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bUniversité catholique de Louvain, Belgium

Abstract

Feature-based analysis of software product lines and family-based model checking
have seen rapid development. Many model checking problems can be reduced to
two-player games on finite graphs. A prominent example is mu-calculus model
checking, which is generally done by translating to parity games, but also many
quantitative model-checking problems can be reduced to (quantitative) games.

As part of a program to make game-based model checking available for soft-
ware product lines, we introduce featured reachability games, featured minimum
reachability games, featured discounted games, featured energy games, and
featured parity games. We show that all these admit optimal featured strategies,
which project to optimal strategies for any product, and how to compute winners
and values of such games in a family-based manner.

Keywords: featured transition system, two-player game, family-based model
checking, reachability game, discounted game, energy game, parity game

1. Introduction

Managing variability between products is a key challenge in software product
line (SPL) engineering. In feature-based SPL analysis, products are abstracted
into features, so that any product is a combination of a set of given features,
specifying characteristics that are present or absent in the particular product.

Featured transition systems (FTS), introduced by Classen et al. [17], are
high-level representations of SPL which allow for model checking of qualitative
and quantitative properties of SPL. Model checking is an established technique
for verifying the behavior of complex systems, and SPL model checking is an
active research subject [12–14,17,18,37,42,44,45].

The number of products in an SPL grows exponentially with the number
of features, hence model checking each individual product is prohibitive. Thus,
family-based model checking has been introduced in [17], allowing for the simul-
taneous verification of all products. The family-based approach has seen rapid
development [1,13–16,42,46] and has been extended to conformance model check-
ing [19], abstraction-based model checking [21,23,24], real-time formalisms [5,22],
probabilistic systems [12,41,43], and quantitative model checking [2, 26,27,38];
see [20] for a recent survey.
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Figure 1: FTS model S of a simple coffee machine SPL.

ϕ = νX.µY.

ϕ2︷ ︸︸ ︷(
(〈ins〉Y ∨ 〈xxl〉Y )︸ ︷︷ ︸

ϕ3

∨〈std〉X
)

Figure 2: µ-calculus specification for S.

1.1. Model Checking

Many model checking problems can be reduced to two-player games on
finite graphs. A prominent example is µ-calculus model checking, which is
generally done by translating to parity games [7], but also many quantitative
model-checking problems can be reduced to (quantitative) games [25,29–31].

In their recent paper [46], ter Beek et al. introduce a procedure for family-
based µ-calculus model checking of FTS. They define a translation to parity
games with variability and then develop an algorithm for family-based analysis
of such games. We give an example inspired by [46]. Figure 1 shows a toy model
S of a coffee machine with feature set {e, $} and three products {e}, {$}, and
{e, $}. The machine can accept coins at the ins transitions, deliver regular coffee
at the std transition, and hand out extra large coffee at the xxl transition; but
the std transition is only enabled if the e feature is present, and the second ins
transition exists only if the $ feature is present.

In Figure 2 we define a µ-calculus formula ϕ which expresses the property
that there exists an infinite run of the system along which infinitely many regular
coffees are delivered. Using the translation introduced in [46], which is a feature-
enriched version of the standard translation [7] from µ-calculus model checking
to parity games, we arrive at the featured parity game depicted in Figure 3 (only
the reachable part is shown). Here, diamond-shaped states are owned by player 1
and box-shaped states by player 2, and the priorities are indicated inside states.
Player 1 is said to win the game if she can enforce an infinite path through the
game graph for which the highest priority occurring infinitely often is even. By
the properties of the translation [46], player 1 wins the game for a product p iff
the projection projp(S) satisfies ϕ; in our case iff e ∈ p.

The authors of [46] then continue to develop a family-based algorithm for
solving featured parity games. They introduce so-called variability parity games
in which edges are annotated with subsets of the set of products and then use
a version of Zielonka’s algorithm [47] to solve these. Here we take a different
approach: we employ syntactic edge annotations, using logical formulae rather
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Figure 3: Featured parity game for checking whether S |= ϕ.
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Figure 4: Coffee machine model S with energy annotations.

than sets of products; and we base our algorithm on Jurdzinski’s algorithm
[35] rather than Zielonka’s. The former works by computing attractors, which
fits well into our general framework which lifts attractors (for different types of
games) to featured attractors.

1.2. Discounted Games
For another example of the use of games, we turn to the quantitative setting.

Figure 4 displays our toy model of the coffee machine together with approximate
annotations for energy consumption: brewing a standard coffee consumes 1
energy unit, plus/minus 10%; brewing an extra large coffee consumes 2± 10%
energy units. (Quite naturally, inserting coins does not consume energy.)

We may now inquire about the robustness of this SPL: given that the
energy annotations are approximate, what are the long-run deviations in energy
consumption that we should expect, depending on the particular product? As a
simple example, one machine might always consume 1.1 energy units at a std
transition and another always 0.9, so that in an infinite run (ins, std, ins, std, . . . )
the two machines would accumulate a difference in energy consumption of 0.2
every second step.

Taking the point of view that the future is discounted, we fix a discounting
factor λ < 1 and multiply differences by λ at each step. For the two runs above,
the long-run energy difference would thus evaluate to 0 + λ · 0.2 + λ2 · 0 + λ3 ·
0.2 + · · · = 0.2 λ

1−λ2 , which becomes 9.95 for a standard discounting factor of
λ = 0.99.

Following [25], robustness of a model for a product p may be computed using
the λ-discounted bisimulation distance: let S1 and S2 be the versions of the
projection projp(S) with the minimal, resp. maximal, energy consumption on
every transition and write Si = {si0, si1, si2} for i ∈ {1, 2}, then the discounted
bisimulation distance between S1 and S2 is d(s1

0, s
2
0), where d : S1 × S2 → R is

the unique solution to the equation system given by

d(s1, s2) = max


max
s1→a

xt
1

min
s2→a

yt
2
|x− y|+ λd(t1, t2),

max
s2→a

yt
2

min
s1→a

xt
1
|x− y|+ λd(t1, t2)

for all s1 ∈ S1, s2 ∈ S2. (Here s →a
x t indicates a transition from s to t with

label a and energy consumption x.)
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Figure 5: Game for computing discounted distance.

In [30] it is shown that λ-discounted bisimulation distances may be computed
by translating to

√
λ-discounted games [48]. We recall the translation and extend

it to FTS. Let F1 = (S1, i1, T1, γ1), F2 = (S2, i2, T2, γ2) be weighted FTS, with
transitions Tj ⊆ Sj × Σ ×Q × Sj . The states of the game for computing the
λ-discounted bisimulation distance between F1 and F2 are V1 = S1 × S2 (owned
by player 1) and V2 = S1×S2×Σ×Q×{1, 2}, with initial state i = (i1, i2) ∈ V1.
The transitions of the game are of four types:

{(s1, s2)→0
ϕ (s′1, s2, a, x, 1) | (s1, a, x, s

′
1)/ϕ ∈ T1},

{(s1, s2)→0
ϕ (s1, s

′
2, b, x, 2) | (s2, b, x, s

′
2)/ϕ ∈ T2},

{(s′1, s2, a, x, 1)→λ−1/2|a−b|
ϕ (s′1, s

′
2) | (s2, b, x, s

′
2)/ϕ ∈ T2},

{(s1, s
′
2, b, x, 2)→λ−1/2|a−b|

ϕ (s′1, s
′
2) | (s1, a, x, s

′
1)/ϕ ∈ T1},

where we write ti/ϕ for a transition ti ∈ Ti with γi(ti) = ϕ. We show the result
of the translation applied to our example in Figure 5, where we have omitted
some states and transitions due to symmetry.

We will continue this example in Section 4.3; for λ = 0.99 and p = {e, $},
the distance evaluates to 13.2.

1.3. Energy Games

Games are also important in controller synthesis : the problem of generating
controllers for discrete event systems [36, 40]. In this setting, the model is a
game in which player 1 is the controller and player 2 the environment, and then
the task is to find a strategy for the controller which ensures a given property
one wishes to enforce.

We give a simple example in Figure 6, inspired by [3]. This is a toy model of
a mars robot which collects rocks, with an operations cycle consisting of charging
its batteries, searching for rocks, collecting a rock, and deposing the rock in a
container. Charging the battery adds 3 energy units to its battery; unless the
ext feature is present, in which case the charge transition may add 5 energy units.
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Searching and deposing both cost 1 energy unit, as does collecting a small rock.
If the big feature is present, then also big rocks may be collected, with an energy
consumption of 3. The size of a collected rock is controlled by the environment.

The property we wish to enforce is that the system has an infinite run in
which the battery charge never drops below 0. That is, player 1 should have a
strategy of choosing her transitions so that no matter the behavior of player 2,
battery charge never goes negative. A simple analysis shows that this is the
case precisely for all products which satisfy the formula ¬big ∨ ext: if feature big
is not present, then the search-collect-deposit cycle always consumes 3 energy
units which can be recharged also without the ext feature; and if both big and
ext are present, then charging 5 energy units ensures that also big rocks can be
deposited. We give a more precise analysis of this example in Section 5.3.

1.4. Structure of Paper

In this paper, we concern ourselves with several types of games which have
been used in model checking and controller synthesis. We lift these games to
featured versions useful in an SPL context, and we show how to compute their
values and optimal strategies in a family-based manner. We treat the following
types of games:

• reachability games;

• minimum reachability games;

• discounted games;

• energy games;

• parity games.

