2 ∈ L with
(s1, s3) ∈ R1

α1 , (s2, s4) ∈ R2
α2 and P (α1, α2) vL α. Let M12 ∈ Tran((s1, s2)),

then there must be M1 ∈ Tran1(s1), M2 ∈ Tran2(s2) for which M12 = M1 �
M2. Thus we also have M3 ∈ Tran3(s3) and M4 ∈ Tran4(s4) such that

∀(a1, t1) ∈M1 : ∃(a3, t3) ∈M3, β1 ∈ L :
(t1, t3) ∈ R1

β1 , F (a1, a3, β1) vL α1 , (9.12)
∀(a3, t3) ∈M3 : ∃(a1, t1) ∈M1, β1 ∈ L :

(t1, t3) ∈ R1
β1 , F (a1, a3, β1) vL α1 , (9.13)

∀(a2, t2) ∈M2 : ∃(a4, t4) ∈M4, β2 ∈ L :
(t2, t4) ∈ R2

β2 , F (a2, a4, β2) vL α2 , (9.14)
∀(a4, t4) ∈M4 : ∃(a2, t2) ∈M2, β2 ∈ L :

(t2, t4) ∈ R2
β2 , F (a2, a4, β2) vL α2 . (9.15)

Let M34 = M3 �M4, then M34 ∈ Tran((s3, s4)). Let (a12, (t1, t2)) ∈ M12,
then there are (a1, t1) ∈ M1 and (a2, t2) ∈ M2 for which a12 = a1 � a2.
Using (9.12) and (9.14), we get (a3, t3) ∈M3, (a4, t4) ∈M4 and β1, β2 ∈ L such
that (t1, t3) ∈ R1

β1
, (t2, t4) ∈ R2

β2
, F (a1, a3, β1) vL α1, and F (a2, a4, β2) vL

α2.
Let a34 = a3 � a4 and β = P (β1, β2), then we have (a34, (t3, t4)) ∈ M34.

Also, (t1, t3) ∈ R1
β1

and (t2, t4) ∈ R2
β2

imply that ((t1, t2), (t3, t4)) ∈ Rβ, and

F (a12, a34, β) = F (a1 � a2, a3 � a4, P (β1, β2))
v P (F (a1, a3, β1), F (a2, a4, β2))
vL P (α1, α2) vL α .

We have shown that for all (a12, (t1, t2)) ∈ M12, there exists (a34, (t3, t4)) ∈
M34 and β ∈ L such that ((t1, t2), (t3, t4)) ∈ Rβ and F (a12, a34, β) vL α. To
show the reverse property, starting from an element (a34, (t3, t4)) ∈ M34, we
can proceed entirely analogous, using (9.13) and (9.15). �

214

9.4. Robust Specification Theories

9.29 Theorem. For all specifications S1, S2, S3, dLm(S1‖S2,S3) = dLm(S2,S3/S1).

Proof: We show the proof for AA. Let Ai = (Si, S0
i , Trani) for i = 1, . . . , 3;

we prove that dLm(A1‖A2,A3) = dLm(A2,A3/A1).
We assume that the elements of Tran1(s1) are pairwise disjoint for each

s1 ∈ S1; this can be achieved by, if necessary, splitting states.
Define R = {Rα ⊆ S1 × S2 × S3 | α ∈ L} by Rα = {(s1‖s2, s3) |

dLm(s2, s3/s1) vL α}. (We again abuse notation and write (s1‖s2, s3) instead
of (s1, s2, s3).) We show that R is a witness for dLm(A1‖A2,A3).

Let s0
1‖s0

2 ∈ S0
1 × S0

2 , then there is s0
3/s

0
1 ∈ s0 for which it holds that

dLm(s0
2, s

0
3/s

0
1) vL dLm(A2,A3/A1), hence (s0

1‖s0
1, s

0
3) ∈ RdLm(A2,A3/A1).

Let α ∈ L \ {>L}, (s1‖s2, s3) ∈ Rα and M‖ ∈ Tran‖(s1‖s2). Then M‖ =
M1‖M2 with M1 ∈ Tran1(s1) and M2 ∈ Tran2(s2). As dLm(s2, s3/s1) vL α,
we can pair M2 with an M/ ∈ Tran/(s3/s1), i.e., such that the conditions in
Definition 9.18 are satisfied.

Let M3 = M/ . M1. We show that the conditions in Definition 9.18 are
satisfied for the pair M‖,M3:

• Let (a, t1‖t2) ∈ M‖, then there are a1, a2 ∈ Σ with a = a1 � a2 and
(a1, t1) ∈M1, (a2, t2) ∈M2. Hence there is (a′2, t) ∈M/ and β ∈ L such
that F (a2, a

′
2, β) vL α and dLm(t2, t) vL β.

Note that a3 = a1 � a′2 is defined and F (a, a3, β) v α. Write t =
{t13/t11, . . . , tn3/tn1}. By construction, there is an index i for which ti1 = t1,
hence (a3, t

i
3) ∈ M3. Also, t ⊇ {ti3/ti1}, hence dLm(t2, ti3/ti1) v β and

consequently (t1‖t2, t3) ∈ Rβ.

• Let (a3, t3) ∈ M3, then there are (a′2, t) ∈ M/ and (a1, t1) ∈ M1 such
that a3 = a1�a′2 and t3/t1 ∈ t. Hence there are (a2, t2) ∈M2 and β ∈ L
for which F (a2, a

′
2, β) vL α and dLm(t2, t) vL β. Note that a = a1�a2 is

defined and F (a, a3, β) vL α. Thus (a, t1‖t2) ∈ M , and by t ⊇ {t3/t1},
dLm(t2, t3/t1) v β.

Assume, for the other direction of the proof, that A1‖A2 ≤m A3. Define
R = {Rα ⊆ S2 × 2S3×S1 | α ∈ L} by

Rα =
{
(s2, {s1

3/s
1
1, . . . , s

n
3/s

n
1})

∣∣ ∀i = 1, . . . , n : dLm(si1‖s2, s
i
3) vL α

}
;

we show that R is a witness for dLm(A2,A3/A1).
Let s0

2 ∈ S0
2 . We know that for every s0

1 ∈ S0
1 , there exists σ(s0

1) ∈ S0
3 such

that dLm(s0
1‖s0

2, s
0
3) vL dLm(A1‖A2,A3). By s0 ⊇ {σ(s0

1)/s0
1 | s0

1 ∈ S0
1}, we see

that (s0
2, s

0) ∈ RdLm(A1‖A2,A3).
Let α ∈ L \ {>L} and (s2, s) ∈ Rα, with s = {s1

3/s
1
1, . . . , s

n
3/s

n
1}, and

M2 ∈ Tran2(s2).
For every i = 1, . . . , n, let us write Tran1(si1) = {M i,1

1 , . . . ,M i,mi
1 }. By

assumption, M i,j1
1 ∩M i,j2

1 = ∅ for j1 6= j2, hence every (a1, t1) ∈∈ Tran1(si1)
is contained in a unique M i,δi(a1,t1)

1 ∈ Tran1(si1).

