
Logical Methods in Computer Science
Volume 20, Issue 4, 2024, pp. 22:1–22:50
https://lmcs.episciences.org/

Submitted Mar. 30, 2023
Published Dec. 10, 2024

KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA

ULI FAHRENBERG a, CHRISTIAN JOHANSEN b, GEORG STRUTH c,d,

AND KRZYSZTOF ZIEMIAŃSKI e

a EPITA Research Laboratory (LRE), France
e-mail address: uli@lrde.epita.fr

b NTNU, Norway
e-mail address: christian.johansen@ntnu.no

c University of Sheffield, UK
e-mail address: g.struth@sheffield.ac.uk

d Collegium de Lyon, France

e University of Warsaw, Poland
e-mail address: ziemians@mimuw.edu.pl

Abstract. We prove a Kleene theorem for higher-dimensional automata. It states that
the languages they recognise are precisely the rational subsumption-closed sets of finite
interval pomsets. The rational operations on these languages include a gluing composition,
for which we equip pomsets with interfaces. For our proof, we introduce higher-dimensional
automata with interfaces, which are modelled as presheaves over labelled precube categories,
and develop tools and techniques inspired by algebraic topology, such as cylinders and
(co)fibrations. Higher-dimensional automata form a general model of non-interleaving
concurrency, which subsumes many other approaches. Interval orders are used as models for
concurrent and distributed systems where events extend in time. Our tools and techniques
may therefore yield templates for Kleene theorems in various models and applications.

1. Introduction

Higher-dimensional automata (HDAs) were introduced by Pratt and van Glabbeek as a
general geometric model for non-interleaving concurrency [Pra91, vG91]. They support
autoconcurrency and events with duration or structure, whereas events in interleaving
models must be instantaneous. They subsume, for example, event structures and safe Petri
nets [vG06a], while asynchronous transition systems and standard automata correspond to
two-dimensional and one-dimensional HDAs, respectively [Gou02]. We have recently used
van Glabbeek’s (execution) paths [vG06a] to relate HDAs with certain languages of interval
pomsets [FJSZ21]. Yet a precise description of the relationship between HDAs and these
languages in terms of a Kleene theorem – a key theorem for any type of automaton – has
so far been missing. Our main contribution lies in the formalisation and proof of such a
theorem.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(4:22)2024
© U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański
CC⃝ Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

22:2 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

⊥

⊤

a

a

b

c

b

c

⊥ ⊥

⊤ ⊤

[ab]

x

[ac]

y

cb

cb

a a

⊥ ⊥

⊤ ⊤

cb

cb

a a
α1

α2

α3

Figure 1: HDA with two 2-dimensional cells x and y modelling the parallel execution of a
and (bc)∗ on the left, an unfolded view in the middle and three accepting paths of
this automaton on the right.

HDAs consist of cells and lists of concurrent events that are active in them. Zero-
dimensional cells represent states in which no event is active, while 1-dimensional cells
represent transitions in which exactly one event is active – as for standard automata. Higher
n-dimensional cells model higher transitions in which n concurrent events are active. Figure 1
shows an example of an HDA with cells of dimension ≤ 2. In its 2-dimensional cells x and y,
the concurrent events [ab] and [ac] are active, respectively. Cells at any dimension may serve
as start and accept cells. In Figure 1, these are labelled with ⊥ and ⊤.

Lower-dimensional cells or faces are attached to higher-dimensional ones by face maps.
These maps also indicate when particular events start or end their activity. In Figure 1, the
lower face δ0a(x) of x forms the lower b-transition in which a is not yet active; its upper face
δ1a(x) forms the upper b-transition in which a is no longer active. Intuitively, events can
thus be terminated in upper faces and unstarted in lower faces, where “unstarted” refers to
the dual of “terminated”. The cubical structure of cells is determined by relations between
faces.

Executions of HDAs are (higher-dimensional) paths [vG06a]: sequences of cells, which
indicate where events start or terminate. Every path α is characterised by the temporal
precedences between the intervals of activity of the concurrent events ev(α) that occur in it.
This naturally induces interval orders, as is further explained in Section 2. In addition, ev(α)
is equipped with source and target interfaces, which model events that are already active in
the initial cell of α or still active in its final cell, respectively, and a secondary event order,
which captures the list order of events in cells and is useful for coordinating the composition
of paths along the interfaces at their ends.

The isomorphism classes of such labelled posets with interfaces and an event order form
ipomsets. The language of an HDA is then related to the set of (interval) ipomsets associated
with all its accepting paths – from start cells to accept cells [FJSZ21]. Languages of HDAs
must in particular be down-closed with respect to less concurrent executions, modelled by a
subsumption preorder and restricted to interval ipomsets. This motivates the definition of
languages as subsumption-closed sets of interval ipomsets.

Kleene theorems usually require a notion of rational language. Ours is based on the
union ∪, gluing (serial) composition ∗, parallel composition ∥, and (serial) Kleene plus +

of languages. These definitions are not entirely straightforward, as down-closure and the
interval property must be preserved. In particular, in the presence of interfaces, gluing
composition is more complicated than, for instance, the standard series composition of
pomsets. We consider finite HDAs only and thus can neither include the parallel Kleene

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:3

star nor the full serial Kleene star as a rational operation: the latter contains the identity
language, which would require an HDA of infinite dimension.

Our Kleene theorem shows that the rational languages are precisely the regular ones
(recognised by finite HDAs). To show that regular languages are rational, we translate
the cells of an HDA into a standard automaton and reuse one direction of the classical
Kleene theorem. Proving that rational languages are regular is harder. Regularity of ∪ is
straightforward, and for ∥, the corresponding operation on HDAs is a tensor product. Yet
∗ and + require an intricate gluing operation on HDAs along higher-dimensional cells and
ultimately a new variant of HDAs.

Beyond the Kleene theorem for HDAs, three contributions seem of independent interest.
We model HDAs as presheaves on novel precube categories, where events and labels feature
in the base category. These are equivalent to standard HDAs [vG06a], but constructions
related to the Kleene theorem become simpler, the precedence ordering of events with respect
to the beginning and end of their activity becomes more transparent, and the relationship
between iposets and precubical sets becomes clearer.

We also introduce HDAs with interfaces (iHDAs), which may assign events to source or
target interfaces. This allows us to indicate events that cannot terminate in a given iHDA
by assigning them to a target interface, or those that cannot be unstarted by assigning them
to a source interface, and to keep track of them across the iHDA.

Using operations of resolution and closure, we show that any HDA can be converted
into an equivalent iHDA with respect to language recognition and vice versa. Both variants
play a role in our proofs, and we frequently switch between them.

Another tool in our proof of the Kleene theorem is motivated by algebraic topology. We
introduce cylinder objects and show that each map between (i)HDAs can be decomposed
into an (initial or final) inclusion followed by a (future or past) path-lifting map. This allows
us to pull apart start and accept cells of iHDAs when dealing with serial compositions and
loops – we refer to the resulting iHDAs as “proper”.

The remainder of this article has three main parts. In its first part, Sections 1 to 5, we
introduce HDAs and their languages to the point where we can state and discuss the Kleene
theorem for HDAs in its second part, Section 6. In the third part, Sections 7 to 15, we
introduce more advanced concepts and develop our main proofs. More specifically, Section
2 contains a detailed semi-formal overview of the relationship between HDAs and their
languages. In Section 3 we introduce precube categories and formalise HDAs as presheaves
on them. In Section 4 we define ipomsets and their languages, while in Section 5 we define
executions of HDAs and languages recognised by them.

Section 6 constitutes the central part of this paper. Here, we formulate the Kleene
theorem for HDAs and provide a roadmap towards its proof. We then show in Section 7
how HDAs can be converted into classical finite state automata over an extended alphabet
and use this construction together with the standard Kleene theorem to prove that regular
languages are rational. In Section 8 we introduce track objects, which provide an alternative
description of executions of HDAs. Tensor products of HDAs are defined in Section 9, and
they are used to show that parallel compositions of regular languages are regular.

Higher-dimensional automata with interfaces are introduced in Section 10, and transla-
tions between HDAs and iHDAs are discussed in Section 11. In Section 12 we introduce
cylinders for iHDAs. This construction allows us to replace iHDAs by proper ones without
changing their languages. Finally, in Sections 13 and 14, we use proper iHDAs to prove that

22:4 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

gluings of regular languages yields regular languages. These arguments are further refined
in Section 15 to show an analogous result for the Kleene plus.

This article is a complete revision of a previous conference paper [FJSZ22a], published
at CONCUR, with concepts and notation reconsidered, an overview section (Section 2),
pictures and examples added, and in particular the complete technical development leading
to the Kleene theorem and its proof, which could only be sketched in the CONCUR paper.

2. Overview

Higher-dimensional automata generalise standard finite state automata. Let Σ stand for a
fixed alphabet of actions (of a concurrent system).