Our treatment is based on the computation of attractors, which in general is an
efficient technique for solving games and typically gives rise to (pseudo)polynomial
algorithms. Our first main contribution is showing how to lift attractor compu-
tations to the featured setting, in Sections 2 through 6.

s0 s1

s2s3

charge | tt | 3

charge | ext | 5
search
tt | −1

small | tt | −1

big | big | −3

deposit
tt | −1

Figure 6: A simple energy game.
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Our second main contribution, in Section 7, is the family-based computation
of optimal strategies. We show that in all featured games considered here, optimal
featured strategies may be found during the attractor computation, and these
project to optimal strategies for any product.

Finally, Section 8 exhibits our third main contribution: family-based algo-
rithms, using guard partitions [27] and late splitting [1], to compute attractors
for all the featured games we have introduced.

The astute reader may wonder whether there is not a general setting in which
our contributions to the different types of games could be unified. A partial
answer is given by Gimbert and Zielonka’s [32, 33] which show that optimal
strategies are memoryless in a general class of games which encompasses all
games considered here. However, no extension of this work exists which would
allow a general procedure for computing attractors in all games with memoryless
optimal strategies. (For a recent extension to finite memory, see [6].) Hence
we are forced to develop our theory separately for each type of games; we have
included all proofs for completeness but will point out similarities and differences
in order to ease digestion.

This paper is based on [28] which was presented at the 15th Theoretical
Aspects of Software Engineering Conference (TASE 2021) in Shanghai, China.
Compared to this conference abstract, the present paper contains some more
examples to justify our approach, proofs of all results, and the new Section
8 exposing family-based algorithms to compute featured attractors. Further,
we correct an error regarding the definition of initial configurations which was
pointed out by a reviewer.

2. Featured Reachability Games

2.1. Reachability Games

A game structure G = (S1, S2, i, F, T ) consists of two disjoint sets S = S1tS2

of states, initial and accepting states i ∈ S, F ⊆ S, and transitions T ⊆ S × S.
For simplicity we assume G to be non-blocking, so that for all s ∈ S there exists
s′ ∈ S for which (s, s′) ∈ T .

As customary, we write s → s′ to indicate that (s, s′) ∈ T . Intuitively, a
game on a game structure G as above is played by two players, player 1 and
player 2, taking turns to move a token along the directed graph with vertices S
and edges T . We make this intuition precise.

A finite path in G is a finite sequence π = (s1, . . . , sk) in S such that si → si+1

for all i = 1, . . . , k − 1. The set of finite paths in G is denoted fPaths(G). The
end state of a path π = (s1, . . . , sk) is end(π) = sk. An infinite path in G is an
infinite sequence (s1, s2, . . . ) in S such that si → si+1 for all i ≥ 1, and the set
of these is denoted iPaths(G).

The configurations for player i, for i ∈ {1, 2}, are Confi = {π ∈ fPaths(G) |
end(π) ∈ Si}. A strategy for player i is a function θ : Confi → S such that for
all π ∈ Confi, end(π)→ θ(π). The set of strategies for player i is denoted Θi.
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Any pair of strategies θ1 ∈ Θ1, θ2 ∈ Θ2 induces a unique infinite path
out(θ1, θ2) = (s1, s2, . . . ) ∈ iPaths(G), called the outcome of the pair (θ1, θ2) and
defined inductively by

s1 = i sk+1 =

{
θ1(s1, . . . , sk) if sk ∈ S1,

θ2(s1, . . . , sk) if sk ∈ S2.

Note that the outcome is indeed infinite due to our non-blocking assumption.
The reachability game on a game structure G = (S1, S2, i, F, T ) is to decide

whether there exists a strategy θ1 ∈ Θ1 such that for all θ2 ∈ Θ2, writing
out(θ1, θ2) = (s1, s2, . . . ), there is an index k ≥ 1 for which sk ∈ F . In the
affirmative case, player 1 is said to win the reachability game.

In order to solve reachability games, one introduces a notion of game attractor
attr : (S → B)→ (S → B), where B = {ff , tt} is the boolean lattice, defined for
any U : S → B by

attr(U)(s) =


∨
s→s′

U(s′) if s ∈ S1,∧
s→s′

U(s′) if s ∈ S2.

Hence attr(U)(s) is true precisely if there exists a player-1 transition to a state
s′ for which U(s′) ≡ tt, or if it holds for all player-2 transitions s → s′ that
U(s′) ≡ tt.

Above, ≡ is used to denote semantic equivalence of logical formulae. We will
generally stay at the syntactic level below and only evaluate logical expressions
when needed; in practice, some simplification algorithms such as Espresso [8]
should be used to keep the expressions manageable.

Let attr∗ = id ∨ attr ∨ attr2 ∨ · · · , where id is the identity function x 7→ x,
exponentiation denotes repeated function composition, and ∨ is the supremum op-
erator on the complete lattice S → B. Let I : S → B be the initial configuration
given by I(s) = tt iff s ∈ F , then the following is easy to see.

Lemma 1. Let G = (S1, S2, i, F, T ) be a game structure. Player 1 wins the
reachability game in G iff attr∗(I)(i) ≡ tt. �

The operator attr is monotone on the complete lattice S → B, thus attr∗ can
be computed using a fixed-point algorithm, in time quadratic in the size of S.
Hence reachability games can be decided in polynomial time.

2.2. Featured Reachability Games
Let N be a finite set of features and px ⊆ 2N a set of products over N . A

feature guard is a boolean expression over N , and we denote the set of these
by B(N). We write p |= γ if p ∈ px satisfies γ ∈ B(N). For each p ∈ px let
γp ∈ B(N) be its characteristic formula satisfying that p′ |= γp iff p′ = p.

A featured game structure G = (S1, S2, i, F, T, γ) consists of a game structure
(S1, S2, i, F, T ) together with a mapping γ : T → B(N). We also assume our
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featured game structures to be non-blocking, in the sense that for all s ∈ S and
all p ∈ px, there exists (s, s′) ∈ T with p |= γ(s, s′).

The projection of a featured game structure G as above to a product p ∈ px
is the game structure projp(G) = (S1, S2, i, F, T

′) with T ′ = {t ∈ T | p |= γ(t)}.
All projections of non-blocking featured game structures are again non-blocking.

We are interested in solving the reachability game for the projections to each
product p ∈ px, but in a family-based manner. We will thus compute a function
B(N)→ B which for each feature expression indicates whether player 1 wins the
reachability game on projp(G). Note that, as a set of functions into a complete
lattice, B(N)→ B is itself a complete lattice.

To this end, define the featured attractor fattr : (S → (B(N)→ B))→ (S →
(B(N)→ B)) by

fattr(U)(s)(ϕ) =


∨
s→s′

U(s′)(γ((s, s′)) ∧ ϕ) if s ∈ S1,∧
s→s′

U(s′)(γ((s, s′)) ∧ ϕ) if s ∈ S2.

and let fattr∗ = id ∨ fattr ∨ fattr2 ∨ · · · , the supremum in the complete lattice
S → (B(N)→ B). We will evaluate fattr∗ on the initial configuration I : S →
(B(N)→ B) given by

I(s)(ϕ) =

{
tt if s ∈ F and ϕ 6≡ ff ,
ff otherwise.

Theorem 2. Let G = (S1, S2, i, F, T, γ) be a featured game structure and p ∈ px,
then Player 1 wins the reachability game in projp(G) iff fattr∗(I)(i)(γp) ≡ tt.

Proof. Let H = projp(G) = (S1, S2, i, F, T
′) and, for clarity, write attrH

for the attractor in H and fattrG for the one in G. We need to show that
fattr∗G(I)(i)(γp) = attr∗H(I)(i). (Note that we are using the same notation I for
both G and H; this should cause no confusion.)

The conclusion will follow once we can show that for all n ≥ 0 and all s ∈ S,
fattrnG(I)(s)(γp) = attrnH(I)(s). We do so by induction on n. For n = 0 both
sides of the equation become tt iff s ∈ F , so this is clear.

Now let n ≥ 0 and assume that for all s′ ∈ S, fattrnG(I)(s′)(γp) = attrnH(I)(s′).
Let s ∈ S1, then

fattrn+1
G (I)(s)(γp) =

∨
s→Gs′

fattrnG(I)(s′)(γ((s, s′)) ∧ γp)

=
∨

s→Hs′

fattrnG(I)(s′)(γp)

=
∨

s→Hs′

attrnH(I)(s′) = attrn+1
H (I)(s);

for s ∈ S2 the proof is similar. �
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The operator fattr is monotone on the complete lattice S → (B(N) → B),
thus fattr∗ can be computed using a fixed-point algorithm. In Section 8 we
will give an algorithm which uses guard partitions [27] and late splitting [1] to
compute the fixed point.

3. Featured Minimum Reachability

We now enrich the above problem to compute featured minimum reachability
in weighted game structures.

3.1. Minimum Reachability Games
A weighted game structure G = (S1, S2, i, F, T ) consists of two disjoint sets

S = S1 t S2 of states, initial and accepting states i ∈ S, F ⊆ S, and transitions
T ⊆ S ×N × S. Note that all weights are non-negative. We also assume our
weighted game structures to be non-blocking, and we write s→x s

′ to indicate
that (s, x, s′) ∈ T .