215

9. Compositionality for Quantitative Specifications

For every j = 1, . . . ,mi, let M i,j = M i,j
1 ‖M2 ∈ Tran‖(si1‖s2). From

dLm(si1‖s2, s
i
3) vL α we have M i,j

3 ∈ Tran3(si3) such that the conditions in
Definition 9.18 hold for the pair M i,j ,M i,j

3 .
Now define

M =
{
(a2, t)

∣∣ ∃(a2, t2) ∈M2 : ∀t3/t1 ∈ t : ∃i, a1, a3, β :

(a1, t1) ∈∈ Tran1(si1), (a3, t3) ∈M i,δi(a1,t1)
3 ,

F (a1 � a2, a3, β) vL α, dLm(t1‖t2, t3) vL β
}
. (9.16)

We need to show that M ∈ Tran/(s).
Let i ∈ {1, . . . , n} and M i,j

1 ∈ Tran1(si1); we claim that M .M i,j
1 4R M

i,j
3 .

Let (a3, t3) ∈M .M i,j
1 , then a3 = a1 � a2 for some a1, a2 such that t3/t1 ∈ t,

(a1, t1) ∈ M i,j
1 and (a2, t) ∈ M . By disjointness, j = δi(a1, t1), hence by

definition of M , (a3, t3) ∈M i,j
3 as was to be shown.

For the reverse inclusion, let (a3, t3) ∈ M i,j
3 . By definition of M i,j , there

are (a1, t1) ∈ M i,j
1 , (a2, t2) ∈ M2 and β ∈ L for which F (a1 � a2, a3, β) vL α

and dLm(t1‖t2, t3) vL β. Thus j = δi(a1, t1), so that there must be (a2, t) ∈M
for which t3/t1 ∈ t, but then also (a1 � a2, t3) ∈M .M i,j

1 .
We show that the pair M2,M satisfies the conditions of Definition 9.18.

• Let (a2, t2) ∈M2. For every i = 1, . . . , n and every (a1, t1) ∈∈ Tran1(ti1),
we can use Definition 9.18 applied to the pairM i,δi(a1,t1)

1 ‖M2,M
i,δi(a1,t1)
3

to choose an element (ηi(a1, t1), τi(a1, t1)) ∈ M i,δi(a1,t1)
3 and βi(a1, t1) ∈

L for which dLm(t1‖t2, τi(a1, t1)) vL βi(a1, t1) and F (a1 � a2, ηi(a1, t1),
βi(a1, t1)) vL α. Let t = {τi(a1, t1)/t1 | i = 1, . . . , n, (a1, t1) ∈∈
Tran1(ti1)}, then (a2, t) ∈M and (t2, t) ∈ Rβ.

• Let (a2, t) ∈ M , then we have (a2, t2) ∈ M2 satisfying the conditions
in (9.16). Hence for all t3/t1 ∈ t, there are i, a1, a3, and β(t3/t1)
such that (a3, t3) ∈ M

i,δi(a1,t1)
3 , F (a1 � a2, a3, β(t3/t1)) vL α, and

dLm(t1‖t2, t3) vL β(t3/t1). Let β = sup{β(t3/t1) | t3/t1 ∈ t}, then
dLm(t1‖t2, t3) vL β for all t3/t1 ∈ t, hence (t2, t) ∈ Rβ. �

9.5 Conclusion
We have presented a framework for compositional and iterative design and
verification of systems which supports quantities and system and action refine-
ment. Moreover, it is robust, in that it uses distances to measure quantitative
refinement and the operations preserve distances.

The framework is very general. It can be applied to a large variety of
quantities (energy, time, resource consumption etc.) and implement the ro-
bustness notions associated with them. It is also agnostic with respect to the

216

9.5. Conclusion

type of specifications used, as it applies equally to behavioral and logical spec-
ifications. This means that logical and behavioral quantitative specifications
can be freely combined in quantitative system development.

217

10 References

[AB07] Charalambos D. Aliprantis and Kim C. Border. Infinite Dimen-
sional Analysis: A Hitchhiker’s Guide. Springer-Verlag, 2007.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs,
Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo
Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic ana-
lysis of hybrid systems. Theoretical Computer Science, 138(1):3–
34, 1995.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[AFdFE+13] Luca Aceto, Ignacio Fábregas, David de Frutos-Escrig, Anna In-
gólfsdóttir, and Miguel Palomino. On the specification of modal
systems: A comparison of three frameworks. Science of Com-
puter Programming, 78(12):2468–2487, 2013.

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock
automata: A determinizable class of timed automata. Theoreti-
cal Computer Science, 211(1-2):253–273, 1999.

[AFL15] Joanne M. Atlee, Uli Fahrenberg, and Axel Legay. Measuring
behaviour interactions between product-line features. In For-
maliSE, pages 20–25. IEEE, 2015.

[AHL+08] Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman,
and Andrzej Wąsowski. 20 years of modal and mixed specifica-
tions. Bulletin of the EATCS, 95:94–129, 2008.

[AILS07] Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen, and Jiří Srba.
Reactive Systems. Cambridge University Press, 2007.

[ASSB00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K.
Brayton. Model-checking continous-time Markov chains. ACM
Transactions on Computational Logics, 1(1):162–170, 2000.

219

10. References

[AT11] Rajeev Alur and Ashutosh Trivedi. Relating average and dis-
counted costs for quantitative analysis of timed systems. In
Chakraborty et al. [CJBF11], pages 165–174.

[BBB+10] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Cail-
laud, Benoît Delahaye, and Axel Legay. Statistical abstrac-
tion and model-checking of large heterogeneous systems. In
John Hatcliff and Elena Zucca, editors, FMOODS/FORTE, vol-
ume 6117 of Lecture Notes in Computer Science, pages 32–46.
Springer-Verlag, 2010.

[BBLM13] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mar-
dare. On-the-fly exact computation of bisimilarity distances.
In Nir Piterman and Scott A. Smolka, editors, TACAS, vol-
ume 7795 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2013.

[BCK11] Nikola Beneš, Ivana Cerná, and Jan Křetínský. Modal transition
systems: Composition and LTL model checking. In Bultan and
Hsiung [BH11], pages 228–242.

[BDCU13] Shoham Ben-David, Marsha Chechik, and Sebastián Uchitel.
Merging partial behaviour models with different vocabularies.
In D’Argenio and Melgratti [DM13], pages 91–105.

[BDF+13] Nikola Beneš, Benoît Delahaye, Uli Fahrenberg, Jan Křetínský,
and Axel Legay. Hennessy-Milner logic with greatest fixed points
as a complete behavioural specification theory. In D’Argenio and
Melgratti [DM13], pages 76–90.

[BDF+18] Anicet Bart, Benoît Delahaye, Paulin Fournier, Didier Lime,
Eric Monfroy, and Charlotte Truchet. Reachability in parametric
interval Markov chains using constraints. Theoretical Computer
Science, 747:48–74, 2018.