A higher-dimensional automaton (HDA) X is defined by the following data:

• a set Cell(X) of cells;
• for each cell x ∈ Cell(X) a totally ordered set of Σ-labelled events ev(x);
• for each cell x ∈ Cell(X) and disjoint subsets A,B ⊆ ev(x) a cell δA,B(x), called a face of
x, with set of events ev(x) \ (A ∪B);
• the identity δ∅,∅(x) = x for each x ∈ Cell(X);
• the equality δA,B(δC,D(x)) = δA∪C,B∪D(x) whenever A,B,C,D ⊆ ev(x) are disjoint;
• sets X⊥, X⊤ ⊆ Cell(X) of start cells and accept cells, respectively.

HDAs without start and accept cells are known as precubical sets.
Cells correspond to transitions of concurrent events in a concurrent system. These

include degenerate transitions where no event is active, corresponding to states of a classical
automaton, transitions where one single event is active, as in a classical automaton, but also
higher transitions in which more than one event is active. The name “cell” also emphasises
the roots of HDAs in topology and geometry.

The set ev(x) of events records the concurrent events that are active in the cell x. The
total event order 99K on ev(x) can be seen as an order on indices of concurrent events.
We also use it to identify events across cells and their faces and to relate HDAs with the
ipomsets that model their behaviour. The labelling function λ : ev(x)→ Σ associates events
with the actions they perform. We call (ev(x), 99K, λ) the concurrency list of x.

The faces δA,B(x) of the cell x keep track of the intervals of activity of concurrent events
in an HDA. Each cell δA,∅(x), also written δ0A(x), forms a lower face of x; each cell δ∅,B(x),

also written δ1B(x), forms an upper face of x. In δ0A(x), the events in A, which are active in x,
have not yet started; in δ1B(x), the events in B, which are active in x, have terminated. All
events in ev(x)\A remain active in δ0A(x) and those in ev(x)\B remain active in δ1B(x). The
functional relationship between each cell x and its faces, for each A,B ⊆ ev(x), allows us to
view the δA,B as face maps for x, which attach faces to cells. The identity in the penultimate
bullet point above states that the result of removing disjoint sets of events (terminating or
does not depend on the order in which these removals occur; it implies δA,B = δ0Aδ

1
B = δ1Bδ

0
A.

Example 2.1. The diagram on the left of Figure 2 shows an HDA with cells x, x1, . . . , x8,
where x1, . . . , x8 are faces of x. The concurrent events active in x are ev(x) = {a, b}, where
we assume that a 99K b. Here, and henceforth in this article, we identify events with their
actions, whenever suitable. We call the cells x1, x3, x6 and x8 0-dimensional and x2, x4, x5
and x7 1-dimensional, while x is a 2-dimensional cell. The arrows in this diagram indicate
the face maps of x. For simplicity, we also write δ0ab instead of δ0{a,b} and likewise. The faces

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:5

x1

x6

x3

x8

x2

x7

x4 x5x

δ0a δ1a

δ0a

δ1a

δ0a δ1a

δ0b

δ1b

δ0b

δ1b

δ0b

δ1b
δ1ab

δ0ab

δb,a

δa,b

⊥

⊤

⊤

b

a

a

b

⊤
ab

⊥

⊤

[a|ab|∅]

[b|ab|∅]

[∅|ab|b]

[∅|ab|a]

⊤
[∅|ab|∅]

[ab|ab|∅] ⊥ [b|ab|a]

[a|ab|b] [∅|ab|ab]
⊤

Figure 2: Three representations of a two-dimensional HDA.

of x are given by

x1 = δ0ab(x) = δ0a(x2) = δ0b (x4) = δ0a(δ
0
b (x)) = δ0b (δ

0
a(x)) = δab,∅(x),

x2 = δ0b (x),

x3 = δ1a(x2) = δ0b (x5) = δ1a(δ
0
b (x)) = δ0b (δ

1
a(x)) = δb,a(x),

x4 = δ0a(x),

x5 = δ1a(x),

x6 = δ1b (x4) = δ0a(x7) = δ1b (δ
0
a(x)) = δ0a(δ

1
b (x)) = δa,b(x),

x7 = δ1b (x),

x8 = δ1ab(x) = δ1b (x5) = δ1a(x7) = δ1b (δ
1
a(x)) = δ1a(δ

1
b (x)) = δ∅,ab(x).

The face x1, for instance, is a lower face of x, x2 and x4. Neither a nor b is active in x1,
whereas a, but not b, is active in x2 and b, but not a, is active in x4. Indeed, the result of
removing first a and then b, or first b and then a, lead to the same face of x, namely x1.
The cell x3 is neither a lower nor an upper face of x, though it is the upper face of x2 and
the lower face of x5. Yet it is a face of x as x3 = δb,a(x), which indicates that b has not yet
started, but a has terminated in x3. The remaining faces satisfy similar relationships.

The cell x1 is the start cell of the HDA, while x5 and x8 are accept cells. As in the
introduction, we label such cells ⊥ and ⊤, respectively.

The 0-cells of the HDA, where no event is active, are grey, and its 1-cells, where precisely
one event is active, a in the pink cells and b in the green ones, correspond to the states and
transitions of a classical automaton. The 2-cell x, in yellow, where a and b are concurrently
active, models a higher transition. It has no classical analogue. Similarly, the HDA has the
1-cell x5 as an accept cell, while classical automata can only accept in 0-cells.

The diagram in the middle represents the HDA geometrically in terms of the actions
that are concurrently active in each cell. The 0- and 1-cells are represented as states and
arrows. The 2-cell is represented as a filled-in square. Cells of dimension strictly greater
than 0 are labelled with their active events or actions. This geometric view allows depicting
events as paths or trajectories that traverse the HDA along the directions of the arrows.

Relative to the cell x and its faces, the diagram on the right uses triples [−|− |−] to list
the events or actions that are not yet active in a face in the first component, those that are
active in the “top cell” x in the second, and those that have already terminated in the face
in the third. This notation is local to the faces of particular top cells.

22:6 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

δ0a δ1a

δ0a δ1a

δ0b

δ1b

δ0b

δ1b

δ0c

δ0c

δ0c

δ1c

δ1c

δ1c

δ0d

δ1d

δ0d

δ1d

δ0b

δ1b

⊥

⊤

b

a

a

b

c

c

c

b

d
d

⊤

ab bc

cd

⊥

Figure 3: Paths in an HDA

Remark 2.2. Precubical sets and HDAs can be represented by geometric objects, which
are higher-dimensional cubes in topological spaces. Details of these geometric realisations of
precubical sets and HDAs can be found in the literature [Gra09,FGH+16,FRG06]. Geometric
realisations provide intuitions for concurrent systems evolving continuously across higher-
dimensional cells, while their events start, are active and terminate. Yet our results do not
require their formalisation.

Example 2.3. The classical finite state automata are one-dimensional HDAs in which all
start and accept cells have dimension 0 and hence no active events. The 0-cells without
active events form the states of such automata, 1-cells with precisely one active, a say,
correspond to a-labelled transitions. The face maps δ0a and δ1a attach source and target
states to transitions.

A path on an HDA X is a sequence of steps, formed by triples of two cells and a step
between them, so that each subsequent step must start in the cell in which the previous one
has terminated. We distinguish two kinds of steps:

• up-steps (δ0A(x)↗A x) from a lower face of the cell x to x;
• down-steps (x↘B δ1B(x)) from x to one of its upper faces.

Up-steps start events while down-steps terminate them. Steps thus keep track of the events
that start or terminate in them. If y = δ0A(x) = δ0C(x) for A,C ⊆ ev(x) and A ̸= C, then
(y ↗A x) and (y ↗C x) are distinct. While the termination of a specific set of events that
are active in a given cell is a deterministic operation, starting new events in a given cell can
be nondeterministic, as any cell may be a lower face of several cells.

In finite state automata as in Example 2.3, every transition consists of an up-step
followed by a down-step.

Each path α is associated with its set of events ev(α). It contains the local events
of all cells appearing in α, but certain events of consecutive cells are identified. In a
step (δ0A(x) ↗A x), for instance, the events of δ0A(x) are identified with events in x via
the equivalence ∼= induced by the unique event-order preserving bijection between sets in
ev(δ0A(x))

∼= ev(x) \A ⊆ ev(x).

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:7

δ1a

δ0ab

δ0c

δ1c

δ0d

δ1b

⊥

⊤

a b c d

a

b

c

d•

Figure 4: Interval ipomset of path in HDA

Example 2.4. Figure 3 shows three paths through an HDA with three 2-cells that are glued
along two 1-dimensional faces. The diagram on the left shows paths consisting of up-steps
and down-steps. Note that the direction of up-steps goes against the direction of lower face
maps, while the direction of down-steps and upper face maps coincides. The concurrency
lists of the missing faces and the missing face maps can be reconstructed from the data
shown. The diagram on the right shows a geometric realisation with piecewise smooth paths
or trajectories crossing the HDA from bottom left to top right.

The set ev(α) carries additional structure:

• the precedence order <, where p < q holds if event p is active in some cell before event q
is active in a different cell, and if there is no cell in which they are both active;
• the event order 99K, which is constructed from the local event orders in the concurrency
lists of individual cells,
• the source interface of α, which contains all events of the source cell, the first cell of α,
and the target interface of α, which contains all events of the target cell, the last cell of α.