Games on such structures are played as before, only now the goal of player 1
is not only to reach a state in F , but to do so as cheaply as possible. Let us
make this precise. A path in G is now a sequence π = (s1, x1, s2, x2, . . . ) such
that si →xi si+1 for all i ≥ 1. The notion of configuration is unchanged, and
a strategy for player i is now a function θ : Confi → N × S such that for all
π ∈ Confi, end(π) →θ(π)1 θ(π)2, where θ(π) = (θ(π)1, θ(π)2). The outcome
of a strategy pair is an infinite path (s1, x1, s2, x2, . . . ) ∈ iPaths(G) defined as
expected.

The reachability value of an infinite path π = (s1, x1, s2, x2, . . . ) is defined to
be valR(π) = min{x1 + · · · + xk−1 | sk ∈ F}, where min ∅ = ∞ by convention,
and the minimum reachability value of G is

valR(G) = inf
θ1∈Θ1

sup
θ2∈Θ2

valR(out(θ1, θ2)).

That is, valR(out(θ1, θ2)) is the minimum sum of weights along any accepting
finite prefix of the path, and the goal of player 1 is to minimize this value.

In order to compute minimum reachability in a weighted game structure G,
define the weighted attractor wattr : (S → N ∪ {∞})→ (S → N ∪ {∞}) by

wattr(U)(s) =

 min
s→xs′

x+ U(s′) if s ∈ S1,

max
s→xs′

x+ U(s′) if s ∈ S2

and let wattr∗ = min(id,wattr, wattr2, . . . ). The initial configuration is I : S →
N ∪ {∞} given by

I(s) =

{
0 if s ∈ F,
∞ otherwise.

The following seems to be folklore; note that it only holds under our assumption
that all weights are non-negative. (See [9] for an extension to negative weights.)
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Lemma 3. The minimum reachability value of a weighted game structure G =
(S1, S2, i, F, T ) is valR(G) = wattr∗(I)(i). �

The operator wattr is monotone on the complete lattice of functions S →
N ∪ {∞}, thus wattr∗ can be computed using a fixed-point algorithm, in time
quadratic in the size of S and linear in the maximum of the weights on the
transitions of G. That is, minimum reachability values can be computed in
pseudo-polynomial time.

3.2. Featured Minimum Reachability Games
A featured weighted game structure G = (S1, S2, i, F, T, γ) consists of a

weighted game structure (S1, S2, i, F, T ) together with a mapping γ : T → B(N).
We again assume our featured weighted game structures to be non-blocking.
Projections of such structures to products p ∈ px are defined as before.

Define the featured weighted attractor operator fwattr : (S → (B(N) →
N ∪ {∞}))→ (S → (B(N)→ N ∪ {∞})) by

fwattr(U)(s)(ϕ) =

 min
s→xs′

x+ U(s′)(γ((s, x, s′)) ∧ ϕ) if s ∈ S1,

max
s→xs′

x+ U(s′)(γ((s, x, s′)) ∧ ϕ) if s ∈ S2

and let fwattr∗ = min(id, fwattr, fwattr2, . . . ). Let I : S → (B(N) → N ∪ {∞})
be the initial configuration given by

I(s)(ϕ) =

{
0 if s ∈ F and ϕ 6≡ ff ,
∞ otherwise.

Theorem 4. Let G = (S1, S2, i, F, T, γ) be a featured weighted game structure
and p ∈ px, then the minimum reachability value of projp(G) is valR(projp(G)) =
fwattr∗(I)(i)(γp).

Proof. Let H = projp(G) = (S1, S2, i, F, T
′); we need to prove that

fwattr∗G(I)(i)(γp) = wattr∗H(I)(i).

We show inductively that for all n ≥ 0 and all s ∈ S, fwattrnG(I)(s)(γp) =
wattrnH(I)(s), which will imply the conclusion. For n = 0 both sides of the
equation become 0 if s ∈ F and ∞ otherwise, so the base case is clear.

Now let n ≥ 0 and assume that for all s′ ∈ S, fwattrnG(I)(s′)(γp) =
wattrnH(I)(s′). Let s ∈ S1, then

fwattrn+1
G (I)(s)(γp) = min

s→G
x s
′
x+ fwattrnG(I)(s′)(γ((s, x, s′)) ∧ γp)

= min
s→H

x s
′
x+ fwattrnG(I)(s′)(γp)

= min
s→H

x s
′
x+ wattrnH(I)(s′) = wattrn+1

H (I)(s);

for s ∈ S2 the proof is similar. �
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4. Featured Discounted Games

4.1. Discounted Games

We now turn our attention towards discounted games. These are also played
on weighted game structures, but now the accepting states are ignored, and
the restriction on non-negativity of weights can be lifted. That is, we are now
working with weighted game structures G = (S1, S2, i, T ) with T ⊆ S × Z× S.

The notions of configurations, strategies, and outcome remain unchanged from
the previous section. Let 0 < λ < 1 be a real number, called the discounting factor
of the game. The discounted value of an infinite path π = (s1, x1, s2, x2, . . . )
is valλ(π) = x1 + λx2 + λ2x3 + · · · , and the discounted value of a game G is
valλ(G) = supθ1∈Θ1

infθ2∈Θ2
valλ(out(θ1, θ2)). That is, the value of a path is the

sum of its weights, progressively discounted along its run, and the goal of player 1
is to maximize this value.

The following is a reformulation of a result from [48] in terms of attractors.
Define the discounted attractor dattr : (S → R)→ (S → R) by

dattr(U)(s) =

{
maxs→xs′ x+ λU(s′) if s ∈ S1,

mins→xs′ x+ λU(s′) if s ∈ S2.

Lemma 5. Let G = (S1, S2, i, T ) be a weighted game structure. The equation
system V = dattr(V ) has a unique solution dattr∗, and the discounted value of
G is valλ(G) = dattr∗(i). �

4.2. Featured Discounted Games

Let G = (S1, S2, i, T, γ) be a featured weighted game structure. Define the
featured discounted attractor fdattr : (S → (B(N)→ R))→ (S → (B(N)→ R))
by

fdattr(U)(s)(ϕ) =

max
s→xs′

x+ λU(s′)(γ((s, x, s′)) ∧ ϕ) if s ∈ S1,

min
s→xs′

x+ λU(s′)(γ((s, x, s′)) ∧ ϕ) if s ∈ S2.

Theorem 6. Let G = (S1, S2, i, T, γ) be a featured weighted game structure.
The equation system V = fdattr(V ) has a unique solution fdattr∗, and for any
p ∈ px, the discounted value of projp(G) is valλ(projp(G)) = fdattr∗(i)(γp).

Proof. Define a metric on S → (B(N)→ R) by

d(U1, U2) = max
s∈S

max
ϕ∈B(N)

|U1(s)(ϕ)− U2(s)(ϕ)|.

Then d(fdattr(U1), fdattr(U2)) ≤ λd(U1, U2) for any two functions U1, U2, that is,
fdattr is a contraction on the complete metric space S → RB(N). By the Banach
fixed-point theorem, fdattr has a unique fixed point which is fdattr∗.

Let p ∈ px and H = projp(G) = (S1, S2, i, T
′); we need to show that

fattr∗H(i) = fdattr∗G(i)(γp). Now for any U : S → (B(N) → R) and s ∈ S1,
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fdattr(U)(s)(γp) = maxs→G
x s
′ x + λU(s′)(γ((s, x, s′)) ∧ γp) = maxs→H

x s
′ x +

λU(s′)(γp), and the same can be shown if s ∈ S2 instead. Hence the equa-
tion systems defining dattr∗H and fdattr∗G(·)(γp) are the same; consequently, also
their unique fixed points are equal. �

4.3. Example

We show the computation of fdattr∗ for the example from Figure 5; recall
that this is a

√
λ-discounted game. For any ϕ ∈ B(N), and writing i = ((s1

0, s
2
0)),

we have

fdattr∗(i)(ϕ) =
√
λfdattr∗((s1

1, s
2
0, ins))(ϕ)

=
√
λ

2
fdattr∗((s1

1, s
2
1))(ϕ)

and, skipping computations for player-2 states from now,

= max

{√
λ

3
· 0.2 1√

λ
+
√
λ

4
fdattr∗(i)(ϕ ∧ e)

√
λ

4
fdattr∗((s1

2, s
2
2))(ϕ ∧ $)

= max


√
λ

3
· 0.2 1√

λ
+
√
λ

4
fdattr∗(i)(ϕ ∧ e)

√
λ

5
· 0.4 1√

λ
+
√
λ

6
fdattr∗(i)(ϕ ∧ $)

= max

{
0.2λ+ λ2fdattr∗(i)(ϕ ∧ e)

0.4λ2 + λ3fdattr∗(i)(ϕ ∧ $)
.

For p = {e}, we have fdattr∗(i)(γ{e}) = 0.2λ + λ2fdattr∗(i)(γ{e}), hence
valλ(proj{e}(G)) = 0.2 λ

1−λ2 . Given that (ins, std)ω is the only infinite run in the
projection proj{e}(S) of the original model, this is as expected.

For p = {$}, the equation simplifies to

fdattr∗(i)(γ{$}) = 0.4λ2 + λ3fdattr∗(i)(γ{$}),

hence valλ(proj{$}(G)) = 0.4 λ2

1−λ3 . For p = {e, $}, no simplifications are possible;
for λ = 0.99 a standard fixed-point iteration yields valλ(proj{e,$}(G)) = 13.2.