[BDH+12] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim G.
Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wąsowski. Mov-
ing from specifications to contracts in component-based design.
In Juan de Lara and Andrea Zisman, editors, FASE, volume 7212
of Lecture Notes in Computer Science, pages 43–58. Springer-
Verlag, 2012.

[BFJ+11] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen,
Axel Legay, and Claus Thrane. Quantitative refinement for
weighted modal transition systems. In Filip Murlak and Pi-
otr Sankowski, editors, MFCS, volume 6907 of Lecture Notes in
Computer Science, pages 60–71. Springer-Verlag, 2011.

220

[BFJ+13] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen,
Axel Legay, and Claus Thrane. Weighted modal transition sys-
tems. Formal Methods in System Design, 42(2):193–220, 2013.

[BFK+20] Nikola Beneš, Uli Fahrenberg, Jan Křetínský, Axel Legay, and
Louis-Marie Traonouez. Logical vs. behavioural specifications.
Information and Computation, 271:104487, 2020.

[BFLM11] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas
Markey. Quantitative analysis of real-time systems using priced
timed automata. Communications of the ACM, 54(9):78–87,
2011.

[BFLT12] Sebastian S. Bauer, Uli Fahrenberg, Axel Legay, and Claus
Thrane. General quantitative specification theories with modali-
ties. In Edward A. Hirsch, Juhani Karhumäki, Arto Lepistö, and
Michail Prilutskii, editors, CSR, volume 7353 of Lecture Notes
in Computer Science, pages 18–30. Springer-Verlag, 2012.

[BH11] Tevfik Bultan and Pao-Ann Hsiung, editors. Automated Technol-
ogy for Verification and Analysis, 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings,
volume 6996 of Lecture Notes in Computer Science. Springer-
Verlag, 2011.

[BJL+12a] Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Axel Legay,
and Jiří Srba. Extending modal transition systems with struc-
tured labels. Mathematical Structures in Computer Science,
22(4):581–617, 2012.

[BJL+12b] Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Jiří Srba, and
Axel Legay. A logic for accumulated-weight reasoning on multi-
weighted modal automata. In Tiziana Margaria, Zongyan Qiu,
and Hongli Yang, editors, TASE, pages 77–84. IEEE, 2012.

[BJS09] Joakim Byg, Kenneth Yrke Jørgensen, and Jiří Srba. TAPAAL:
editor, simulator and verifier of timed-arc Petri nets. In Zhiming
Liu and Anders P. Ravn, editors, ATVA, volume 5799 of Lecture
Notes in Computer Science, pages 84–89. Springer-Verlag, 2009.

[BK10] Nikola Beneš and Jan Křetínský. Process algebra for modal tran-
sition systemses. In Ludek Matyska, Michal Kozubek, Tomás
Vojnar, Pavel Zemcík, and David Antos, editors, MEMICS, vol-
ume 16 of OASICS, pages 9–18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany, 2010.

221

10. References

[BKL+11] Nikola Beneš, Jan Křetínský, Kim G. Larsen, Mikael H. Møller,
and Jiří Srba. Parametric modal transition systems. In Bultan
and Hsiung [BH11], pages 275–289.

[BKL+12] Nikola Beneš, Jan Křetínský, Kim G. Larsen, Mikael H. Møller,
and Jiří Srba. Dual-priced modal transition systems with time
durations. In Nikolaj Bjørner and Andrei Voronkov, editors,
LPAR, volume 7180 of Lecture Notes in Computer Science, pages
122–137. Springer-Verlag, 2012.

[BKLS09] Nikola Beneš, Jan Křetínský, Kim G. Larsen, and Jiří Srba. On
determinism in modal transition systems. Theoretical Computer
Science, 410(41):4026–4043, 2009.

[BL92] Gérard Boudol and Kim G. Larsen. Graphical versus logical
specifications. Theoretical Computer Science, 106(1):3–20, 1992.

[BL14] Saddek Bensalem and Axel Legay, editors. From Programs to
Systems – The Systems Perspective in Computing, 2014, Pro-
ceedings, volume 8415 of Lecture Notes in Computer Science.
Springer-Verlag, 2014.

[Bla00] Patrick Blackburn. Representation, reasoning, and relational
structures: a hybrid logic manifesto. Log. J. IGPL, 8(3):339–
365, 2000.

[BLM+11] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, Ocan Sankur,
and Claus Thrane. Timed automata can always be made imple-
mentable. In Joost-Pieter Katoen and Barbara König, editors,
CONCUR, volume 6901 of Lecture Notes in Computer Science,
pages 76–91. Springer-Verlag, 2011.

[BLPR09] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-
Baptiste Raclet. A compositional approach on modal specifica-
tions for timed systems. In Karin Breitman and Ana Cavalcanti,
editors, ICFEM, volume 5885 of Lecture Notes in Computer Sci-
ence, pages 679–697. Springer-Verlag, 2009.

[BLPR12] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-
Baptiste Raclet. Modal event-clock specifications for timed
component-based design. Science of Computer Programming,
77(12):1212–1234, 2012.

[BLS95] Anders Børjesson, Kim G. Larsen, and Arne Skou. General-
ity in design and compositional verification using TAV. Formal
Methods in System Design, 6(3):239–258, 1995.

222

[BML11] Sebastian S. Bauer, Philip Mayer, and Axel Legay. MIO work-
bench: A tool for compositional design with modal input/output
interfaces. In Bultan and Hsiung [BH11], pages 418–421.

[BR12] Sebastian S. Bauer and Jean-Baptiste Raclet, editors. Proceed-
ings of the Fourth Workshop on Foundations of Interface Tech-
nologies (FIT), volume 87 of Electronic Proceedings in Theoret-
ical Computer Science, 2012.

[Bre15] Tomasz Brengos. Weak bisimulation for coalgebras over order
enriched monads. Logical Methods in Computer Science, 11(2),
2015.

[Bru97] Glenn Bruns. An industrial application of modal process logic.
Science of Computer Programming, 29(1-2):3–22, 1997.

[BvBR98] Marcello M. Bonsangue, Franck van Breugel, and Jan J. M. M.
Rutten. Generalized metric spaces: Completion, topology, and
powerdomains via the Yoneda embedding. Theoretical Computer
Science, 193(1-2):1–51, 1998.

[CC03] Luís Caires and Luca Cardelli. A spatial logic for concurrency
(part I). Information and Computation, 186(2):194–235, 2003.

[ČCH+11] Pavol Černý, Krishnendu Chatterjee, Thomas A. Henzinger, Ar-
jun Radhakrishna, and Rohit Singh. Quantitative synthesis for
concurrent programs. In Gopalakrishnan and Qadeer [GQ11],
pages 243–259.

[ČCHR14] Pavol Černý, Martin Chmelik, Thomas A. Henzinger, and Ar-
jun Radhakrishna. Interface simulation distances. Theoretical
Computer Science, 560:348–363, 2014.

[CdAF+06] Krishnendu Chatterjee, Luca de Alfaro, Marco Faella,
Thomas A. Henzinger, Rupak Majumdar, and Mariëlle
Stoelinga. Compositional quantitative reasoning. In QEST,
pages 179–188. IEEE Computer Society, 2006.