The resulting structure, formed by events labelled with actions and equipped with a
precedence, an event order and source and target interfaces, is called the (labelled) iposet of
the path α (it satisfies some extra conditions omitted here: in particular < is an interval
order, see Figure 4.) As usual in concurrency theory, we define an ipomset as an isomorphism
class of iposets, where isomorphisms are order preserving and reflecting and label and
interface preserving bijections between iposets.

A path of an HDA is accepting if its source is a start cell and its target an accept cell
of the HDA. The set of all ipomsets associated with accepting paths in X is the language
Lang(X) of X.

Example 2.5. Figure 4 shows the iposet of an accepting path α on the HDA from Figure 3
on the left. The bar codes in the centre indicate when the events a, b, c and d in the HDA
start, are active and terminate relative to each other. The dashed part of the interval for d
indicates that d remains active in the accept state tgt(α).

The Hasse diagram on the right shows the ipomset of α. The precedence on events
is indicated by solid arrows. The event order, given here by the lexicographical order on
events, is indicated by dashed arrows. As d does not terminate in tgt(α), it is in ev(tgt(α)),
the concurrency list of tgt(α), and hence in the target interface of the ipomset of α. We

22:8 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

c

a

a 6 d

b 5 e

3 a 4 b

2 3 a

1 2

1

λ

∂{3,4,6}

Figure 5: Conclists 1 99K 2 99K 3 and 1 99K 2 99K . . . 99K 6 with lo-map ∂{3,4,6} and labelling
function λ into Σ = {a, b, c, d, e}.

indicate this by writing d•. Similarly, we would have indicated membership in the source
interface of this ipomset by adding a bullet to the left of the event, for instance •e, but here
ev(src(α)) is empty because no event is active in the HDA at the beginning of the path.

3. Higher-dimensional automata

In this section we provide a formal definition of higher-dimensional automata. It differs from
those in the literature and it is slightly more general. We relate our definition to previous
ones in Appendix A. It is technically convenient to model HDAs as labelled precubical sets
equipped with start and accept cells. Precubical sets in turn can be modelled as presheaves
on a so-called labelled precube category. Objects of this category are concurrency lists;
morphisms are precube maps, which are order and label preserving maps enriched with
information about the activity of events, their start and termination.

Concurrency lists. Throughout the paper, we fix an alphabet Σ of labels, which are meant
to represent the actions of a concurrent system.

A concurrency list or conclist (U, 99K, λ) consists of a finite set U equipped with a strict
total event order 99K on U and a labelling function λ : U → Σ that assigns actions to events.
An lo-map f : U → V between conclists U and V is a label and (event) order preserving
map. Conclists and lo-maps form a category.

We often write conclists vertically as vectors of events or actions, which we often do
not distinguish, especially in diagrams. Recall from Section 2 that the set U models the
concurrent local events active in a cell of an HDA, 99K can be seen as their index order and
λ associates events with their actions. Since 99K is strict and total, every lo-map is injective.

By construction, each lo-map f : U → V order-embeds the conclist U into the conclist
V in a unique way. Hence f identifies the events in the conclist U with events in the conclist
V in a way compatible with 99KU and 99KV . It further determines a unique set A = V \f(U)
of elements which are inserted into U to obtain V . Conversely, the conclist U and lo-map f
are uniquely determined by the restriction of the conclist V to the events outside of A.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:9

[
2
] [

1
2

]
∂{1} ◦

[
1
2

] 
1
2
3
4

∂{3,4}
=

[
2
] 

1
2
3
4

∂{1,3,4}

Figure 6: Composition of two lo-maps.

We therefore write ∂A⊆V : U ↪→ V for lo-maps to emphasise this relationship or simply
∂A : U ↪→ V if the dependency on V is clear. See Figure 5 for an example. The composite
of ∂A⊆V : U ↪→ V and ∂B⊆W : V ↪→W is

∂B⊆W ◦ ∂A⊆V = ∂∂B(A)∪B⊆W : U ↪→W,

as illustrated in Figure 6.
Two conclists are isomorphic, U ∼= V , if there exists a bijective lo-map U → V that is

an order embedding. Isomorphism classes of conclists can be seen as lists of actions, and
lo-maps extended to equivalence classes. Each such map then inserts letters from Σ into a
Σ-list. Alternatively we can see isomorphism classes of conclists as lists of actions indexed
by natural numbers. This leads to a more standard view of HDAs, see aee Appendix A. In
our proof of the Kleene theorem, working with maps ∂A has notational advantages.

Conclist maps. Next we introduce conclist maps, which form the morphisms of our labelled
precube categories. These are lo-maps in which the information, whether events that are
not in their images have terminated or not yet started, is made explicit.

A conclist map dA,B⊆V : U → V , or shortly dA,B : U → V , is a triple (∂A∪B⊆V , A,B)
with A,B ⊆ V disjoint and ∂A∪B⊆V : U ↪→ V a lo-map.

Intuitively, dA,B : U → V identifies the events in U with events in V \ (A ∪ B), as
prescribed by 99KU and 99KV , while A and B are those local events in V that have not yet
started and have terminated in U , respectively. Compared to the face maps in Section 2,
the direction of arrows is reversed.

The composite of the conclist maps dA,B⊆V : U → V , dC,D⊆W : V →W is defined as

dC,D⊆W ◦ dA,B⊆V = (∂C∪D⊆W ◦ ∂A∪B⊆V , ∂C∪D⊆W (A) ∪ C, ∂C∪D⊆W (B) ∪D).

This formula simplifies when V is a subset ofW , which can be guaranteed up to isomorphism
of conclists. For pairwise disjoint A,B,C,D ⊆W and V =W \ (C ∪D),

dC,D⊆W ◦ dA,B⊆V = dA∪C,B∪D⊆W . (3.1)

Figure 7 shows an example. Further, we write d0A⊆V for dA,∅⊆V and d1B⊆V for d∅,B⊆V ,

or more briefly d0A and d1B.

Labelled precube categories. Next we define the base categories of precubical sets and
higher-dimensional automata modelled as presheaves.

The full labelled precube category has conclists as objects and conclist maps as
morphisms. To work with equivalence classes of conclists, we define the labelled precube
category □ as the quotient of with respect to the isomorphism ∼=. Its objects are
isomorphism classes of conclists, its conclist maps equivalence classes of conclist maps in .

22:10 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

[b]

b

[ab]

a
0

b

◦

◦

[ab]

a

b

[a
b
c
a′

]

a

c
0

b

a′
1

=

=

[b]

b

[a
b
c
a′

]

a
0

c
0

b

a′
1

da,∅ dc,a′ dac,a′

Figure 7: Composition conclist maps. Annotations 0 and 1 indicate events that have not
yet started (0) or terminated (1), as defined in the triple (∂A∪B, A,B).

To define the latter, note that two conclist maps dA,B : U → V and dA′,B′ : U ′ → V ′

are equivalent in if there exists a conclist isomorphism ψ : V → V ′ such that ψ(A) = A′

and ψ(B) = B′. As mentioned before, such ψ are unique. This definition guarantees in
particular that U and U ′ are isomorphic conclists, via unique isomorphisms

U ∼= V \ (A ∪B) ∼= V ′ \ (A′ ∪B′) ∼= U ′.

The category □ has countably many objects and hence it is small. It is skeletal:
isomorphisms between conclists are unique in the presence of 99K, and the quotient functor
→ □ is an equivalence of categories. We switch freely between and □ and identify

morphisms [U]→ [V] on equivalence classes of event orders with representatives dA,B : U →
V on conclists. See again Figure 7 for an example.

Precubical sets and higher-dimensional automata. Our formalisation of precubical
sets and higher-dimensional automata differs from previous definitions [Gra09,vG06a,Gou02].
One difference is that labels are directly incorporated into the base category of the presheaf.
See Appendix A for a comparison.

A precubical set X (a pc-set for short) is a presheaf on □, hence a functor □op → Set.
We write

• X[U] for the value of X at object U of □ and call the elements of X[U] cells;
• Cell(X) =

⊔
U∈□X[U] for the set of all cells of X;

• ev(x) = U for each x ∈ X[U] to recover the conclist of concurrent events that are active
within the cell X[U] (ev(x) is defined only up to isomorphism);
• δA,B⊆U = X[dA,B⊆U] : X[U]→ X[U \ (A∪B)] for the face map associated to the conclist
map dA,B⊆U : U \ (A ∪B)→ U ;
• δ0A⊆U = X[d0A⊆U] and δ

1
B⊆U = X[d1B⊆U] for face maps attaching lower and upper faces to

the cells in X[U].

As before, we drop the index U from face maps if convenient.
A precubical set X is finite if Cell(X) is finite. The dimension of a cell x ∈ X[U] is the

cardinality |U | of U . The dimension |X| of the presheaf X is the maximal dimension among
its cells. It is finite whenever X is.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:11

v

x

w

y

e

f

g hq

X[∅] = {v, w, x, y}

X[a] = {e, f}

X[b] = {g, h}

X [ab] = {q}

δ0a δ1a

δ0a δ1a

δ0a δ1a

δ0b

δ1b

δ0b

δ1b

δ0b

δ1b
δ1ab

δ0ab

δa,b

δb,a

⊥

⊤

⊤

X⊥ = {v}

X⊤ = {h, y}

a

b

⊥

⊤

⊤

Figure 8: A two-dimensional HDA X on Σ = {a, b}.