5. Featured Energy Games

5.1. Energy Games

Energy games are played on the same type of weighted game structures as the
discounted games of the previous section (with negative weights permitted), and
also the notions of configurations, strategies, and outcome remain unchanged.

Let v0 ∈ N. An infinite path (s1, x1, s2, x2, . . . ) ∈ iPaths(G) in a weighted
game structure G is energy positive with initial credit v0 if all finite sums
v0 + x1, v0 + x1 + x2, . . . are non-negative; that is, if v0 +

∑k
i=1 xi ≥ 0 for all

k ≥ 1. The energy game on G with initial credit v0 is to decide whether there
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exists a strategy θ1 ∈ Θ1 such that for all θ2 ∈ Θ2, out(θ1, θ2,) is energy positive
with initial credit v0.

The following procedure, first discovered in [10], can be used to solve energy
games. Let G = (S1, S2, i, T ) be a weighted game structure and define M =∑
s∈S max({0} ∪ {−x | (s, x, s′) ∈ T}). Let W = {0, . . . ,M,>}, where > is the

greatest element, and define an operation � : W×Z→W by x�y = max(0, x−y)
if x 6= > and x− y ≤M ; > otherwise.

Now define the energy attractor eattr : (S →W )→ (S →W ) by

eattr(U)(s) =

 min
s→xs′

U(s′)� x if s ∈ S1,

max
s→xs′

U(s′)� x if s ∈ S2

and let eattr∗ = max(id, eattr, eattr2, . . . ). The initial configuration is I : S →W
given by I(s) = 0 for all s ∈ S. The following is proven in [10] which also shows
that energy games can be decided in pseudo-polynomial time.

Lemma 7. Let G = (S1, S2, i, T ) be a weighted game structure and v0 ∈ N.
Player 1 wins the energy game on G with initial credit v0 iff v0 ≥ eattr∗(I)(i). �

5.2. Featured Energy Games
Let G = (S1, S2, i, T, γ) be a featured weighted game structure. Define the

featured energy attractor feattr : (S → (B(N) → W )) → (S → (B(N) → W ))
by

feattr(U)(s)(ϕ) =

 min
s→xs′

U(s′)(γ((s, x, s′)) ∧ ϕ) � x if s ∈ S1,

max
s→xs′

U(s′)(γ((s, x, s′)) ∧ ϕ) � x if s ∈ S2

and let feattr∗ = max(id, feattr, feattr2, . . . ). The initial configuration is I : S →
(B(N)→W ) given by

I(s)(ϕ) =

{
0 if ϕ 6≡ ff ,
> otherwise.

Theorem 8. Let G = (S1, S2, i, T, γ) be a featured weighted game structure and
v0 : B(N) → N. Let p ∈ px, then player 1 wins the energy game on projp(G)
with initial credit v0(γp) iff v0(γp) ≥ feattr∗(I)(i)(γp).

Proof. Let H = projp(G) = (S1, S2, i, T
′); we need to prove that

feattr∗G(I)(i)(γp) = eattr∗H(I)(i).

We show inductively that for all n ≥ 0 and all s ∈ S, feattrnG(I)(s)(γp) =
eattrnH(I)(s), which will imply the conclusion. For n = 0, the equation becomes
I(s)(γp) = I(s) which is clear.

Now let n ≥ 0 and assume that for all s′ ∈ S,

feattrnG(I)(s′)(γp) = eattrnH(I)(s′).
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Let s ∈ S1, then

feattrn+1
G (I)(s)(γp) = min

s→G
x s
′
feattrnG(I)(s′)(γ((s, x, s′)) ∧ γp) � x

= min
s→H

x s
′
feattrnG(I)(s′)(γp)� x

= min
s→H

x s
′
eattrnH(I)(s′) � x = eattrn+1

H (I)(s);

similarly for s ∈ S2. �

5.3. Example
We show the computation of feattr∗ for the example from Figure 6. Note that

the example includes labels on transitions; for energy computations, these are
ignored. We have M = 3 and thus W = {0, 1, 2, 3,>}. Denote feattr∗(I) = f∗,
then for any ϕ ∈ B(N),

f∗(i)(ϕ) = min

{
f∗(s1)(ϕ) � 3

f∗(s1)(ϕ ∧ ext)� 5

= min

{
(f∗(s2)(ϕ)�−1) � 3

(f∗(s2)(ϕ ∧ ext)�−1) � 5

= min


max

{
((f∗(s3)(ϕ)�−1) �−1) � 3

((f∗(s3)(ϕ ∧ big) �−3)�−1)� 3

max

{
((f∗(s3)(ϕ ∧ ext)�−1) �−1) � 5

((f∗(s3)(ϕ ∧ ext ∧ big)�−3)�−1)� 5

= min


max

{
(((f∗(i)(ϕ)�−1)�−1)�−1) � 3

(((f∗(i)(ϕ ∧ big)�−1) �−3) �−1) � 3

max

{
(((f∗(i)(ϕ ∧ ext)�−1) �−1) �−1) � 5

(((f∗(i)(ϕ ∧ ext ∧ big) �−1) �−3)�−1)� 5

.

For p = ∅, only the first of these four lines contributes to the fixed point, which
thus becomes f∗(i)(γ∅) = feattr∗(I)(i)(γ∅) = 0. Hence the minimum necessary
initial credit in the energy game without any extra features is 0, as expected. For
the other three products, standard fixed-point iterations yield f∗(i)(γ{big}) = >
(player 1 cannot win this game) and f∗(i)(γ{ext}) = f∗(i)(γ{ext,big}) = 0.

6. Featured Parity Games

6.1. Parity Games
A priority game structure G = (S1, S2, i, T, p) is a game structure (without

weights) together with a priority mapping p : S → N; we again assume these to
be non-blocking. The notions of configurations, strategies and outcomes remain
unchanged.
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For an infinite path π = (s1, s2, . . . ) ∈ iPaths(G) let prio(π) = lim infn→∞ p(n)
be the lowest priority which occurs infinitely often in π. The parity game on G
is to decide whether there exists a strategy θ1 ∈ Θ1 such that for all θ2 ∈ Θ2,
prio(out(θ1, θ2)) is an even number.

Note that this is, thus, a minimum parity game, whereas the game we exposed
in the introduction was a maximum parity game. This unfortunate dissonance
between model checking and game theory can easily be overcome by inverting
all priorities and then adding their former maximum.

The following procedure for solving minimum parity games was discovered
in [35]. Let G = (S1, S2, i, T, p) be a priority game structure and d = max{p(s) |
s ∈ S}. For every i ∈ {0, . . . , d} let pi = |{s ∈ S | p(s) = i}| be the number of
states with priority i and define M ′ ⊆ Nd to be the following (finite) set: if d is
odd, then M ′ = {0} × {0, . . . , p1} × {0} × {0, . . . , p3} × · · · × {0, . . . , pd}; if d is
even, then M ′ = {0} × {0, . . . , p1} × {0} × {0, . . . , p3} × · · · × {0}.

We need some notation for lexicographic orders on Nd. For x = (x1, . . . , xd),
y = (y1, . . . , yd) ∈ Nd and k ∈ {1, . . . , d}, say that x ≤k y if xi ≤ yi for all
components i ∈ {1, . . . , k}. Relations =k, <k, ≥k and >k are defined similarly.

Let M = M ′ ∪ {>}, where > is the greatest element in all the orders ≤k,
and define the relations �k on M by x �k y iff x ≤k y if k is odd; x <k y or
x = y = > if k is even. Define a function prog : (S → M) × S × S → M by
prog(U, s, s′) = min{m ∈M | m �p(s)+1 U(s′)}.

Now define the parity attractor pattr : (S →M)→ (S →M) by

pattr(U)(s) =

min
s→s′
prog(U, s, s′) if s ∈ S1,

max
s→s′
prog(U, s, s′) if s ∈ S2

and let pattr∗ = max(id, pattr, pattr2, . . . ). The initial configuration is I : S →M
given by I(s) = (0, . . . , 0) for all s ∈ S. The following is shown in [35], together
with the fact that parity games are decidable in pseudo-polynomial time.

Lemma 9. Let G = (S1, S2, i, T, p) be a priority game structure, then player 1
wins the parity game on G iff pattr∗(I)(i) 6= >. �

6.2. Featured Parity Games

A featured priority game structure G = (S1, S2, i, T, p, γ) consists of a priority
game structure G = (S1, S2, i, T, p) together with a mapping γ : T → B(N). We
again assume these to be non-blocking. Let d = max{p(s) | s ∈ S} and M be
defined as above.

Let fprog : (S → (B(N) → M)) × S × S → (B(N) → M) be the function
given by fprog(U, s, s′)(ϕ) = min{m ∈ M | m �p(s) U(s′)(ϕ)}. Define the
featured parity attractor fpattr : (S → (B(N) →M))→ (S → (B(N)→M)) by

fpattr(U)(s)(ϕ) =

min
s→s′
fprog(U, s, s′)(γ((s, s′)) ∧ ϕ) if s ∈ S1,

max
s→s′
fprog(U, s, s′)(γ((s, s′)) ∧ ϕ) if s ∈ S2

16



and let fpattr∗ = max(id, fpattr, fpattr2, . . . ). The initial configuration is I : S →
(B(N)→M) given by

I(s)(ϕ) =

{
(0, . . . , 0) if ϕ 6≡ ff ,
> otherwise.