[CdAHM02] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger,
and Freddy Y. C. Mang. Synchronous and bidirectional com-
ponent interfaces. In CAV, volume 2404 of Lecture Notes in
Computer Science, pages 414–427, 2002.

[CdAMR10] Krishnendu Chatterjee, Luca de Alfaro, Rupak Majumdar, and
Vishwanath Raman. Algorithms for game metrics. Logical Meth-
ods in Computer Science, 6(3), 2010.

223

10. References

[CDH10] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Hen-
zinger. Quantitative languages. ACM Transactions on Compu-
tational Logics, 11(4), 2010.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthe-
sis of synchronization skeletons using branching-time temporal
logic. In Dexter Kozen, editor, Logic of Programs, volume 131
of Lecture Notes in Computer Science, pages 52–71. Springer-
Verlag, 1981.

[ČH11] Pavol Černý and Thomas A. Henzinger. From Boolean to quanti-
tative synthesis. In Chakraborty et al. [CJBF11], pages 149–154.

[CHP11] Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S.
Prabhu. Timed parity games: Complexity and robustness. Log-
ical Methods in Computer Science, 7(4), 2011.

[ČHR10] Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna.
Simulation distances. In Paul Gastin and François Laroussinie,
editors, CONCUR, volume 6269 of Lecture Notes in Computer
Science, pages 253–268. Springer-Verlag, 2010.

[ČHR12] Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna.
Simulation distances. Theoretical Computer Science, 413(1):21–
35, 2012.

[ČHR13] Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna.
Quantitative abstraction refinement. In Roberto Giacobazzi and
Radhia Cousot, editors, POPL, pages 115–128. ACM, 2013.

[CJBF11] Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and
Sebastian Fischmeister, editors. Proceedings of the 11th Interna-
tional Conference on Embedded Software, EMSOFT 2011, part
of the Seventh Embedded Systems Week, ESWeek 2011, Taipei,
Taiwan, October 9-14, 2011. ACM, 2011.

[CLM11] Luca Cardelli, Kim G. Larsen, and Radu Mardare. Modular
Markovian logic. In Luca Aceto, Monika Henzinger, and Jiří
Sgall, editors, ICALP (2), volume 6756 of Lecture Notes in Com-
puter Science, pages 380–391. Springer-Verlag, 2011.

[Con] Continuity, modulus of. Encyclopedia of Mathematics.
http://www.encyclopediaofmath.org/index.php?title=
Continuity,_modulus_of&oldid=30705.

[dAFH+05] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak
Majumdar, and Mariëlle Stoelinga. Model checking discounted

224

http://www.encyclopediaofmath.org/index.php?title=Continuity,_modulus_of&oldid=30705
http://www.encyclopediaofmath.org/index.php?title=Continuity,_modulus_of&oldid=30705

temporal properties. Theoretical Computer Science, 345(1):139–
170, 2005.

[dAFS04] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and
branching metrics for quantitative transition systems. In Josep
Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella,
editors, ICALP, volume 3142 of Lecture Notes in Computer Sci-
ence, pages 97–109. Springer-Verlag, 2004.

[dAFS09] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear
and branching system metrics. IEEE Transactions on Software
Engineering, 35(2):258–273, 2009.

[dAH05] Luca de Alfaro and Thomas A. Henzinger. Interface-based de-
sign. In Manfred Broy, Johannes Grünbauer, David Harel, and
Tony Hoare, editors, Engineering Theories of Software Intensive
Systems, volume 195 of NATO Science Series II: Mathematics,
Physics and Chemistry, pages 83–104. Springer-Verlag, 2005.

[dAHM03] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar.
Discounting the future in systems theory. In Jos C. M. Baeten,
Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woegin-
ger, editors, ICALP, volume 2719 of Lecture Notes in Computer
Science, pages 1022–1037. Springer-Verlag, 2003.

[dAMRS07] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and
Mariëlle Stoelinga. Game relations and metrics. In LICS, pages
99–108. IEEE Computer Society, 2007.

[dAMRS08] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and
Mariëlle Stoelinga. Game refinement relations and metrics. Log-
ical Methods in Computer Science, 4(3), 2008.

[DDM10] Philippe Darondeau, Jérémy Dubreil, and Hervé Marchand.
Supervisory control for modal specifications of services. In
WODES, pages 428–435, 2010.

[Del10] Benoît Delahaye. Modular Specification and Compositional Ana-
lysis of Stochastic Systems. PhD thesis, Université de Rennes 1,
2010.

[DFFU07] Nicolás D’Ippolito, Dario Fischbein, Howard Foster, and Se-
bastián Uchitel. MTSA: Eclipse support for modal transition
systems construction, analysis and elaboration. In L. Cheng,
A. Orso, and M. P. Robillard, editors, ETX, pages 6–10. ACM,
2007.

225

10. References

[DFLL14] Benoît Delahaye, Uli Fahrenberg, Kim G. Larsen, and Axel
Legay. Refinement and difference for probabilistic automata.
Logical Methods in Computer Science, 10(3), 2014.

[DGJP99] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and
Prakash Panangaden. Metrics for labeled Markov systems. In
Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR, vol-
ume 1664 of Lecture Notes in Computer Science, pages 258–273.
Springer-Verlag, 1999.

[DGJP04] Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and
Prakash Panangaden. Metrics for labelled Markov processes.
Theoretical Computer Science, 318(3):323–354, 2004.

[DHLN10] Laurent Doyen, Thomas A. Henzinger, Axel Legay, and Dejan
Ničković. Robustness of sequential circuits. In Luís Gomes,
Victor Khomenko, and João M. Fernandes, editors, ACSD, pages
77–84. IEEE Computer Society, 2010.

[DJGP02] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and
Prakash Panangaden. The metric analogue of weak bisimulation
for probabilistic processes. In LICS [LIC02], pages 413–422.

[DKL+13] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel
Legay, Mikkel L. Pedersen, Falak Sher, and Andrzej Wasowski.
Abstract probabilistic automata. Information and Computation,
232:66–116, 2013.

[DLL+10] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and
Andrzej Wąsowski. Timed I/O automata: a complete specifica-
tion theory for real-time systems. In Karl Henrik Johansson and
Wang Yi, editors, HSCC, pages 91–100. ACM, 2010.

[DLL+12a] Alexandre David, Kim G. Larsen, Axel Legay, Mikael H. Møller,
Ulrik Nyman, Anders P. Ravn, Arne Skou, and Andrzej Wą-
sowski. Compositional verification of real-time systems using
Ecdar. International Journal on Software Tools for Technology
Transfer, 14(6):703–720, 2012.

[DLL+12b] Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Ped-
ersen, and Andrzej Wąsowski. Consistency and refinement for
interval Markov chains. Journal of Logic and Algebraic Program-
ming, 81(3):209–226, 2012.

[DLL+15] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman,
Louis-Marie Traonouez, and Andrzej Wąsowski. Real-time spec-
ifications. International Journal on Software Tools for Technol-
ogy Transfer, 17(1):17–45, 2015.