A higher-dimensional automaton (HDA) is a finite precubical set X equipped with a set
of start cells X⊥ ⊆ Cell(X) and a set of target cells X⊤ ⊆ Cell(X).

Remark 3.1. The set Cell(X) may be regarded as the set of objects of the category of
elements of presheaf X, and ev : Cell(X)→ □ may be regarded as the canonical projection.

Example 3.2. Figure 8 shows once again the HDA and its geometric realisation from
Figure 2. The first four elements of the column in the centre show how conclists of the base
category are mapped to sets of cells. The empty conclist, for instance, is mapped to the four
0-cells where no event is active. The conclist a is mapped to the two red 1-cells where a is
active and the conclist b to the two green 1-cells where b is active. Finally, the conclist ab is
mapped to the yellow 2-cell where both of these events are active concurrently. We omit
braces and simplify notation as in Section 2.

A map of precubical sets (pc-map) is a natural transformation f : X → Y of precubical
sets X, Y regarded as presheaves □op → Set. Its components are given by the functions
(f [U] : X[U] → Y [U])U∈□ that commute with face maps. An HDA-map is a map of
precubical sets that preserves start and accept cells: f(X⊥) ⊆ Y⊥ and f(X⊤) ⊆ Y ⊤.

We write □Set and HDA for the categories of precubical sets and HDAs.

Standard cubes. Standard cubes form the building blocks of precubical sets. The standard
U-cube □U of the conclist U is the precubical set represented by U , as given by the
Yoneda embedding □ → □Set. Thus, for each V ∈ □, □U [V] = □(V,U), the set of all
conclist maps from V to U . We write [A|U |B] and sometimes [A|B] for a conclist map
dA,B : V → U , regarded as cell in □U [V]. Further, for any conclist map dA,B : U → W

(A,B ⊆W , U =W \ (A ∪B)) we write □dA,B : □U → □W for the induced pc-map given by
□dA,B ([C|U |D]) = [A ∪ C|W |B ∪D].

Example 3.3. Let U = {a, b}. Then □U has the cells [−| − |−] in the right-hand cube in
Figure 2, which is reproduced below. Their first components list the events that have not
yet started in this cell, the second ones the events active in U and the third ones those that
have terminated.

22:12 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

b

a

a

bb b

Figure 9: The standard cube □ab has two cells with event conclist [b], which correspond to
two pc-maps from □b.

[a|ab|∅]

[b|ab|∅]

[∅|ab|b]

[∅|ab|a][∅|ab|∅]

[ab|ab|∅] [b|ab|a]

[a|ab|b] [∅|ab|ab]

As an example, [a|ab|∅] indicates that a has not yet started and no element has terminated
in the associated face, while b is active. We have omitted set braces and likewise, as usual.

The following property of standard cubes is immediate from the Yoneda lemma.

Lemma 3.4. For each pc-set X and x ∈ X[U] there is a unique pc-map ιx : □U → X such
that ιx([∅|U |∅]) = x. Hence there is a canonical bijection X[U] ∼= □Set(□U , X).

This allows representing the cells of HDAs as morphism of the precube category (hence as
pc-maps); see Figure 9 for an example. We use such representations frequently in Section 12
and the subsequent ones.

4. Pomsets with interfaces

Pomsets, or partially ordered multisets, from a standard model of non-interleaving concur-
rency. In a nutshell, pomsets are isomorphism classes of finite node-labelled posets, where
nodes represent events of concurrent systems and labels represent their actions. Associating
pomsets with executions of HDAs requires some adaptations. First, we need to equip them
with source and target interfaces, which are subsets of their minimal and maximal elements,
respectively. Second, we add an event order, which extends the event orders of conclists.
Third, we restrict our attention by and large to interval pomsets. These are based on posets
whose nodes can be represented as intervals on the real line and whose (strict) order relation
reflects the precedence of intervals along the real line. Interval pomsets with interfaces
have been introduced as models for the behaviours of HDAs in [FJSZ21]. They capture
in particular the precedences of activities of concurrent events in HDAs, as explained in
Section 2. Here we recall the basic definitions.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:13

1

2

3

4

5 6

•a•

b

•c

c•

d

a

•a•

b

•c

c•

d a

Figure 10: Hasse diagram of an iposet on the left with P = {1, 2, 4, 5, 6}, < indicate by solid
arrows, S = {1, 3}, T = {1, 4}, Σ = {a, b, c, d} and λ : 1 7→ a, 2 7→ b, 3 7→ c, 4 7→
c, 5 7→ d, 6 7→ a, the corresponding ipomset on the right.

Iposets and ipomsets. A labelled poset with interfaces (iposet) (P,<, 99K, S, T, λ) consists
of the following data:

• P is a finite set (of events);
• the precedence < is a strict order on P ;
• the event order 99K is a strict order on P , each pair in P must be comparable by =, <
or 99K;
• the sets S, T ⊆ P form the source and target interface of P , elements of S must be
<-minimal and those of T <-maximal;
• λ : P → Σ is a labelling function.

We write ε for the empty iposet. To indicate that action a is part of a source or
target interface, we write •a and a•, respectively. Hence •a• indicates that a is part of both
interfaces. See the left Hasse diagram in Figure 10 for an example.

The event order is not part of the standard definition of labelled posets in concurrency
theory. It is inherited from HDAs that generate them. It is also instrumental for coordinating
the gluing of iposets along their interfaces, as discussed in the next section. Unlike the event
order on conclists, that on iposets need not be linear. Conclists may be regarded as iposets
with empty precedence and empty interfaces. Conversely, interfaces of iposets with 99K and
labelling restricted to their elements form conclists.

Source and target interfaces allow us to model events that are active outside a given
poset. This is particularly natural when events extend in time and we need to cut across
them to decompose concurrent systems. Accordingly, events in a poset that do not belong
to an interface start and end their activity within that poset.

A subsumption of an iposet P by an iposet Q is a bijection f : P → Q between the
elements of P and Q such that

• f(SP) = SQ and f(TP) = TQ;
• f is <-reflecting (f(x) <Q f(y) implies x <P y);
• f is 99K-preserving on <P -incomparable elements (x ̸<P y, y ̸<P x and x 99KP y imply
f(x) 99KQ f(y));
• labels are respected (λP = λQ ◦ f).

This definition adapts the standard one [Gra81] to event orders and interfaces. Intuitively,
P has more order and less concurrency than Q if P → Q is a subsumption. See Figure 11
for an example.

An isomorphism of iposets is a subsumption that is an order isomorphism. The event
order makes such isomorphisms unique. We write P ⊑ Q and say that P is subsumed by Q,

22:14 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

1

2

3

4

5

6

7

8

a

•b

c•

d

a

•b

c•

d

Figure 11: Subsumption map, indicated in orange, between two iposets.

or that Q subsumes P , if there exists a subsumption P → Q. We write P ∼= Q if P and Q
are isomorphic. An ipomset is an isomorphism class of iposets.

Intuitively, isomorphic iposets have the same order and action structure, while the
identity of events has been forgotten. The uniqueness of isomorphisms allows us to switch
freely between ipomsets and iposets. In particular it makes sense to say that an ipomset is
subsumed by another. This is the case if one can choose representatives in the two ipomsets
in such a way that the subsumption map is the identity on representatives. The Hasse
diagram on the right of Figure 10 shows the ipomset corresponding to the iposet on the left.

An ipomset P is discrete if< is empty and hence 99K total. For each conclist (U, 99KU , λU)
and subsets S, T ⊆ U we define the discrete ipomset

SUT = (U, ∅, 99KU , S, T, λU).
Ipomsets UUU are called identity ipomsets. We often write discrete ipomsets as vectors and
indicate interfaces by bullets: [• ab •], for instance, stands for the ipomset {a 99K b} with a in
the source and b in the target interface.

Recall that a strict partial order < on P is an interval order if it admits an interval
representation [Fis85]: a pair b, e : P → R such that b(x) ≤ e(x) for all x ∈ P and x < y if
and only if e(x) < b(y) for all x, y ∈ P . This excludes precisely the poset 2 + 2 of shape

w x

y z

as an induced subposet, so that w < z or y < x whenever w < x and y < z.
This notion extends to iposets and ipomsets: an iposet is interval if its precedence is an

interval order. We write iPoms and iiPoms for the sets of ipomsets and interval ipomsets,
respectively.

Compositions. The standard serial and parallel compositions of pomsets [Gra81] can be
adapted for ipomsets. The serial composition, in particular, becomes a gluing composition, as
studied previously by Winkowski [Win77]. Yet he considered a less general class of ipomsets,
in which interfaces are formed by all minimal and all maximal elements, respectively, and
where events with the same label must be related by precedence.

The parallel composition P ∥ Q of labelled iposets P , Q is the coproduct with respect to
precedences and interfaces, while the event order is extended so that events in P are prior
to those in Q. Formally, P ∥ Q
• has the disjoint union P ⊔Q as carrier set;
• SP∥Q = SP ⊔ SQ and TP∥Q = TP ⊔ TQ;
• <P∥Q = <P ⊔<Q;
• x 99KP∥Q y iff x 99KP y, x 99KQ y, or x ∈ P and y ∈ Q;

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:15

a

b c•
∗

d

•c
=

a

b

d

c

a

b c•
∥

d

•c
=

a

b c•

d

•c

Figure 12: Gluing and parallel composition of ipomsets.