Theorem 10. Let G = (S1, S2, i, T, p, γ) be a featured priority game structure
and p ∈ px, then player 1 wins the parity game on projp(G) iff fpattr∗(I)(i)(γp) 6= >.

Proof. Let H = projp(G) = (S1, S2, i, T
′, p); we need to prove that

fpattr∗G(I)(i)(γp) = pattr∗H(I)(i).

We show inductively that for all n ≥ 0 and all s ∈ S, fpattrnG(I)(s)(γp) =
pattrnH(I)(s), which will imply the conclusion. For n = 0, the equation becomes
I(s)(γp) = I(s) which is clear.

Now let n ≥ 0 and assume that for all s′ ∈ S,

fpattrnG(I)(s′)(γp) = pattrnH(I)(s′).

Let s ∈ S1, then

fpattrn+1
G (I)(s)(γp) = max

fpattr
n
G(I)(s)(γp)

min
s→Gs′

fprog(fpattrnG(I), s, s′)(γ((s, s′)) ∧ γp)

= max

pattr
n
H(I)(s)

min
s→Hs′

fprog(fpattrnG(I), s, s′)(γp)

= max

pattr
n
H(I)(s)

min
s→Hs′

min{m ∈M | m �p(s) fpattrnG(I)(s′)(γp)}

= max

pattr
n
H(I)(s)

min
s→Hs′

min{m ∈M | m �p(s) pattrnH(I)(s′)}

= max

pattr
n
H(I)(s)

min
s→Hs′

prog(pattrnH(I), s, s′)

= pattrn+1
H (I)(s).

For s ∈ S2 the reasoning is similar. �

7. Optimal Featured Strategies

A player-1 strategy in a game is said to be optimal if it realizes the value
of the game against any player-2 strategy. That is, in a game with boolean
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objective such as reachability, energy, or parity games, an optimal strategy for
player 1 ensures that she wins the game against any player-2 strategy if it is at
all possible for her to win the game.

In a game with quantitative objective, such as minimum reachability games
or discounted games, an optimal player-1 strategy θ̃1 is one which realizes the
value of the game against any player-2 strategy, that is, such that the value
supθ2∈Θ2

valR(out(θ̃1, θ2)) = infθ1∈Θ1 supθ2∈Θ2
valR(out(θ1, θ2)) for reachability

games; infθ2∈Θ2
valλ(out(θ̃1, θ2)) = supθ1∈Θ1

infθ2∈Θ2
valλ(out(θ1, θ2)) for dis-

counted games.
We show how to compute optimal player-1 strategies for all featured games

introduced in the previous sections.

7.1. Featured Reachability Games

Let G = (S1, S2, i, F, T ) be a game structure. A player-1 strategy θ1 ∈ Θ1

is memoryless if it depends only on last states of configurations, that is, if
end(π) = end(π′) implies θ1(π) = θ1(π′) for all π, π′ ∈ Conf1. Hence memoryless
player-1 strategies are mappings S1 → S. It is well-known that it suffices to
consider memoryless strategies for reachability games.

Define again I : S → B by I(s) = tt iff s ∈ F . A memoryless player-1 strategy
θ1 : S1 → S is locally optimal if, for all s ∈ S1, attr∗(I)(s) = attr∗(I)(θ1(s)); that
is, among all options s→ s′, it θ1(s) is such that attr∗(I)(s) =

∨
s→s′ attr

∗(I)(s′)
is maximized.

It is well-known that locally optimal strategies are optimal, hence if player 1
wins the reachability game on G, then she can do so using a locally optimal
strategy. Further, such a strategy can be trivially extracted after the computation
of attr∗, hence optimal player-1 strategies in reachability games can be computed
in polynomial time.

Now let G = (S1, S2, i, F, T, γ) be a featured game structure. We extend
the domain of γ : T → B(N) to finite paths in G by defining γ((s1, . . . , sk)) =
γ((s1, s2)) ∧ · · · ∧ γ((sk−1, sk)).

A featured strategy for player i, for i ∈ {1, 2}, is a function ξi : Confi →
(B(N) → S) such that for all π ∈ Confi and ϕ ∈ B(N), end(π) → ξi(π)(ϕ).
The set of featured strategies for player i is denoted Ξi. We define mappings
Ξi ×B(N) → Θi, denoted (ξi, ϕ) 7→ ξi(ϕ) and defined by ξi(ϕ)(π) = ξi(π)(ϕ)
for all π ∈ Confi.

A pair of featured strategies ξ1 ∈ Ξ1, ξ2 ∈ Ξ2 defines a mapping

out(ξ1, ξ2) : B(N)→ iPaths(G)

from feature guards to infinite paths in G, where out(ξ1, ξ2)(ϕ) = (s1, s2, . . . ) is
given by s1 = i, s2k = ξ1(s1, . . . , s2k−1)(ϕ), and s2k+1 = ξ2(s1, . . . , s2k)(ϕ).

Let ϕ ∈ B(N). Player 1 wins the ϕ-reachability game if there exists a strategy
ξ1 ∈ Ξ1 such that for all ξ2 ∈ Ξ2, with out(ξ1, ξ2)(ϕ) = (s1, s2, . . . ), there is an
index k ≥ 1 for which sk ∈ F and ϕ ∧ γ((s1, . . . , sk)) 6≡ ff .
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Lemma 11. Let G = (S1, S2, i, F, T, γ) be a featured game structure and p ∈ px.
Player 1 wins the reachability game in projp(G) iff she wins the γp-reachability
game in G.

Proof. Assume that player 1 wins the reachability game in H = projp(G).
Then there is θ1 ∈ Θ1 such that for all θ2 ∈ Θ2, writing out(θ1, θ2) = (s1, s2, . . . ),
there is an index k ≥ 1 for which sk ∈ F . Let θ2 ∈ Θ2. All transitions
(s1, s2), (s2, s3), . . . are inH, hence p |= γ((s1, . . . , sk)), i.e., γp∧γ((s1, . . . , sk)) 6≡
ff . Let ξ1 ∈ Ξ1 be any strategy for which ξ1(γp) = θ1. We have shown that for any
ξ2 ∈ Ξ2, writing out(ξ1, ξ2)(ϕ) = (s1, s2, . . . ), there is an index k ≥ 1 for which
sk ∈ F and ϕ ∧ γ((s1, . . . , sk)) 6≡ ff ; that is, player 1 wins the γp-reachability
game in G.

For the converse, assume that player 1 wins the γp-reachability game in
G, and let ξ1 ∈ Ξ1 be such that for any ξ2 ∈ Ξ2, writing out(ξ1, ξ2)(γp) =
(s1, s2, . . . ), there is an index k ≥ 1 for which sk ∈ F and γp∧γ((s1, . . . , sk)) 6≡ ff ,
i.e., p |= γ((s1, . . . , sk)). Then p |= γ((s1, s2)) ∧ · · · ∧ γ((sk−1, sk)), so that all
the transitions (s1, s2), · · · , (sk−1, sk) are present in H. Let θ1 = ξ1(γp). We
have shown that for all θ2 ∈ Θ2, writing out(θ1, θ2) = (s1, s2, . . . ), there is an
index k ≥ 1 for which sk ∈ F ; that is, player 1 wins the reachability game in H.

�

A featured player-1 strategy ξ1 ∈ Ξ1 is memoryless if end(π) = end(π′) implies
ξ1(π) = ξ1(π′) for all π, π′ ∈ Conf1. Hence memoryless featured strategies are
mappings S1 → (B(N)→ S).

Define, as before, I : S → (B(N)→ B) by

I(s)(ϕ) =

{
tt if s ∈ F and ϕ 6≡ ff ,
ff otherwise.

A memoryless featured strategy ξ1 : S1 → (B(N)→ S) is locally optimal if, for all
s ∈ S1 and ϕ ∈ B(N), fattr∗(I)(s)(ϕ) = fattr∗(I)(ξ1(s)(ϕ))(γ((s, ξ1(s)(ϕ)))∧ ϕ).

Theorem 12. Let G be a featured game structure, then there exists a locally
optimal player-1 strategy. Further, if ξ1 ∈ Ξ1 is locally optimal, then ξ1(γp) is
optimal in projp(G) for every p ∈ px.

Proof. We show the second claim first. Write H = projp(G), assume ξ1 to
be locally optimal, write θ1 = ξ1(γp), and let s ∈ S1. Then attr∗H(I)(s) =
fattr∗G(I)(s)(γp) = fattr∗G(I)(θ1(s)) (γ((s, θ1(s))) ∧ γp) = fattr∗G(I)(θ1(s))(γp) =
attr∗H(I)(θ1(s)), thus θ1 is locally optimal in projp(G).

For the first claim of the theorem, let s ∈ S1 and ϕ ∈ B(N). We have
fattr∗(I)(s)(ϕ) =

∨
s→s′ fattr

∗(I)(s′)(γ((s, s′)) ∧ ϕ). The set {s′ ∈ S2 | s → s′}
is finite, hence there is s̃′ such that fattr∗(I)(s)(ϕ) = fattr∗(I)(s̃′)(γ((s, s̃′)) ∧ ϕ).
Define ξ1(s)(ϕ) = s̃′. �
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7.2. Featured Minimum Reachability

Let G = (S1, S2, i, F, T ) be a weighted game structure. Memoryless player-1
strategies are now mappings θ1 : S1 → N× S. Such a strategy is locally optimal
if wattr∗(I)(s) = θ1(s)1 + wattr∗(I)(θ1(s)2) for all s ∈ S1, where I : S → N is
defined by I(s) = 0 if s ∈ F ; ∞ if s /∈ F , and θ1(s) = (θ1(s)1, θ1(s)2).