226

[DLP16] Benoît Delahaye, Didier Lime, and Laure Petrucci. Parameter
synthesis for parametric interval Markov chains. In Barbara Job-
stmann and K. Rustan M. Leino, editors, VMCAI, volume 9583
of Lecture Notes in Computer Science, pages 372–390. Springer-
Verlag, 2016.

[DLT08] Josée Desharnais, François Laviolette, and Mathieu Tracol. Ap-
proximate analysis of probabilistic processes. In QEST, pages
264–273. IEEE Computer Society, 2008.

[DM13] Pedro R. D’Argenio and Hernán C. Melgratti, editors. CON-
CUR 2013 - Concurrency Theory - 24th International Confer-
ence, CONCUR 2013, Buenos Aires, Argentina, August 27-30,
2013. Proceedings, volume 8052 of Lecture Notes in Computer
Science. Springer-Verlag, 2013.

[Ehr61] Andrzej Ehrenfeucht. An application of games to the complete-
ness problem for formalized theories. Fundamenta Mathemati-
cae, 49:129–141, 1961.

[EM79] Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies
for mean payoff games. International Journal of Game Theory,
8:109–113, 1979.

[FBC+14] Uli Fahrenberg, Fabrizio Biondi, Kevin Corre, Cyrille Jégourel,
Simon Kongshøj, and Axel Legay. Measuring global similarity
between texts. In Laurent Besacier, Adrian Horia Dediu, and
Carlos Martín-Vide, editors, SLSP, volume 8791 of Lecture Notes
in Computer Science, pages 220–232. Springer-Verlag, 2014.

[FGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot-
ton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine
Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verifi-
cation of hybrid systems. In Gopalakrishnan and Qadeer [GQ11],
pages 379–395.

[FH07] Martin Fränzle and Christian Herde. HySAT: An efficient proof
engine for bounded model checking of hybrid systems. Formal
Methods in System Design, 30(3):179–198, 2007.

[FJLS11] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jiří Srba. Energy
games in multiweighted automata. In Antonio Cerone and Pekka
Pihlajasaari, editors, ICTAC, volume 6916 of Lecture Notes in
Computer Science, pages 95–115. Springer-Verlag, 2011.

[FKLT14] Ulrich Fahrenberg, Jan Křetínský, Axel Legay, and Louis-Marie
Traonouez. Compositionality for quantitative specifications. In
Lanese and Madelaine [LM15], pages 306–324.

227

10. References

[FKLT18] Uli Fahrenberg, Jan Křetínský, Axel Legay, and Louis-Marie
Traonouez. Compositionality for quantitative specifications. Soft
Computing, 22(4):1139–1158, 2018.

[FL12] Uli Fahrenberg and Axel Legay. A robust specification theory
for modal event-clock automata. In Bauer and Raclet [BR12],
pages 5–16.

[FL14a] Uli Fahrenberg and Axel Legay. General quantitative specifica-
tion theories with modal transition systems. Acta Informatica,
51(5):261–295, 2014.

[FL14b] Uli Fahrenberg and Axel Legay. The quantitative linear-
time–branching-time spectrum. Theoretical Computer Science,
538:54–69, 2014.

[FL17] Uli Fahrenberg and Axel Legay. A linear-time-branching-time
spectrum of behavioral specification theories. In Bernhard Stef-
fen, Christel Baier, Mark van den Brand, Johann Eder, Mike
Hinchey, and Tiziana Margaria, editors, SOFSEM, volume 10139
of Lecture Notes in Computer Science, pages 49–61. Springer-
Verlag, 2017.

[FL20a] Uli Fahrenberg and Axel Legay. Behavioral specification theo-
ries: An algebraic taxonomy. In Tiziana Margaria and Bernhard
Steffen, editors, ISoLA, volume 12476 of Lecture Notes in Com-
puter Science, pages 262–274. Springer-Verlag, 2020.

[FL20b] Uli Fahrenberg and Axel Legay. A linear-time-branching-time
spectrum for behavioral specification theories. Journal of Logic
and Algebraic Methods in Programming, 110, 2020.

[FLLT14] Uli Fahrenberg, Kim G. Larsen, Axel Legay, and Louis-Marie
Traonouez. Parametric and quantitative extensions of modal
transition systems. In Bensalem and Legay [BL14].

[FLT09] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A quantita-
tive characterization of weighted Kripke structures in temporal
logic. In MEMICS, 2009. Best paper award.

[FLT10] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A quantita-
tive characterization of weighted Kripke structures in temporal
logic. Computing and Informatics, 29(6+):1311–1324, 2010.

[FLT11] Uli Fahrenberg, Axel Legay, and Claus Thrane. The quantitative
linear-time–branching-time spectrum. In Supratik Chakraborty
and Amit Kumar, editors, FSTTCS, volume 13 of LIPIcs, pages

228

103–114. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2011.

[FLT14a] Uli Fahrenberg, Axel Legay, and Louis-Marie Traonouez. Speci-
fication theories for probabilistic and real-time systems. In Ben-
salem and Legay [BL14].

[FLT14b] Uli Fahrenberg, Axel Legay, and Louis-Marie Traonouez. Struc-
tural refinement for the modal nu-calculus. In Gabriel Ciobanu
and Dominique Méry, editors, ICTAC, volume 8687 of Lecture
Notes in Computer Science, pages 169–187. Springer-Verlag,
2014.

[FLW11] Uli Fahrenberg, Axel Legay, and Andrzej Wąsowski. Make a
difference! (Semantically). In Jon Whittle, Tony Clark, and
Thomas Kühne, editors, MoDELS, volume 6981 of Lecture Notes
in Computer Science, pages 490–500. Springer-Verlag, 2011.

[FOC81] 22nd Annual Symposium on Foundations of Computer Science,
Nashville, Tennessee, USA, 28-30 October 1981. IEEE Com-
puter Society, 1981.

[FP07] Guillaume Feuillade and Sophie Pinchinat. Modal specifications
for the control theory of discrete event systems. Discrete Event
Dynamic Systems, 17(2):211–232, 2007.

[FPP05] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics
for Markov decision processes with infinite state spaces. In UAI,
pages 201–208. AUAI Press, 2005.

[Fra54] Roland Fraïssé. Sur quelques classifications des systèmes de re-
lations. Publications Scientifiques de l’Université d’Alger, Série
A, 1:35–182, 1954.

[FS08] Harald Fecher and Heiko Schmidt. Comparing disjunctive modal
transition systems with an one-selecting variant. J. Logic Algebr.
Program., 77(1-2):20–39, 2008.

[FT11] Uli Fahrenberg and Stavros Tripakis, editors. Formal Modeling
and Analysis of Timed Systems - 9th International Conference,
volume 6919 of Lecture Notes in Computer Science. Springer-
Verlag, 2011.

[FTL11] Uli Fahrenberg, Claus Thrane, and Kim G. Larsen. Distances for
weighted transition systems: Games and properties. In Mieke
Massink and Gethin Norman, editors, QAPL, volume 57 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 134–
147, 2011.