• λP∥Q is the standard extension of λP and λQ to P ⊔Q.

The gluing composition P ∗Q of labelled iposets P , Q is a partial operation, defined
whenever TP ∼= SQ, and

• its carrier set is the quotient (P ⊔Q)/x∼f(x), where f : TP → SQ denotes the unique order
isomorphism between these interfaces;
• SP∗Q = SP and TP∗Q = TQ;
• x <P∗Q y iff x <P y, x <Q y, or x ∈ P \ TP and y ∈ Q \ SQ;
• 99KP∗Q is the transitive closure of 99KP and 99KQ on (P ⊔Q)/x∼f(x);
• λP∗Q is the standard extension of λP and λQ to (P ⊔Q)/x∼f(x).

The structural inclusions P ↪→ P ∗ Q ←↩ Q preserve both the precedence and the event
order. The event order is crucial in this definition: it allows identifying elements of TP with
elements in SQ in a unique way.

For ipomsets with empty interfaces, the gluing composition becomes the standard serial
pomset composition [Gra81]. For ipomsets, in which interfaces are given by minimal and
maximal elements and where events with the same label are related by precedence, we
recover Winkowski’s definition [Win77]. In both cases we ignore of course the event order.

The gluing and parallel compositions of ipomsets respect isomorphisms and thus lift
to associative, non-commutative operations on ipomsets (commutativity of ∥ is broken by
the event order). Ipomsets form a category with identity ipomsets as objects, ipomsets as
arrows and ∗ as composition. Examples of gluing and parallel compositions can be found in
Figure 12.

Example 4.1. Interval ipomsets are closed under gluing compositions [FJSZ21], but not
under parallel composition: the parallel composition of the interval ipomset a → b with
itself yields the ipomset

a b

a b

which obviously contains 2 + 2 as an induced subposet in its precedence. So it does not have
the interval property.

The following fact is important for constructing interval ipomsets from paths of HDAs
in Section 5.

Proposition 4.2 [FJSZ21, Proposition 44]. Interval ipomsets are closed under gluing
composition, and all interval ipomsets can be generated by gluing finitely many discrete
ipomsets.

22:16 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

The width wid(P) of an ipomset P is the cardinality of a maximal <-antichain; its size
is #(P) = |P | − 1

2(|S|+ |T |).
We glue ipomsets along interfaces and hence remove half of the interfaces when computing

#, which may thus be fractional. All identity ipomsets have size 0. The following lemmas
are immediate consequences of the definitions.

Lemma 4.3. Let P and Q be ipomsets. Then

(1) wid(P ∥ Q) = wid(P) + wid(Q) and #(P ∥ Q) = #(P) + #(Q),
(2) TP = SQ implies wid(P ∗Q) = max(wid(P),wid(Q)) and #(P ∗Q) = #(P) + #(Q),
(3) P ⊑ Q implies wid(P) ≤ wid(Q) and #(P) = #(Q).

Lemma 4.4.

(1) For conclists W ⊆ V ⊆ U, WVV ∗ V UU = WUU .
(2) For conclists V,W ⊆ U with U = V ∪W, V VV ∩W ∗ V ∩WWW ⊑ V UW .

Lemma 4.4 can be illustrated by the following pictures:

a•

•b•

∗

•a•

c•

•b•

=

a•

c•

•b•

•a•

•b

∗
•a•

c•

=

•a•

•b c•

⊑

•a•

•b c•

Ipomset languages and rational languages. We define an interval ipomset language (a
language for short) as a subset L ⊆ iiPoms that is down-closed with respect to subsumption:
if P ⊑ Q and Q ∈ L, then P ∈ L. If X is a set of ipomsets, then

X↓ = {P ∈ iiPoms | ∃Q ∈ X : P ⊑ Q}
indicates the language that is its down-closure with respect to subsumption.

We define the rational operations ∪, ∗, ∥ and +, the Kleene plus, for languages as set
union,

L ∗M = {P ∗Q | P ∈ L, Q ∈M, TP = SQ}↓,
L ∥M = {P ∥ Q | P ∈ L, Q ∈M}↓,

L+ =
⋃
n≥1

Ln, for L1 = L and Ln+1 = L ∗ Ln.

Down-closure is needed because parallel compositions of interval ipomsets may not be
interval ipomsets and gluing and parallel compositions of down-closed languages may not be
down-closed.

Example 4.5. {[a] ∥ [b]} = {[ab]} = {[a •
b •] ∗ [• a

• b]} is not down-closed.

It is routine to check that gluing and parallel composition of languages are associative
and that neither operation is commutative. The identity of ∥ is {ε}, that of ∗ is the identity
language Id = {UUU | U ∈ □} of all identity ipomsets.

The rational languages are then the smallest class of languages that contains the empty
language, the empty-pomset language and the singleton pomset languages

∅, {ε}, {[a]}, {[• a]}, {[a •]}, {[• a •]}, a ∈ Σ, (4.1)

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:17

and that is closed under the rational operations ∪, ∗, ∥ and +.
We define the width of a language L as the maximal width among its elements:

wid(L) = sup{wid(P) | P ∈ L}.

Lemma 4.3 implies that all rational languages have finite width. The identity language
Id, however, has infinite width and is therefore not rational. This explains why we consider
the Kleene plus instead of the more conventional Kleene star in the definition of rationality:
L∗ = Id∪L+, like Id, is not rational.

Separated languages. An ipomset P is separated if P \ (SP ∪ TP) ̸= ∅, that is, it contains
an “interior” element that does not belong to an interface. A language is separated if all its
ipomsets are separated.

Lemma 4.6. If a language L with L ∩ Id = ∅ has finite width and if n is sufficiently large,
then Ln is separated.

Proof. For every ipomset Q ∈ Ln there exists an ipomset P = P1 ∗ . . . ∗ Pn such that each
Pk ∈ L and Q ⊑ P . As #(Pk) ≥ 1

2 , additivity of size implies

#(Q) = #(P) = #(P1) + . . .+#(Pn) ≥ n
2 .

Thus |SQ|, |TQ| ≤ wid(Q) ≤ wid(P) = maxk wid(Pk) ≤ wid(L), as gluing compositions do
not increase width. Eventually,

|SQ|+ |TQ| ≤ 2wid(L) < n ≤ 2#(Q) = 2|Q| − |SQ| − |TQ|

holds for n ≥ 2wid(L) + 1 and therefore |SQ|+ |TQ| < |Q|.

5. Executions of higher-dimensional automata

Executions of HDAs are higher-dimensional paths that keep track of the cells and face maps
traversed [vG06a]. In this section we recall their definition. As an important stepping stone
towards a Kleene theorem, we then relate paths of HDAs with ipomsets – for a more general
class than in [FJSZ21]. We also introduce notions of path equivalence and subsumption. The
latter corresponds to ipomset subsumption. We end with a definition of regular languages.

Paths. A path of length n in a precubical set X is a sequence

α = (x0, φ1, x1, φ2, . . . , φn, xn), (5.1)

where the xk ∈ X[Uk] are cells and, for all k, either

• an up-step φk = d0A ∈ □(Uk−1, Uk), A ⊆ Uk and xk−1 = δ0A(xk) or
• a down-step φk = d1B ∈ □(Uk, Uk−1), B ⊆ Uk−1, δ

1
B(xk−1) = xk.

We write xk−1 ↗A xk for the up-steps and xk−1 ↘B xk for the down-steps in α, generally
assuming that A ̸= ∅ ≠ B. We further refer to the up- or down-steps in paths as steps and
write PX for the set of all paths on the precubical set X.

22:18 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

Example 5.1. The diagram on the right of Figure 1 in the introduction depicts the paths

α1 = (δ0ab(x)↗a δ0b (x)↘a δb,a(y)),

α2 = (δ0ab(x)↗ab x↘b δ
1
b (x)↗c y ↘ac δ

1
ac(y)),

α3 = (δ0ab(x)↗b δ0a(x)↘b δ
0
ac(y)↗ac y ↘ac δ

1
ac(y)).

We define the source and target of a path α, as in formula (5.1), as src(α) = x0 and
tgt(α) = xn. Each pc-map f : X → Y induces a map f : PX → PY . For α as above it is

f(α) = (f(x0), φ1, f(x1), φ2, . . . , φn, f(xn)). (5.2)

The concatenation of paths α = (x0, φ1, . . . , xn) and β = (y0, ψ1, . . . , ym) with tgt(α) =
src(β) is defined as α ∗ β = (x0, φ1, . . . , xn, ψ1, . . . , ym), hence again by gluing ends. This
turns PX into a category with cells of X as objects and paths as morphisms, in generalisation
of the standard path categories generated by digraphs. Moreover, for x, y ∈ X, we write

PX(x, y) = {α ∈ PX | src(α) = x, tgt(α) = y}
for the homset of paths from x to y.