It is again well-known that locally optimal strategies are optimal, hence
optimal player-1 strategies in minimum reachability games can be computed in
pseudo-polynomial time.

Now let G = (S1, S2, i, F, T, γ) be a featured weighted game structure. A
featured player-i strategy is a mapping ξi : Confi → (B(N) → N × S). The
outcome of a pair ξ1, ξ2 of featured strategies is again a mapping out(ξ1, ξ2) :
B(N)→ iPaths(G) defined as expected.

The featured reachability value of a mapping π : B(N) → iPaths(G) is the
function fvalR(π) : B(N) → N ∪ {∞} given by fvalR(π)(ϕ) = valR(π(ϕ)), and
the featured minimum reachability value of G is

fvalR(G) = inf
ξ1∈Ξ1

sup
ξ2∈Ξ2

fvalR(out(ξ1, ξ2)),

where the order in B(N)→ N ∪ {∞} is point-wise.

Lemma 13. For G = (S1, S2, i, F, T, γ) any featured weighted game structure
and p ∈ px, valR(projp(G)) = fvalR(G)(γp).

Proof. Denoting strategy sets in G by Ξi and in projp(G) by Θi, we see that
Θi = Ξi(γp). Then

fvalR(G)(γp) = inf
ξ1∈Ξ1

sup
ξ2∈Ξ2

fvalR(out(ξ1, ξ2))(γp)

= inf
ξ1∈Ξ1

sup
ξ2∈Ξ2

valR(out(ξ1, ξ2)(γp))

= inf
ξ1∈Ξ1

sup
ξ2∈Ξ2

valR(out(ξ1(γp), ξ2(γp)))

= inf
θ1∈Ξ1(γp)

sup
θ2∈Ξ2(γp)

valR(out(θ1, θ2))

= inf
θ1∈Θ1

sup
θ2∈Θ2

valR(out(θ1, θ2)) = valR(projp(G)).

�

Define again I : S → (B(N)→ N ∪ {∞}) by

I(s)(ϕ) =

{
0 if s ∈ F and ϕ 6≡ ff ,
∞ otherwise.

Memoryless featured player-1 strategies are mappings ξ1 : S1 → (B(N) →
N × S). Such a strategy is locally optimal if, for all s ∈ S1 and ϕ ∈ B(N),
fwattr∗(I)(s)(ϕ) = ξ1(s)(ϕ)1+fwattr∗(I)(ξ1(s)(ϕ)2)(γ((s, ξ1(s)(ϕ)1, ξ1(s)(ϕ)2))∧
ϕ).
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Theorem 14. Let G be a featured weighted game structure, then there exists
a locally optimal player-1 strategy. Further, if ξ1 ∈ Ξ1 is locally optimal, then
ξ1(γp) is optimal in projp(G) for every p ∈ px.

Proof. Similar to the proof of Theorem 12. �

7.3. Featured Discounted Games

Let G = (S1, S2, i, T ) be a weighted game structure, 0 < λ < 1. A memoryless
player-1 strategy θ1 : S1 → Z × S is locally optimal if dattr∗(s) = θ1(s)1 +
λdattr∗(θ1(s)2) for all s ∈ S1. Locally optimal strategies always exist and are
optimal [48].

Let G = (S1, S2, i, T, γ) be a featured weighted game structure. The featured
discounted value of a mapping π : B(N)→ iPaths(G) is the function fvalλ(π) :
B(N)→ R given by fvalλ(π)(ϕ) = valλ(π(ϕ)). The featured discounted value of
G is fvalλ(G) = supξ1∈Ξ1

infξ2∈Ξ2
fvalλ(out(ξ1, ξ2)).

Lemma 15. For G = (S1, S2, i, T, γ) any featured weighted game structure and
p ∈ px, valλ(projp(G)) = fvalλ(G)(γp).

Proof. Similar to the proof of Lemma 13. �

A memoryless featured player-1 strategy ξ1 : S1 → (B(N) → Z × S) is
locally optimal if, for all s ∈ S1 and ϕ ∈ B(N), fdattr∗(s)(ϕ) = ξ1(s)(ϕ)1 +
λfdattr∗(ξ1(s)(ϕ)2)(γ((s, ξ1(s)(ϕ)1, ξ1(s)(ϕ)2)) ∧ ϕ).

Theorem 16. Let G be a featured weighted game structure, then there exists
a locally optimal player-1 strategy. Further, if ξ1 ∈ Ξ1 is locally optimal, then
ξ1(γp) is optimal in projp(G) for every p ∈ px.

Proof. Similar to the proof of Theorem 12. �

7.4. Featured Energy Games

Let G = (S1, S2, i, T ) be a weighted game structure and define M =∑
s∈S max({0} ∪ {−x | (s, x, s′) ∈ T}), W = {0, . . . ,M,>}, and I : S → W by

I(s) = 0 for all s ∈ S as before. A memoryless player-1 strategy θ1 : S1 → Z×S
is locally optimal if eattr∗(I)(s) = eattr∗(I)(θ1(s)2) � θ1(s)1 for all s ∈ S1. If
player 1 wins the energy game on G with initial credit v0 ∈ N, then she can do
so using a locally optimal strategy [10].

Let G = (S1, S2, i, T, γ) be a featured weighted game structure, v0 : B(N)→
N, and ϕ ∈ B(N). Player 1 wins the ϕ-energy game with initial credit v0 if
there exists a featured strategy ξ1 ∈ Ξ1 such that for all ξ2 ∈ Ξ2, out(ξ1, ξ2)(ϕ)
is energy positive with initial credit v0(ϕ).

Lemma 17. Let G = (S1, S2, i, T, γ) be a featured weighted game structure,
v0 : B(N)→ N, and p ∈ px. Player 1 wins the energy game with initial credit
v0(γp) in projp(G) iff player 1 wins the γp-energy game in G with initial credit v0.
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Proof. Similar to the proof of Lemma 13. �

Define, as before, I : S → (B(N)→W ) by

I(s)(ϕ) =

{
0 if ϕ 6≡ ff ,
> otherwise.

A memoryless featured player-1 strategy ξ1 : S1 → (B(N)→ Z× S) is locally
optimal if, for all s ∈ S1 and ϕ ∈ B(N),

feattr∗(I)(s)(ϕ) =

feattr∗(I)(ξ1(s)(ϕ)2)(γ((s, ξ1(s)(ϕ)1, ξ1(s)(ϕ)2)) ∧ ϕ) � ξ1(s)(ϕ)1.

Theorem 18. Let G be a featured weighted game structure, then there exists
a locally optimal player-1 strategy. Further, if ξ1 ∈ Ξ1 is locally optimal, then
ξ1(γp) is optimal in projp(G) for every p ∈ px.

Proof. Similar to the proof of Theorem 12. �

7.5. Featured Parity Games
Let G = (S1, S2, i, T, p) be a priority game structure, d = max{p(s) | s ∈ S}

and M ⊆ Nd ∪ {>} as in Section 6, and define I : S →M by I(s) = (0, . . . , 0)
for all s ∈ S. A memoryless player-1 strategy θ1 : S1 → S is locally optimal if
pattr∗(I)(s) = prog(pattr∗(I), s, θ1(s)) for all s ∈ S1. If player 1 wins the parity
game on G, then she can do so using a locally optimal strategy [35].

Let G = (S1, S2, i, T, p, γ) be a featured priority game structure and ϕ ∈
B(N). Player 1 wins the ϕ-parity game on G if there exists a featured strategy
ξ1 ∈ Ξ1 such that for all ξ2 ∈ Ξ2, prio(out(ξ1, ξ2)(ϕ)) is an even number.

Lemma 19. Let G = (S1, S2, i, T, p, γ) be a featured priority game structure
and p ∈ px. Player 1 wins the parity game in projp(G) iff player 1 wins the
γp-parity game in G.

Proof. Similar to the proof of Lemma 13. �

Define again I : S → (B(N)→M) by

I(s)(ϕ) =

{
(0, . . . , 0) if ϕ 6≡ ff ,
> otherwise.

A memoryless featured player-1 strategy ξ1 : S1 → (B(N)→ S) is locally optimal
if, for all s ∈ S1 and ϕ ∈ B(N), fpattr∗(I)(s)(ϕ) = fprog(fpattr∗(I), s, ξ1(s)(ϕ))(γ((s, ξ1(s))∧
ϕ).

Theorem 20. Let G be a featured weighted game structure, then there exists
a locally optimal player-1 strategy. Further, if ξ1 ∈ Ξ1 is locally optimal, then
ξ1(γp) is optimal in projp(G) for every p ∈ px.

Proof. Similar to the proof of Theorem 12. �
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8. Symbolic Computation

The goal of feature-based analysis is to compute properties pertaining to
an FTS representation of an SPL for all products at once, and to do so in a
family-based way. We have seen that for the various types of games we have
treated, values and optimal strategies may be computed by calculating closures
of attractors. Hence we expose below feature-based algorithms for calculating
these closures.