229

10. References

[FU08] Dario Fischbein and Sebastián Uchitel. On correct and com-
plete strong merging of partial behaviour models. In Mary Jean
Harrold and Gail C. Murphy, editors, SIGSOFT FSE, pages
297–307. ACM, 2008.

[FvGdW06] Wan Fokkink, Rob J. van Glabbeek, and Paulien de Wind. Com-
positionality of Hennessy-Milner logic by structural operational
semantics. Theoretical Computer Science, 354(3):421–440, 2006.

[GF12] Daniel Gebler and Wan Fokkink. Compositionality of probabilis-
tic Hennessy-Milner logic through structural operational seman-
tics. In Maciej Koutny and Irek Ulidowski, editors, CONCUR,
volume 7454 of Lecture Notes in Computer Science, pages 395–
409. Springer-Verlag, 2012.

[GH94] Stephen Gilmore and Jane Hillston. The PEPA workbench: A
tool to support a process algebra-based approach to performance
modelling. In Günter Haring and Gabriele Kotsis, editors, CPE,
volume 794 of Lecture Notes in Computer Science, pages 353–
368. Springer-Verlag, 1994.

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan.
Abstraction-based model checking using modal transition sys-
tems. In Larsen and Nielsen [LN01], pages 426–440.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[Gir10] Antoine Girard. Synthesis using approximately bisimilar ab-
stractions: Time-optimal control problems. In CDC, pages 5893–
5898. IEEE, 2010.

[GLLS05] Orna Grumberg, Martin Lange, Martin Leucker, and Sharon
Shoham. Don’t know in the µ-calculus. In VMCAI, volume 3385
of Lecture Notes in Computer Science, pages 233–249. Springer-
Verlag, 2005.

[GLMR05] Guillaume Gardey, Didier Lime, Morgan Magnin, and Olivier H.
Roux. Romeo: A tool for analyzing time Petri nets. In Kousha
Etessami and Sriram K. Rajamani, editors, CAV, volume 3576
of Lecture Notes in Computer Science, pages 418–423. Springer-
Verlag, 2005.

[GLS08] Alexander Gruler, Martin Leucker, and Kathrin D. Scheide-
mann. Modeling and model checking software product lines.
In Gilles Barthe and Frank S. de Boer, editors, FMOODS, vol-
ume 5051 of Lecture Notes in Computer Science, pages 113–131.
Springer-Verlag, 2008.

230

[GP07] Antoint Girard and George J. Pappas. Approximation metrics
for discrete and continuous systems. IEEE Transactions on Au-
tomatic Control, 52(5):782–798, 2007.

[GQ11] Ganesh Gopalakrishnan and Shaz Qadeer, editors. Computer
Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806
of Lecture Notes in Computer Science. Springer-Verlag, 2011.

[GV92] Jan Friso Groote and Frits W. Vaandrager. Structured opera-
tional semantics and bisimulation as a congruence. Information
and Computation, 100(2):202–260, 1992.

[Hal00] Robert J. Hall. Feature interactions in electronic mail. In Muffy
Calder and Evan H. Magill, editors, FIW, pages 67–82. IOS
Press, 2000.

[Ham50] Richard W. Hamming. Error detecting and error correcting
codes. Bell System Technical Journal, 29:147–160, 1950.

[Han93] Hans-Michael Hanisch. Analysis of place/transition nets with
timed arcs and its application to batch process control. In
Marco Ajmone Marsan, editor, ATPN, volume 691 of Lecture
Notes in Computer Science, pages 282–299. Springer-Verlag,
1993.

[Hen85] Matthew Hennessy. Acceptance trees. Journal of the ACM,
32(4):896–928, 1985.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A model checker for hybrid systems. International
Journal on Software Tools for Technology Transfer, 1(1-2):110–
122, 1997.

[Hil96] Jane Hillston. A Compositional Approach to Performance Mod-
elling. Cambridge University Press, 1996.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about
time and reliability. Formal Aspects of Computing, 6(5):512–535,
1994.

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nonde-
terminism and concurrency. Journal of the ACM, 32(1):137–161,
1985.

[HMP05] Thomas A. Henzinger, Rupak Majumdar, and Vinayak S.
Prabhu. Quantifying similarities between timed systems. In
Paul Pettersson and Wang Yi, editors, FORMATS, volume 3829

231

10. References

of Lecture Notes in Computer Science, pages 226–241. Springer-
Verlag, 2005.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Ser-
gio Yovine. Symbolic model checking for real-time systems. In-
formation and Computation, 111(2):193–244, 1994.

[JLS12] Line Juhl, Kim G. Larsen, and Jirí Srba. Modal transition sys-
tems with weight intervals. Journal of Logic and Algebraic Pro-
gramming, 81(4):408–421, 2012.

[JT02] Peter Jipsen and Constantine Tsinakis. A survey of residuated
lattices. In Ordered algebraic structures, volume 7, pages 19–56.
Kluwer Acad. Publ., 2002.

[JW95] David Janin and Igor Walukiewicz. Automata for the modal
mu-calculus and related results. In Jirí Wiedermann and Petr
Hájek, editors, MFCS, volume 969 of Lecture Notes in Computer
Science, pages 552–562. Springer-Verlag, 1995.

[KKH+19] Yuichi Komorida, Shin-ya Katsumata, Nick Hu, Bartek Klin,
and Ichiro Hasuo. Codensity games for bisimilarity. In LICS,
pages 1–13. IEEE, 2019.

[KLSV03] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and
Frits W. Vaandrager. Timed I/O automata: A mathematical
framework for modeling and analyzing real-time systems. In
RTSS, pages 166–177. IEEE Computer Society, 2003.

[KLSV10] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and
Frits W. Vaandrager. The Theory of Timed I/O Automata. Syn-
thesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, second edition, 2010.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Probabilistic symbolic model checking with prism: A hybrid ap-
proach. In Joost-Pieter Katoen and Perdita Stevens, editors,
TACAS, volume 2280 of Lecture Notes in Computer Science,
pages 52–66. Springer-Verlag, 2002.

[Koy90] Ron Koymans. Specifying real-time properties with metric tem-
poral logic. Real-Time Systems, 2(4):255–299, 1990.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoret-
ical Computer Science, 27:333–354, 1983.

232

[KP04] Beata Konikowska and Wojciech Penczek. On designated values
in multi-valued CTL∗ model checking. Fundamenta Informati-
cae, 60(1-4):211–224, 2004.

[Kře14] Jan Křetínský. Modal Transition Systems: Extensions and Ana-
lysis. PhD thesis, Masaryk University, Brno, Dept. of Computer
Science, 2014.

[Kře17] Jan Křetínský. 30 years of modal transition systems: Survey of
extensions and analysis. In Luca Aceto, Giorgio Bacci, Giovanni
Bacci, Anna Ingólfsdóttir, Axel Legay, and Radu Mardare, ed-
itors, Models, Algorithms, Logics and Tools - Essays Dedicated
to Kim Guldstrand Larsen on the Occasion of His 60th Birth-
day, volume 10460 of Lecture Notes in Computer Science, pages
36–74. Springer, 2017.