Reachability and accessibility. The cell y ∈ X is reachable from the cell x ∈ X, denoted
x ⪯ y, if there is a path from x to y in X. This reachability preorder is generated by
δ0A(x) ⪯ x ⪯ δ1B(x) for x ∈ X and A,B ⊆ ev(x). The precubical set X is acyclic if ⪯ is a
partial order, or equivalently, if PX(x, x) contains only the constant path (x) for each x ∈ X.

A path α ∈ PX in an HDA X is accepting if src(α) ∈ X⊥ and tgt(α) ∈ X⊤. A cell x is
accessible if there exists a path from a start cell to x, and co-accessible if there is a path
from x to an accept cell. A cell is essential if it is both accessible and co-accessible. All cells
in accepting paths are essential.

Ipomsets of paths. Next we introduce a map ev that computes ipomsets of paths.
The interval ipomset ev(α) of a path α ∈ PX is computed recursively:

• If α = (x) is a path of length 0, then ev(α) = ev(x)ev(x)ev(x).

• If α = (y ↗A x), then ev(α) = ev(x)\Aev(x)ev(x).

• If α = (x↘B y), then ev(α) = ev(x)ev(x)ev(x)\B.

• If α = β1 ∗ · · · ∗ βn is a concatenation of steps βi, then ev(α) = ev(β1) ∗ · · · ∗ ev(βn).
Interfaces and gluings of ipomsets are essential for this construction. The event order allows
us to identify the target events of a preceding ipomset with the events of a succeeding one.

Example 5.2. The ipomset of the path α1 in Example 5.1 is computed as

ev(α1) = ev(δ0ab(x)↗a δ0b (x)) ∗ ev(δ0b (x)↘a δb,a(y)) = ∅aa ∗ aa∅ = a.

Those of the other two paths in the example are ev(α2) = a ∥ (b→ c) and ev(α3) = b ∗ [ac].
Figure 4 contains an additional example.

Proposition 4.2 guarantees the following important structural property.

Lemma 5.3. For each path α ∈ PX , ev(α) is an interval ipomset.

The following facts are immediate from the definition of ev and induced paths maps, as
well as associativity of gluing composition.

Lemma 5.4. Let α, β ∈ PX . Then ev(α ∗ β) = ev(α) ∗ ev(β) whenever tgt(α) = src(β).

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:19

Lemma 5.5. If f : X → Y is a pc-map and α ∈ PX , then ev(f(α)) = ev(α).

Event consistency for paths. Let X be an HDA. For any path α = (x0, φ1, . . . , xn) ∈ PX ,
the conclists ev(xk) are defined only up to isomorphism. Similarly, the φk are morphisms
in □ and not actual conclist maps, but rather their equivalence classes. The next lemma
allows choosing conclists and conclist maps as representatives in a consistent way, and using
the simple composition of conclist maps in formula (3.1) in calculations.

Lemma 5.6. For every α = (x0, φ1, . . . , xn) ∈ PX there exist conclists U0, . . . , Un ⊆ ev(α)
such that ev(xk) = Uk and either

• Uk−1 ⊆ Uk and φk = d0Uk\Uk−1
: Uk−1 → Uk or

• Uk−1 ⊇ Uk and φk = d1Uk−1\Uk
: Uk → Uk−1.

Proof. The structural inclusion

ev(xk) ⊆ ev(x0, φ1, . . . , xk) ∗ ev(xk) ∗ ev(xk, φk+1, . . . , xn)

defines an ipomset inclusion jk : ev(xk) ⊆ ev(α). So let Uk = jk(ev(xk)). If φk = d0A is
an up-step, then Uk−1 ⊆ Uk and xk−1 = δ0Uk\Uk−1

(xk); if φk = d1B is a down-step, then

Uk ⊆ Uk−1 and xk = δ1Uk−1\Uk
(xk−1).

Note that if xi = xj for i ≠ j, then Ui and Uj are different, but isomorphic subsets of
ev(α). Henceforth we choose conclists of cells in paths as in Lemma 5.6. This simplifies
calculations and underlines the relevance of as a base category for precubical sets.

Path equivalence and subsumption. Path equivalence is the congruence ≃ on PX

generated by

(1) (z ↗A y ↗B x) ≃ (z ↗A∪B x),
(2) (x↘A y ↘B z) ≃ (x↘A∪B z),
(3) γ ∗ α ∗ δ ≃ γ ∗ β ∗ δ whenever α ≃ β.
Further, path subsumption is the transitive relation ⊑ on PX generated by

(4) (y ↘B w ↗A z) ⊑ (y ↗A x↘B z), for disjoint A,B ⊆ ev(x),
(5) γ ∗ α ∗ δ ⊑ γ ∗ β ∗ δ whenever α ⊑ β,
(6) α ⊑ β whenever α ≃ β.
We say that β subsumes α if α ⊑ β.

Intuitively, if β subsumes α, then β is more concurrent than α and α more sequential
than β. Both ≃ and ⊑ preserve sources and targets of paths, and they translate to ipomsets
as follows.

Lemma 5.7. If α, β ∈ PX , then

(1) α ≃ β ⇒ ev(α) = ev(β),
(2) α ⊑ β ⇒ ev(α) ⊑ ev(β).

22:20 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

Proof. We need to check items (1)–(6) from the definition of path equivalence and subsump-
tion. Item (1) holds because

ev(z ↗A y ↗B x) = ev(z ↗A y) ∗ ev(y ↗B x) (Lemma 5.4)

= ev(y)\Aev(y)ev(y) ∗ ev(x)\Bev(x)ev(x)

= ev(z)ev(y)ev(y) ∗ ev(y)ev(x)ev(x)

= ev(z)ev(x)ev(x) (Lemma 4.4.(1))

= ev(x)\(A∪B)ev(x)ev(x)

= ev(z ↗A∪B x),

The proof of (2) is similar and (3) follows immediately from Lemma 5.4. For (4), fix x ∈ X
and suppose A,B ⊆ ev(x) are disjoint subsets. Let y = δ0A(x), z = δ1B(x), w = δA,B(x) and
denote U = ev(x), V = U \A = ev(y), W = U \B = ev(z). Then

ev(y ↘A w ↗B z) = ev(y ↘A w) ∗ ev(w ↗B z) (Lemma 5.4)

= ev(y)ev(y)ev(y)\A ∗ ev(z)\Bev(z)ev(z)

= V VV ∩W ∗ V ∩WWW

⊑ V UW = V UU ∗ UUW (Lemma 4.4.(2))

= ev(x)\Aev(x)ev(x) ∗ ev(x)ev(x)ev(x)\B

= ev(z ↗A x↘B z).

Finally, (5) follows again from Lemma 5.4 and (6) is straightforward.

Example 5.8. It is easy to check that the path α3 in Example 5.1 is subsumed by α2, and
so are the corresponding pomsets in Example 5.2: ev(α3) = b ∗ [ac] ⊑ a ∥ (b→ c) = ev(α2).

Regular languages. An ipomset P is recognised by the HDA X if P = ev(α) for some
accepting path α of X. We write

Lang(X) = {ev(α) | α ∈ PX is accepting}
for the set of interval ipomsets recognised by X. The language L is regular if it is recognised
by an HDA, that is, L = Lang(X) for some HDA X.

Every regular language is down-closed by Proposition 8.3 below and an interval ipomset
language by Lemma 5.3.

Lemma 5.9. Regular languages have finite width.

Proof. Let X be an HDA. We show that wid(Lang(X)) ≤ dim(X). It is clear that
wid(ev(α)) ≤ dim(X) for any path α in X. The claim then follows by Lemma 4.3.

By a distant analogy with topology, we call an HDA map f : X → Y a weak equivalence
if for every accepting path β ∈ PY there exists an accepting path α ∈ PX with f(α) = β
with respect to the induced f : PX → PY defined in (5.2).

Lemma 5.10. Let f : X → Y be an HDA-map. Then

(1) Lang(X) ⊆ Lang(Y),
(2) if f is a weak equivalence, then Lang(X) = Lang(Y).

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:21

Proof. Suppose P ∈ Lang(X). Then there is an accepting path α ∈ PX such that ev(α) = P .
Thus the induced path f(α) is also accepting and P = ev(α) = ev(f(α)) ∈ Lang(Y) by
Lemma 5.5. The second claim is clear.

We conclude this section with two elementary facts about regular languages.

Proposition 5.11. The empty language, the empty-pomset language and the singleton
pomset languages in (4.1) are regular.

Proof. These languages are recognised by the following HDAs:

∅ ⊥ ⊤
⊥

⊤
a

⊤
a⊥

⊥

a ⊤ a
⊥ ⊤

Proposition 5.12. Finite unions of regular languages are regular.

Proof. Lang(X ⊔ Y) = Lang(X) ∪ Lang(Y), where the HDA X ⊔ Y is the coproduct of the
HDAs X and Y .

6. Kleene theorem

We can now state the Kleene theorem for HDAs, which relates them with interval ipomset
languages. In this section, we also provide a roadmap towards its proof. Technical details
and advanced concepts needed for it are introduced in the remaining sections of this article.

Theorem 6.1 (Kleene theorem for HDAs). A language is regular if and only if it is rational.

The Kleene theorem follows from a series of propositions, which we explain in the sequel.
First we outline its left-to-right direction.