As usual for the field [15], the power of our feature-based algorithms lies
not in their worst-case complexity, which is the same as for algorithms which
would analyze each product separately; instead the advantage of feature-based
algorithms in general is that partial similarities between products are exploited
to reduce computation times.

8.1. Featured Reachability Games

Let G = (S1, S2, i, F, T, γ) be a featured game structure and define I : S →
(B(N)→ B) by

I(s)(ϕ) =

{
tt if s ∈ F and ϕ 6≡ ff ,
ff otherwise.

Conceptually, the procedure for calculating J = fattr∗(I) is a fixed-point algo-
rithm: initialize J ← I and update J ← J ∨ fattr(J) until J stabilizes.

In order to symbolically represent functions from B(N), we use guard par-
titions, see also [27]. A guard partition of px is a set P ⊆ B(N) such that
J
∨
P K = px, JϕK 6= ∅ for all ϕ ∈ P , and Jϕ1K ∩ Jϕ2K = ∅ for all ϕ1, ϕ2 ∈ P with

ϕ1 6= ϕ2. The set of all guard partitions of px is denoted GP ⊆ 2B(N). The
interested reader is referred to [27] for further details.

A function f : P → X, for P ∈ GP and X any set, is canonical if f(ϕ1) =
f(ϕ2) implies ϕ1 = ϕ2 for all ϕ1, ϕ2 ∈ P . A function f : P → X which is not
canonical may be reduced into an equivalent canonical function f ′ : P ′ → X
using the function Reduce shown in Figure 7, which reduces the partition P so
that any formulae ϕ,ψ ∈ P on which f takes the same value are combined into
ϕ ∨ ψ. Every function B(N) → X has a unique representation as a canonical
function P → X for some P ∈ GP.

The function for featured computation of attractors is shown in Figure 9. It
uses the functions Land and Lor, shown in Figure 8, which compute logical
operations on functions P → B: for f1 : P1 → B and f2 : P2 → B, Land
returns f ′ = f1 ∧ f2, and Lor returns f ′ = f1 ∨ f2. Both work by constructing a
common refinement of the partitions P1 and P2 and then assigning appropriate
values to the formulae in the refinement; note that the only difference between
Land and Lor is this assignment in line 7.

The function Fattr in Figure 9 computes one iteration of fattr for all states
s ∈ S. It does so by traversing all transitions s→ s′ (note that s′ might be equal
to s), restricting the partitions at s′ to γ((s, s′)) (line 9), and then computing
U ′s =

∨
s→s′ Vs′ or U ′s =

∧
s→s′ Vs′ , depending on whether s ∈ S1 or s ∈ S2, in
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1: function Reduce(f : P → X): P ′ → X
2: P ′, f ′ ← ∅
3: while P 6= ∅ do
4: Pick and remove ϕ from P
5: x← f(ϕ)
6: for all ψ ∈ P do
7: if f(ψ) = x then
8: ϕ← ϕ ∨ ψ
9: P ← P \ {ψ}

10: P ′ ← P ′ ∪ {ϕ}
11: f ′(ϕ)← x

12: return f ′ : P ′ → X

Figure 7: Algorithm which computes canonicalization.

1: function Land(f1 : P1 → B, f2 :
P2 → B): P → B

2: P, f ← ∅
3: for all ϕ1 ∈ P1 do
4: for all ϕ2 ∈ P2 do
5: if Jϕ1 ∧ ϕ2K 6= ∅ then
6: P ← P ∪ {ϕ1 ∧ ϕ2}
7: f(γ1∧γ2)← f1(γ1)∧f2(γ2)

8: return Reduce(f)

1: function Lor(f1 : P1 → B, f2 :
P2 → B): P → B

2: P, f ← ∅
3: for all ϕ1 ∈ P1 do
4: for all ϕ2 ∈ P2 do
5: if Jϕ1 ∧ ϕ2K 6= ∅ then
6: P ← P ∪ {ϕ1 ∧ ϕ2}
7: f(γ1∧γ2)← f1(γ1)∨f2(γ2)

8: return Reduce(f)

Figure 8: Algorithms for logical and and or.
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1: function Fattr(U : S → (P → B)): S → (P ′ → B)
2: U ′ ← ∅
3: for all s ∈ S do
4: P ′s, U

′
s ← ∅

5: for all s→ s′ do
6: Qs′ , Vs′ ← ∅
7: while Ps′ 6= ∅ do
8: Pick and remove ϕ from Ps′

9: ψ ← γ((s, s′)) ∧ ϕ
10: if JψK 6= ∅ then
11: Qs′ ← Qs′ ∪ {ψ}
12: Vs′(ψ)← Us′(ϕ)

13: Qs′ ← Qs′ ∪ {¬γ((s, s′))}
14: Vs′(¬γ((s, s′)))← ff
15: if s ∈ S1 then
16: U ′s ← Lor(U ′s, Vs′)
17: if s ∈ S2 then
18: U ′s ← Land(U ′s, Vs′)
19: U ′s ← Reduce(U ′s)
20: return U ′ : S → (P ′ → B)

Figure 9: Computation of fattr.

lines 15f. The algorithm for the fixed-point iteration to compute fattr∗ is, then,
shown in Figure 10.

8.2. Featured Minimum Reachability Games

Let G = (S1, S2, i, F, T, γ) be a featured weighted game structure and

I(s)(ϕ) =

{
0 if s ∈ F and ϕ 6≡ ff ,
∞ otherwise

as before. The computation of the fixed point fwattr∗(I) is similar to the one in
the previous section and shown in Figures 11 through 13.

The only essential differences between Fattr and Fwattr are to be found
in line 12, which now adds the weights of the respective transitions, and lines 16
and 18 where the logical operations have been replaced by maximum and
minimum, see Figure 11. Similarly, the only essential differences between Fattr*
and Fwattr* are the assignments of bottom and top values in lines 6 and 8
and the use of Min instead of Lor in line 11.

8.3. Featured Discounted Games

The algorithms for computing values of featured discounted games are shown
in Figures 14 and 15. They use functions Min and Max similar to the ones in
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1: function Fattr*(G = (S1, S2, i, F, T, γ)): S → (P → B)
2: J = ∅
3: for all s ∈ S do
4: Us ← {tt}
5: if s ∈ F then
6: Js(tt)← tt
7: else
8: Js(tt)← ff
9: repeat

10: Jold ← J
11: J ← Lor(J,Fattr(J))
12: until J = Jold
13: return J

Figure 10: Fixed-point iteration for fattr∗.

1: function Min(f1 : P1 → N ∪
{∞}, f2 : P2 → N∪{∞}): P →
N ∪ {∞}

2: P, f ← ∅
3: for all ϕ1 ∈ P1 do
4: for all ϕ2 ∈ P2 do
5: if Jϕ1 ∧ ϕ2K 6= ∅ then
6: P ← P ∪ {ϕ1 ∧ ϕ2}
7: f(γ1 ∧ γ2) ←

min(f1(γ1), f2(γ2))

8: return Reduce(f)

1: function Max(f1 : P1 → N ∪
{∞}, f2 : P2 → N∪{∞}): P →
N ∪ {∞}

2: P, f ← ∅
3: for all ϕ1 ∈ P1 do
4: for all ϕ2 ∈ P2 do
5: if Jϕ1 ∧ ϕ2K 6= ∅ then
6: P ← P ∪ {ϕ1 ∧ ϕ2}
7: f(γ1 ∧ γ2) ←

max(f1(γ1), f2(γ2))

8: return Reduce(f)

Figure 11: Algorithms for minimum and maximum.
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1: function Fwattr(U : S → (P → N ∪ {∞})): S → (P ′ → N ∪ {∞})
2: U ′ ← ∅
3: for all s ∈ S do
4: P ′s, U

′
s ← ∅

5: for all s→x s
′ do

6: Qs′ , Vs′ ← ∅
7: while Ps′ 6= ∅ do
8: Pick and remove ϕ from Ps′

9: ψ ← γ((s, s′)) ∧ ϕ
10: if JψK 6= ∅ then
11: Qs′ ← Qs′ ∪ {ψ}
12: Vs′(ψ)← x+ Us′(ϕ)

13: Qs′ ← Qs′ ∪ {¬γ((s, s′))}
14: Vs′(¬γ((s, s′)))← ff
15: if s ∈ S1 then
16: U ′s ←Min(U ′s, Vs′)
17: if s ∈ S2 then
18: U ′s ←Max(U ′s, Vs′)
19: U ′s ← Reduce(U ′s)
20: return U ′ : S → (P ′ → N ∪ {∞})

Figure 12: Computation of fwattr.