[KS13a] Bartek Klin and Vladimiro Sassone. Structural operational se-
mantics for stochastic and weighted transition systems. Infor-
mation and Computation, 227:58–83, 2013.

[KS13b] Jan Křetínský and Salomon Sickert. MoTraS: A tool for modal
transition systems and their extensions. In Dang Van Hung and
Mizuhito Ogawa, editors, ATVA, volume 8172 of Lecture Notes
in Computer Science, pages 487–491. Springer-Verlag, 2013.

[Lar89] Kim G. Larsen. Modal specifications. In Automatic Verification
Methods for Finite State Systems, volume 407 of Lecture Notes
in Computer Science, pages 232–246. Springer-Verlag, 1989.

[Lar90a] Kim G. Larsen. Ideal specification formalism = expressivity +
compositionality + decidability + testability + ... In Jos C. M.
Baeten and Jan Willem Klop, editors, CONCUR, volume 458
of Lecture Notes in Computer Science, pages 33–56. Springer-
Verlag, 1990.

[Lar90b] Kim G. Larsen. Proof systems for satisfiability in Hennessy-
Milner logic with recursion. Theoretical Computer Science,
72(2&3):265–288, 1990.

[Law73] F. William Lawvere. Metric spaces, generalized logic, and closed
categories. Rendiconti del seminario matématico e fisico di Mi-
lano, XLIII:135–166, 1973.

[LFT11] Kim G. Larsen, Uli Fahrenberg, and Claus Thrane. Metrics
for weighted transition systems: Axiomatization and complexity.
Theoretical Computer Science, 412(28):3358–3369, 2011.

233

10. References

[LIC02] 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings.
IEEE Computer Society, 2002.

[LLM05] Alberto Lluch-Lafuente and Ugo Montanari. Quantitative mu-
calculus and CTL defined over constraint semirings. Theoretical
Computer Science, 346(1):135–160, 2005.

[LLTW11] Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and An-
drzej Wąsowski. Robust specification of real time components.
In Fahrenberg and Tripakis [FT11], pages 129–144.

[LM15] Ivan Lanese and Eric Madelaine, editors. Formal Aspects of
Component Software - 11th International Symposium, FACS
2014, Bertinoro, Italy, September 10-12, 2014, Revised Selected
Papers, volume 8997 of Lecture Notes in Computer Science.
Springer-Verlag, 2015.

[LMP12] Kim G. Larsen, Radu Mardare, and Prakash Panangaden. Tak-
ing it to the limit: Approximate reasoning for Markov processes.
In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer,
editors, MFCS, volume 7464 of Lecture Notes in Computer Sci-
ence, pages 681–692. Springer-Verlag, 2012.

[LN01] Kim G. Larsen and Mogens Nielsen, editors. CONCUR 2001
- Concurrency Theory, 12th International Conference, Aalborg,
Denmark, August 20-25, 2001, Proceedings, volume 2154 of Lec-
ture Notes in Computer Science. Springer-Verlag, 2001.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal on Software Tools for Technology
Transfer, 1(1-2):134–152, 1997.

[LT88] Kim G. Larsen and Bent Thomsen. A modal process logic. In
LICS, pages 203–210. IEEE Computer Society, 1988.

[LT89] Nancy Lynch and Mark R. Tuttle. An introduction to in-
put/output automata. CWI-Quarterly, 2(3), 1989.

[LX90a] Kim G. Larsen and Liu Xinxin. Compositionality through an
operational semantics of contexts. In Mike Paterson, editor,
ICALP, volume 443 of Lecture Notes in Computer Science, pages
526–539. Springer-Verlag, 1990.

[LX90b] Kim G. Larsen and Liu Xinxin. Equation solving using modal
transition systems. In LICS, pages 108–117. IEEE Computer
Society, 1990.

234

[MF76] Philip M. Merlin and David J. Farber. Recoverability of com-
munication protocols–implications of a theoretical study. IEEE
Transactions on Communications, 24(9):1036 – 1043, 1976.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall,
1989.

[Mun00] James R. Munkres. Topology. Prentice-Hall, 2000.

[Nym08] Ulrik Nyman. Modal Transition Systems as the Basis for Inter-
face Theories and Product Lines. PhD thesis, Aalborg Univer-
sity, 2008.

[OFLS17] Meriem Ouederni, Uli Fahrenberg, Axel Legay, and Gwen
Salaün. Compatibility flooding: measuring interaction of ser-
vices interfaces. In Ahmed Seffah, Birgit Penzenstadler, Ca-
rina Alves, and Xin Peng, editors, SAC, pages 1334–1340. ACM,
2017.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local
reasoning about programs that alter data structures. In Laurent
Fribourg, editor, CSL, volume 2142 of Lecture Notes in Com-
puter Science, pages 1–19. Springer-Verlag, 2001.

[Pan09] Prakash Panangaden. Labelled Markov Processes. Imperial Col-
lege Press, 2009.

[Par81] David Michael Ritchie Park. Concurrency and automata on in-
finite sequences. In Peter Deussen, editor, Theoretical Computer
Science, volume 104 of Lecture Notes in Computer Science, pages
167–183. Springer-Verlag, 1981.

[Plo81] Gordon D. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI FN-19, University of Aarhus,
1981.

[Pnu85] Amir Pnueli. Linear and branching structures in the seman-
tics and logics of reactive systems. In Wilfried Brauer, editor,
ICALP, volume 194 of Lecture Notes in Computer Science, pages
15–32. Springer-Verlag, 1985.

[Pra81] Vaughan R. Pratt. A decidable mu-calculus: Preliminary report.
In FOCS [FOC81], pages 421–427.

[Pri68] Arthur N. Prior. Papers on Time and Tense. Oxford: Clarendon
Press, 1968.

235

10. References

[QFD11] Jan-David Quesel, Martin Fränzle, and Werner Damm. Crossing
the bridge between similar games. In Fahrenberg and Tripakis
[FT11], pages 160–176.

[Rac07] Jean-Baptiste Raclet. Residual for component specifications.
Publication interne 1843, IRISA, Rennes, 2007.

[Rac08] Jean-Baptiste Raclet. Residual for component specifications.
Electronic Notes in Theoretical Computer Science, 215:93–110,
2008.

[RB81] William C. Rounds and Stephen D. Brookes. Possible futures,
acceptances, refusals, and communicating processes. In FOCS
[FOC81], pages 140–149.

[RBB+09] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît
Caillaud, and Roberto Passerone. Why are modalities good for
interface theories? In ACSD, pages 119–127. IEEE Computer
Society, 2009.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS [LIC02], pages 55–74.

[RLS06] Jacob Illum Rasmussen, Kim G. Larsen, and K. Subramani. On
using priced timed automata to achieve optimal scheduling. For-
mal Methods in System Design, 29(1):97–114, 2006.

[San09] Davide Sangiorgi. On the origins of bisimulation and coinduc-
tion. ACM Transactions on Programming Languages and Sys-
tems, 31(4), 2009.