Proposition 6.2. Every regular language is rational.

This proposition is obtained from a translation to the Kleene theorem for standard finite
state automata in Section 7. For each HDA we construct a standard automaton with an
alphabet ranging over discrete ipomsets, and we show that it accepts the same language as
the HDA.

Proving the right-to-left direction of Theorem 6.1 is harder. Our proof follows that of
the classical Kleene theorem. We inductively construct HDAs that accept the generators
of rational languages and the languages obtained by application of the rational operations
to regular languages. We have already shown (Propositions 5.11 and 5.12) that the empty
language, the empty-pomset language and the singleton pomset languages are regular, and
that regularity is preserved by finite unions. So it remains to prove that the remaining
rational operations – parallel compositions, gluing composition and the Kleene plus – preserve
regularity as well.

Proposition 6.3. Parallel compositions of regular languages are regular.

In Section 9 we introduce tensor products of HDAs and show that tensor products of
HDAs recognise the parallel composition of their languages. The proof uses an alternative
definition of languages of HDAs via track objects, introduced in Section 8.

22:22 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

The corresponding proofs for gluing compositions and the Kleene plus are more intricate
and require additional machinery. They constitute the main technical contribution of this
paper, and the tools introduced may be of independent interest.

Proposition 6.4. Gluing compositions of regular languages are regular.

Proposition 6.5. The Kleene plus of a regular language is regular.

The ideas behind the proofs of these propositions are outlined in the remainder of this
section; the proofs themselves are developed in Sections 10 to 15. The left-to-right direction
of the Kleene theorem then follows.

Corollary 6.6. Every rational language is regular.

Proof. By Propositions 5.11, 5.12 and 6.3–6.5.

It then remains to reap what we have sown.

Proof of Theorem 6.1. By Proposition 6.2 and Corollary 6.6.

The ideas behind the proofs of Propositions 6.4 and 6.5 and the intricacies encountered
are similar. We focus on Proposition 6.4 because the tools needed for proving Proposition
6.5 are more complicated.

Our goal in the proof of Proposition 6.4 is the construction, for each pair of HDAs X
and Y , of an HDA Z that recognises Lang(X) ∗ Lang(Y) . For simplicity, we assume that
both HDAs have one start cell (X⊥ = {x⊥}, Y⊥ = {y⊥}) and one accept cell (X⊤ = {x⊤},
Y ⊤ = {y⊤}), respectively. We further assume that the conclists of x⊤ and y⊥ agree:
ev(x⊤) = ev(y⊥) = U . A natural candiate for Z is the HDA obtained from X ⊔ Y by
identifying x⊤ in X and y⊥ in Y , or more formally, from a gluing composition of X and Y
defined as

X ∗ Y = colim
(
X

ι
x⊤←−− □U ιy⊥−−→ Y

)
.

It is then routine to check that Lang(X) ∗ Lang(Y) ⊆ Lang(X ∗ Y).
For standard finite automata X, Y , this construction yields indeed Lang(X ∗ Y) =

Lang(X) ∗ Lang(Y) whenever there are no transitions from x⊤ into a state of X and no
transitions from a state of Y into y⊥. Otherwise, Z could allow scanning strings in Lang(X)
after having started scanning strings in Lang(Y). For HDAs, we thus need a construction
that brings X and Y into a similar shape to prevent such backdoor scanning. A second
complication that is particular to HDAs is that gluing compositions X ∗ Y not only identify
x⊤ and y⊥. Paths that do not cross the “gluing” cell may therefore appear and contribute
to the language of X ∗ Y , though their prefixes or suffixes are not in the language of X or
Y , see Figure 13.

We introduce two tools to deal with this situation. First, we introduce higher-dimensional
automata with interfaces (iHDAs) in Section 10 as an alternative to HDAs, which allows
us to mark events that cannot terminate and those that cannot be unstarted in an HDA,
and to trace such elements across cells. HDAs and iHDAs are related to each other via a
pair of language-preserving functors Res : HDA→ iHDA and Cl : iHDA→ HDA, introduced
in Section 11, which we call resolution and closure. In particular, we use these functors to
show that HDAs and iHDAs recognise the same class of regular languages. This allows us to
work with both kinds of automata, depending on the context, but using iHDAs guarantees
better properties of some of our gluing constructions.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:23

a

c

⊥

⊤

X

b

c

⊤

⊥

Y

a b

c c

⊥ ⊤

X ∗ Y

∗ =

Figure 13: The language of gluings of HDAs need not be the gluing composition of their
languages: Lang(Y) = ∅, but ab ∈ Lang(X ∗ Y) ̸= Lang(X) ∗ Lang(Y) = ∅.

Second, we introduce a construction that removes transitions into start cells or out of
accept cells – but generally not both – and which separates start or accept cells, so that the
sets of their faces are disjoint. The resulting iHDAs are called (start or accept) proper. To
enable this construction, we introduce cylinders in Section 12. It is once again important for
gluing HDAs in a principled way.

In Sections 13 and 14 we use these tools to prove Proposition 6.4. Finally, in Section 15,
we prove Proposition 6.5 while dealing with the additional issue that iHDAs are generally
not both start and accept proper.

7. Regular languages are rational

In this section we construct for any finite HDA a finite automaton that recognises essentially
the same language, in a sense explained below.

Let X be an HDA with dim(X) = n. We define the automaton G(X) = (Ω, Q, I, E, F)
by the following data:

• The input alphabet Ω consists of the set of discrete ipomsets with at most n elements.
• The set of states Q = Cell(X) ∪ {x⊥ | x ∈ X⊥}. The states of G(X) are the cells of X
with an extra copy of every start cell added.
• The start states I = {x⊥ | x ∈ X⊥} and the accept states F = {x | x ∈ X⊤}.
• The set of transitions E is given by:
– For every x ∈ X[U] and A ⊆ U there is a transition d0A : δ0A(x) → x labelled with

(U\A)UU .

– For every x ∈ X[U] and B ⊆ U there is a transition d1B : x → δ1B(x) labelled with

UU(U\B).
– For every x ∈ X⊥, x ∈ X[U], there is a transition ϱx : x⊥ → x labelled with UUU .

We write Lang(G(X)) for the language of words over Ω recognised by the automaton
G(X), and PG(X) for the set of paths in G(X).

Example 7.1. Figure 14 shows an example for the construction of the standard automaton
G(X) from a simple HDA X.

Proposition 7.2. Lang(X) = {P1 ∗ P2 ∗ · · · ∗ Pn | P1P2 · · ·Pn ∈ Lang(G(X)), n ≥ 1}.

Proof. There is a one-to-one correspondence between the accepting paths in X and G(X):

PX ∋ α = (x0, φ1, x1, . . . , xn) 7→
(
(x0)⊥

ϱx−→ x0
φ1−→ x1

φ2−→ · · · φn−−→ xn

)
= ω ∈ PG(X) .

22:24 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

vv⊥

x

w

y

e

f

gg⊥ hq

[a•] [•a]

[a•
•b•] [•a•b•]

[a•] [•a]

[b•]

[•b]

[•a•b•]

[•a••b]

[b•]

[•b]
[•a•b]

[a•b•]

[•b•]

ε
⊥

⊥
⊤

⊤
G(X)

a

b

⊥

⊥

⊤

⊤

X

Figure 14: An HDA X and the corresponding standard finite automaton G(X).

Suppose βi = ev(xi−1, φi, xi), which is a discrete ipomset. If

Q = ev(α) = ev(β1) ∗ · · · ∗ ev(βn) ∈ Lang(X),

then ev(x0) ev(β1) · · · ev(βn) ∈ Lang(G(X)). This shows the inclusion ⊆.
If P1P2 · · ·Pn ∈ Lang(G(X)) is recognised by a path ω, then P1 is an identity pomset. If

the corresponding path α in X is not constant, then it recognises P2 ∗ · · · ∗Pn = P1 ∗ · · · ∗Pn.
If α is constant, then it recognises P1 (and n = 1). This shows ⊇.

We have added copies of start cells in the definition above to avoid states in G(X) that
are both start and accept states. Otherwise, constant paths in G(X) could recognise the
empty word while their counterparts in X would recognise non-empty identity ipomsets.

Proof of Proposition 6.2. Let X be an HDA of dimension n. Then Lang(G(X)) is a regular
language over Ω that does not contain the empty word. The Kleene theorem for finite
state automata thus guarantees that Lang(G(X)) can be represented by a regular expression
w(U1, . . . , Un) with operations ∪, ∗ and (−)+ and Ui ∈ Ω.

Each Ui can be presented as a parallel composition Ui = e1i ∥ · · · ∥ e
k(i)
i of singleton

ipomsets. Using Proposition 7.2, we conclude that Lang(X) is represented by

w(e11 ∥ · · · ∥ e
k(1)
1 , . . . , e1n ∥ · · · ∥ ek(n)n)

and therefore rational.