1: function Fwattr*(G = (S1, S2, i, F, T, γ)): S → (P → N ∪ {∞})
2: J = ∅
3: for all s ∈ S do
4: Us ← {tt}
5: if s ∈ F then
6: Js(tt)← 0
7: else
8: Js(tt)←∞
9: repeat

10: Jold ← J
11: J ←Min(J,Fwattr(J))
12: until J = Jold
13: return J

Figure 13: Fixed-point iteration for fwattr∗.
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1: function Fdattr(U : S → (P → R), λ): S → (P ′ → R)
2: U ′ ← ∅
3: for all s ∈ S1 do
4: P ′s, U

′
s ← ∅

5: for all s→x s
′ do

6: Qs′ , Vs′ ← ∅
7: while Ps′ 6= ∅ do
8: Pick and remove ϕ from Ps′

9: ψ ← γ((s, s′)) ∧ ϕ
10: if JψK 6= ∅ then
11: Qs′ ← Qs′ ∪ {ψ}
12: Vs′(ψ)← x+ λUs′(ϕ)

13: Qs′ ← Qs′ ∪ {¬γ((s, s′))}
14: Vs′(¬γ((s, s′)))← ff
15: if s ∈ S1 then
16: U ′s ←Max(U ′s, Vs′)
17: if s ∈ S2 then
18: U ′s ←Min(U ′s, Vs′)
19: U ′s ← Reduce(U ′s)
20: return U ′ : S → (P ′ → R)

Figure 14: Computation of fdattr.

Figure 11. The function Fdattr in Figure 14 is essentially like Fwattr, except
for the discounting applied in line 12 and the swapping of Max and Min in
lines 16 and 18.

The function Fdattr* in Figure 15 takes a discounting factor λ and a
precision ε as inputs; λ is used for the iteration in Fdattr, and ε is used to
terminate the computation of fdattr∗ once a desired level of precision has been
reached.

8.4. Featured Energy Games

Let G = (S1, S2, i, T, γ) be a featured weighted game structure, M =∑
s∈S max({0} ∪ {−x | (s, x, s′) ∈ T}), W = {0, . . . ,M,>}, and

I(s)(ϕ) =

{
0 if ϕ 6≡ ff ,
> otherwise

as before. The algorithms for computing the fixed point feattr∗(I) are shown
in Figures 16 and 17. In Feattr, the only changes are again in lines 12, 16,
and 18; Feattr* is similar to Fwattr* except for the initial configuration and
the swap of Min and Max in the iteration.
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1: function Fdattr*(G = (S1, S2, i, T, γ), λ, ε): S → (P → R)
2: J = ∅
3: for all s ∈ S do
4: Us ← {tt}
5: Js(tt)← 0

6: repeat
7: Jold ← J
8: J ← Fdattr(J, λ)
9: until ‖J − Jold‖ < ε

10: return J

Figure 15: Fixed-point iteration for fdattr∗.

1: function Feattr(U : S → (P →W )): S → (P ′ →W )
2: U ′ ← ∅
3: for all s ∈ S1 do
4: P ′s, U

′
s ← ∅

5: for all s→x s
′ do

6: Qs′ , Vs′ ← ∅
7: while Ps′ 6= ∅ do
8: Pick and remove ϕ from Ps′

9: ψ ← γ((s, s′)) ∧ ϕ
10: if JψK 6= ∅ then
11: Qs′ ← Qs′ ∪ {ψ}
12: Vs′(ψ)← Us′(ϕ)� x

13: Qs′ ← Qs′ ∪ {¬γ((s, s′))}
14: Vs′(¬γ((s, s′)))← ff
15: if s ∈ S1 then
16: U ′s ←Min(U ′s, Vs′)
17: if s ∈ S2 then
18: U ′s ←Max(U ′s, Vs′)
19: U ′s ← Reduce(U ′s)
20: return U ′ : S → (P ′ →W )

Figure 16: Computation of feattr.
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1: function Feattr*(G = (S1, S2, i, T, γ)): S → (P → N ∪ {∞})
2: J = ∅
3: for all s ∈ S do
4: Us ← {tt}
5: Js(tt)← 0

6: repeat
7: Jold ← J
8: J ←Max(J,Feattr(J))
9: until J = Jold

10: return J

Figure 17: Fixed-point iteration for feattr∗.

1: function Fprog(U : S → (P →M), s, s′): P ′ →M
2: U ′, P ′ ← ∅
3: while Ps′ 6= ∅ do
4: Pick and remove ϕ from Ps′

5: P ′ ← P ′ ∪ {ϕ}
6: U ′(ϕ)← min{m ∈M | m �p(s) Us′(ϕ)}
7: return Reduce(U ′)

Figure 18: Computation of fprog.

8.5. Featured Parity Games
Let G = (S1, S2, i, T, p, γ) be a featured priority game structure, d =

max{p(s) | s ∈ S}, M ⊆ Nd ∪ {>}, and

I(s)(ϕ) =

{
(0, . . . , 0) if ϕ 6≡ ff ,
> otherwise

as in Section 6. The algorithms for computing the fixed point fpattr∗(I) are
shown in Figures 18 through 20. Again, Fpattr is similar to Feattr except
for lines 12, 16, and 18, and Fpattr* is similar to Feattr*.

9. Conclusion

We have in this work lifted most of the two-player games which are used
in model checking and controller synthesis to software product lines. We have
introduced featured versions of reachability games, minimum reachability games,
discounted games, energy games, and parity games. We have shown how to
compute featured attractors for these games, using family-based algorithms with
late splitting, and how to use these featured attractors to compute winners,
values, and optimal strategies for all products at once.

The astute reader may have noticed that mean-payoff games are conspicuously
absent from this paper. The immediate reason for this absence is that mean-
payoff games do not admit attractors; instead they are solved by computing
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1: function Fpattr(U : S → (P →M)): S → (P ′ →M)
2: U ′ ← ∅
3: for all s ∈ S do
4: P ′s, U

′
s ← ∅

5: for all s→ s′ do
6: Qs′ , Vs′ ← ∅
7: while Ps′ 6= ∅ do
8: Pick and remove ϕ from Ps′

9: ψ ← γ((s, s′)) ∧ ϕ
10: if JψK 6= ∅ then
11: Qs′ ← Qs′ ∪ {ψ}
12: Vs′(ψ)← Fprog(U, s, s′)(ϕ)

13: Qs′ ← Qs′ ∪ {¬γ((s, s′))}
14: Vs′(¬γ((s, s′)))← ff
15: if s ∈ S1 then
16: U ′s ←Min(U ′s, Vs′)
17: if s ∈ S2 then
18: U ′s ←Max(U ′s, Vs′)
19: U ′s ← Reduce(U ′s)
20: return U ′ : S → (P ′ →M)

Figure 19: Computation of fpattr.

1: function Fpattr*(G = (S1, S2, i, T, p, γ)): S → (P →M)
2: J = ∅
3: for all s ∈ S do
4: Us ← {tt}
5: Js(tt)← 0

6: repeat
7: Jold ← J
8: J ←Max(J,Fpattr(J))
9: until J = Jold

10: return J

Figure 20: Fixed-point iteration for fpattr∗.
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loops [48]. [10] shows an easy reduction from mean-payoff to energy games which
may be used to compute winners in featured mean-payoff games. To compute
values and optimal strategies, the reduction to discounted games in [34, 48] may
be used.

Two-player games are an established technique for model checking and control
synthesis, and our work shows that this technology may be lifted to the featured
setting. In future work we plan to implement our algorithms and integrate them
into the mCRL2 toolset [11, 42], using guard partitions, late splitting, and BDD
representations of product families, in order to evaluate our work on benchmark
models.

We also plan to extend our work into the probabilistic and timed settings.
Controller synthesis often deals with real-time or hybrid systems, and SPL
models of such systems are by now well-established [22, 41, 43]. For real-time
systems, we are looking into extending timed games [4] with features, analogously
to the featured timed automata of [22]; for probabilistic systems, a featured
extension of stochastic games [39] appears straight-forward.
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Cordy, Pierre-Yves Schobbens, Amir Molzam Sharifloo, and Axel Legay.
Modeling and verification for probabilistic properties in software product
lines. In HASE, pages 173–180. IEEE Computer Society, 2015.

[42] Maurice H. ter Beek, Erik P. de Vink, and Tim A. C. Willemse. Family-
based model checking with mCRL2. In Marieke Huisman and Julia Rubin,
editors, FASE, volume 10202 of Lecture Notes in Computer Science, pages
387–405. Springer, 2017.

[43] Maurice H. ter Beek, Axel Legay, Alberto Lluch-Lafuente, and Andrea
Vandin. Statistical analysis of probabilistic models of software product lines
with quantitative constraints. In Douglas C. Schmidt, editor, SPLC, pages
11–15. ACM, 2015.

[44] Maurice H. ter Beek, Axel Legay, Alberto Lluch-Lafuente, and Andrea
Vandin. A framework for quantitative modeling and analysis of highly
(re)configurable systems. IEEE Transactions on Software Engineering,
46(3):321–345, 2020.

[45] Maurice H. ter Beek and Franco Mazzanti. VMC: recent advances and
challenges ahead. In Stefania Gnesi, Alessandro Fantechi, Maurice H. ter
Beek, Goetz Botterweck, and Martin Becker, editors, SPLC Workshops,
pages 70–77. ACM, 2014.

[46] Maurice H. ter Beek, Sjef van Loo, Erik P. de Vink, and Tim A. C. Willemse.
Family-based SPL model checking using parity games with variability. In
Heike Wehrheim and Jordi Cabot, editors, FASE, volume 12076 of Lecture
Notes in Computer Science, pages 245–265. Springer, 2020.

[47] Wiesław Zielonka. Infinite games on finitely coloured graphs with ap-
plications to automata on infinite trees. Theoretical Computer Science,
200(1-2):135–183, 1998.

[48] Uri Zwick and Mike Paterson. The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158(1&2):343–359, 1996.

36