[SCU11] Mathieu Sassolas, Marsha Chechik, and Sebastián Uchitel. Ex-
ploring inconsistencies between modal transition systems. Soft-
ware and System Modeling, 10(1):117–142, 2011.

[SdB69] Dana Scott and Jaco W. de Bakker. A theory of programs.
Unpublished manuscript, IBM, Vienna, 1969.

[Sif11] Joseph Sifakis. A vision for computer science – the system
perspective. Central European Journal of Computer Science,
1(1):108–116, 2011.

[SL94] Roberto Segala and Nancy A. Lynch. Probabilistic simulations
for probabilistic processes. In Bengt Jonsson and Joachim Par-
row, editors, CONCUR, volume 836 of Lecture Notes in Com-
puter Science, pages 481–496. Springer-Verlag, 1994.

236

[SL95] Roberto Segala and Nancy A. Lynch. Probabilistic simulations
for probabilistic processes. Nord. J. Comput., 2(2):250–273,
1995.

[SPE] SPEEDS: Speculative and Exploratory Design in Systems Engi-
neering. http://www.speeds.eu.com/.

[Ste94] William J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[Sti95] Colin Stirling. Modal and temporal logics for processes. In Faron
Moller and Graham M. Birtwistle, editors, Banff Higher Order
Workshop, volume 1043 of Lecture Notes in Computer Science,
pages 149–237. Springer-Verlag, 1995.

[Str] STREP COMBEST: Component-based embedded systems de-
sign techniques. http://www.combest.eu/home/.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its ap-
plications. Pacific Journal of Mathematics, 5:285–309, 1955.

[TFL08] Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative
simulations of weighted transition systems. In NWPT, 2008.

[TFL10] Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative
analysis of weighted transition systems. Journal of Logic and
Algebraic Programming, 79(7):689–703, 2010.

[Tho87] Bent Thomsen. An extended bisimulation induced by a preorder
on actions. Master’s thesis, Aalborg University Centre, 1987.

[Thr11] Claus Thrane. Quantitative Models and Analysis For Reactive
Systems. PhD thesis, Aalborg University, 2011.

[UC04] Sebastián Uchitel and Marsha Chechik. Merging partial be-
havioural models. In Richard N. Taylor and Matthew B. Dwyer,
editors, SIGSOFT FSE, pages 43–52. ACM, 2004.

[vB96] Franck van Breugel. A theory of metric labelled transition sys-
tems. Annals of the New York Academy of Sciences, pages 69–87,
1996.

[vB01] Franck van Breugel. An introduction to metric semantics: Op-
erational and denotational models for programming and specifi-
cation languages. Theoretical Computer Science, 258(1-2):1–98,
2001.

237

http://www.speeds.eu.com/
http://www.combest.eu/home/

10. References

[vB05] Franck van Breugel. A behavioural pseudometric for metric la-
belled transition systems. In Martín Abadi and Luca de Alfaro,
editors, CONCUR, volume 3653 of Lecture Notes in Computer
Science, pages 141–155. Springer-Verlag, 2005.

[vBW01] Franck van Breugel and James Worrell. An algorithm for quan-
titative verification of probabilistic transition systems. In Larsen
and Nielsen [LN01], pages 336–350.

[vBW05] Franck van Breugel and James Worrell. A behavioural pseudo-
metric for probabilistic transition systems. Theoretical Computer
Science, 331(1):115–142, 2005.

[vBW06] Franck van Breugel and James Worrell. Approximating and com-
puting behavioural distances in probabilistic transition systems.
Theoretical Computer Science, 360(1-3):373–385, 2006.

[vG93] Rob J. van Glabbeek. The linear time - branching time spectrum
II. In Eike Best, editor, CONCUR, volume 715 of Lecture Notes
in Computer Science, pages 66–81. Springer-Verlag, 1993.

[vG01] Rob J. van Glabbeek. The linear time - branching time spectrum
I. In Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors,
Handbook of Process Algebra, Chapter 1, pages 3–99. Elsevier,
2001.

[WME93] Farn Wang, Aloysius K. Mok, and E. Allen Emerson. Sym-
bolic model checking for distributed real-time systems. In Jim
Woodcock and Peter Gorm Larsen, editors, FME, volume 670
of Lecture Notes in Computer Science, pages 632–651. Springer-
Verlag, 1993.

[WN95] Glynn Winskel and Mogens Nielsen. Models for concurrency. In
Samson Abramsky, Dov M. Gabbay, and Thomas S.E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 4, pages
1–148. Clarendon Press, Oxford, 1995.

[ZG09] Gang Zheng and Antoine Girard. Bounded and unbounded
safety verification using bisimulation metrics. In Rupak Ma-
jumdar and Paulo Tabuada, editors, HSCC, volume 5469 of Lec-
ture Notes in Computer Science, pages 426–440. Springer-Verlag,
2009.

[ZP96] Uri Zwick and Mike Paterson. The complexity of mean payoff
games on graphs. Theoretical Computer Science, 158(1&2):343–
359, 1996.

238

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Applications
	1.4 Conclusion and Perspectives
	1.5 About the Author
	1.6 Acknowledgments

	2 Quantitative Analysis of Weighted Transition Systems
	2.1 Weighted transition systems
	2.2 Quantitative Analysis
	2.3 Properties of distances
	2.4 Conclusion

	3 A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic
	3.1 Preliminaries
	3.2 Weighted CTL
	3.3 Bisimulation
	3.4 Characterization
	3.5 Conclusion

	4 Metrics for Weighted Transition Systems: Axiomatization
	4.1 Simulation distances
	4.2 Axiomatizations for Finite Weighted Processes
	4.3 Axiomatizations for Regular Weighted Processes

	5 The Quantitative Linear-Time–Branching-Time Spectrum
	5.1 Traces, Trace Distances, and Transition Systems
	5.2 Examples of Trace Distances
	5.3 Quantitative Ehrenfeucht-Fraïssé Games
	5.4 General Properties
	5.5 The Distance Spectrum
	5.6 Recursive Characterizations
	5.7 Recursive Characterizations for Example Distances

	6 Weighted Modal Transition Systems
	6.1 Weighted Modal Transition Systems
	6.2 Thorough and Modal Refinement Distances
	6.3 Relaxation
	6.4 Limitations of the Quantitative Approach
	6.5 Structural Composition and Quotient
	6.6 Conclusion

	7 General Quantitative Specification Theories with Modal Transition Systems
	7.1 Structured Modal Transition Systems
	7.2 Refinement Distances
	7.3 Structural Composition and Quotient
	7.4 Conjunction
	7.5 Logical Characterizations

	8 Logical vs. Behavioral Specifications
	8.1 Specification Formalisms
	8.2 Structural Equivalence
	8.3 Specification Theory
	8.4 Related Work
	8.5 Conclusion

	9 Compositionality for Quantitative Specifications
	9.1 Structured Labels
	9.2 Specification Formalisms
	9.3 Specification theory
	9.4 Robust Specification Theories
	9.5 Conclusion

	10 References