Remark 7.3. The proof above, in combination with the other direction of the Kleene
theorem (Corollary 6.6), implies that any regular expression can be normalised so that
parallel compositions appear below all other operators in parse trees. For example,

{a}+ ∥ {b} = ({a} ∥ {b}) ∪ ({a•} ∥ {b•}) ∗
(
({•a} ∥ {•b•}) ∗ ({a•} ∥ {•b•})

)+ ∗ ({•a} ∥ {•b}).
8. Track objects and tracks

Track objects and tracks on HDAs have been introduced in [FJSZ21]. They provide an
alternative description of the executions and languages of HDAs, which is more abstract,
and sometimes more convenient. Like cells of an HDA can be represented as pc-maps from
standard cubes (see Lemma 3.4), paths can be represented as maps from track objects. Here

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:25

we extend results on tracks, which we proved for the subclass of event consistent HDAs
in [FJSZ21], to general HDAs, as they are needed in our constructions.

The track object □P of an ipomset P is an HDA defined as follows.

• □P [U] is the set of functions c : P → {0, , 1} such that c−1() ∼= U and for all p, q ∈ P ,
p < q =⇒ (c(p), c(q)) ∈ {(0, 0), (, 0), (1, 0), (1,), (1, 1)}. (8.1)

• For A,B ⊆ U ∼= c−1() with A ∩B = ∅,

δA,B(c)(p) =


0 if c(p) = 0 or p ∈ A,

if p ∈ U \ (A ∪B),

1 if c(p) = 1 or p ∈ B.

• □P has one source cell cP⊥ and one target cell c⊤P :

cP⊥(p) =

{
for p ∈ SP ,

0 for p ̸∈ SP ,
c⊤P (p) =

{
for p ∈ TP ,

1 for p ̸∈ TP .

A cell c of □P can be regarded as a temporary snapshot of an execution of events in P : for
p ∈ P , c(p) is 0 if p has not yet started, if p is currently active and 1 if p has terminated.
This clearly enforces condition (8.1).

See [FJSZ21, Example 61] for the construction of a track object of a particular ipomset.

Lemma 8.1 [FJSZ21, Proposition 92]. Lang(□P) = {P}↓.

The following proposition relates paths with track objects.

Proposition 8.2. Let X be a precubical set, x and y cells of X and P an ipomset. The
following conditions are equivalent:

(1) There exists a path α ∈ PX(x, y) such that ev(α) = P .
(2) There exists a pc-map f : □P → X such that f(cP⊥) = x and f(c⊤P) = y.

Thus, for each HDA X,

Lang(X) = {P ∈ iiPoms | HDA(□P , X) ̸= ∅}.

Proof. (2)⇒(1) There exists a path β ∈ P□P (cP⊥, c
⊤
P) such that ev(β) = P (see [FJSZ21,

Proposition 67] for further information). So α = f(β) satisfies the conditions required.
(1)⇒(2) By induction on the length n of α. First, suppose n = 0, 1. We abbreviate
U = ev(x). If α = (x), then □P = □U , cP⊥ = c⊤P = [∅|U |∅] and then f = ιx satisfies (b). If

α = (x↘B δ1B(x)) is a down-step, then P = UUU\B, □
P = □U , cP⊥ = [∅|U |∅], c⊤P = [∅|U |B],

and, as before, f = ιx satisfies (b). The proof for up-steps is symmetric.
If n > 1, then α = β ∗ γ for paths β, γ of length < n. We write z = tgt(β) = src(γ),

Q = ev(β), R = ev(γ) for short. By the inductive hypothesis, there are precubical maps

g : □Q → X and h : □R → X such that g(cQ⊥) = x, g(c⊤Q) = h(cR⊥) = z and h(c⊤R) = y. Let

U = ev(z) ∼= TQ ∼= SR. By [FJSZ21, Lemma 65], there is a pushout diagram

□Q □P

□U □R

ιc⊤Q

jQ

ιcR⊥

jR

22:26 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

such that jQ(c
Q
⊥) = cP⊥ and jR(c

⊤
R) = c⊤P . Since g ◦ ιc⊤Q = ιz = h ◦ ιcR⊥ , by the universal

property of pushouts, the maps g and h glue to a map f : □P → X. Moreover, we have

f(cP⊥) = f(jQ(c
P
⊥)) = g(cQ⊥) = x and f(c⊤P) = f(jR(c

⊤
R)) = h(c⊤R) = y.

Proposition 8.3. Languages of HDAs are down-closed with respect to subsumption.

Proof. Let X be an HDA. If P ⊑ Q and Q ∈ Lang(X) then there is an HDA-map □Q → X by
Proposition 8.2 and P ∈ Lang(□Q) by Lemma 8.1. Thus P ∈ Lang(X) by Lemma 5.10.

9. Tensor product of higher-dimensional automata

The tensor product of HDAs X and Y is the HDA X⊗Y defined, for U, V,W ∈ □, x ∈ X[V],
y ∈ Y [W] and A,B ⊆ U as

(X ⊗ Y)[U] =
⋃

V ∥W=U

X[V]× Y [W],

δA,B(x, y) = (δA∩V,B∩V (x), δA∩W,B∩W (y)),

(X ⊗ Y)⊥ = X⊥ × Y⊥,

(X ⊗ Y)⊤ = X⊤ × Y ⊤.

See [FJSZ21, Example 107] for an example. The following proposition is shown for
event-consistent HDAs in [FJSZ21, Theorem 108]. We need a proof without this restriction.

Proposition 9.1. Let X and Y be HDAs. Then Lang(X ⊗ Y) = Lang(X) ∥ Lang(Y).

Proof. For Lang(X) ∥ Lang(Y) ⊆ Lang(X⊗Y) the argument in [FJSZ21, Theorem 108] works:
if P ∈ Lang(X) ∥ Lang(Y), then, by definition, there are Q ∈ Lang(X) and R ∈ Lang(Y) such
that P ⊑ Q ∥ R. By Proposition 8.2, there are HDA-maps α : □Q → X and β : □R → Y .
Their composition

□P → □Q||R ∼= □Q ⊗□R α⊗β−−−→ X ⊗ Y
shows that P ∈ Lang(X ⊗ Y). Finally, the isomorphism □Q||R ∼= □Q ⊗ □R is shown
in [FJSZ21, Lemma 105].

The proof of the converse direction in [FJSZ21] depends on event consistency, so we
need another one. Suppose α = ((x0, y0), φ1, . . . , (xn, yn)) ∈ PX⊗Y , and xk ∈ X[Uk] as well
as yk ∈ Y [Vk], for k = 0, . . . , n. For any k,

• if φk = d0A ∈ □(Uk−1 ∥ Vk−1, Uk ∥ Vk), then we put ψk = d0A∩Uk
∈ □(Uk−1, Uk) and

ωk = d0A∩Vk
∈ □(Vk−1, Vk).

• If φk = d1B, we put ψk = d1B∩Uk−1
and ωk = d1B∩Vk−1

.

It is then routine to check that β = (x0, ψ0, . . . , xn) ∈ PX and γ = (y0, ω0, . . . , yn) ∈ PY .
We write πX(α) = β, πY (α) = γ.

We prove that ev(α) ⊑ ev(β) ∥ ev(γ) by induction on n. If n = 1 and α is an up-step,
then

ev(α) = (U0∥V0)(U1 ∥ V1)(U1∥V1)
= U0(U1)U1

∥ V0(V1)V1
= ev(β) ∥ ev(γ).

For down-step the same formula holds by symmetry. The case n = 0 is similar.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:27

If n > 1, then α can be decomposed into a non-trivial composition α = α′ ∗ α′′. Let
β′ = πX(α′), γ′ = πY (α

′), β′′ = πX(α′′), γ′′ = πY (α
′′). Using the inductive hypothesis and

the weak interchange law (P ∥ P ′) ∗ (Q ∥ Q′) ⊑ (P ∗Q) ∥ (P ′ ∗Q′) of ipomsets [FJSZ22b],

ev(α) = ev(α′) ∗ ev(α′′)

⊑ (ev(β′) ∥ ev(β′′)) ∗ (ev(γ′) ∥ ev(γ′′))
⊑ (ev(β′) ∗ ev(β′′)) ∥ (ev(γ′) ∗ ev(γ′′))
= ev(β′ ∗ β′′) ∥ ev(γ′ ∗ γ′′)
= ev(β) ∥ ev(γ).

Now let P ∈ Lang(X ⊗ Y) and let α ∈ PX⊗Y be an accepting path such that ev(α).
Then both β = πX(α) ∈ PX and γ = πY (α) ∈ PY are accepting, and

P = ev(α) ⊑ ev(β) ∥ ev(γ).
As ev(α) ∈ Lang(X) and ev(β) ∈ Lang(Y), down-closure yields P ∈ Lang(X) ∥ Lang(Y).

It follows that parallel compositions of regular languages are regular.

Proof of Proposition 6.3. Let L and M be regular languages. Then L = Lang(X) and
M = Lang(Y) for some HDA X and Y . Thus L ∥M = Lang(X) ∥ Lang(Y) = Lang(X ⊗ Y)
is recognised by X ⊗ Y by Proposition 9.1 and therefore regular.

10. Higher-dimensional automata with interfaces

In this section we introduce higher-dimensional automata with interfaces (iHDAs). The main
difference to HDAs is that the elements in the lists of concurrent events that are assigned to
cells are now equipped with interfaces. Every event of an iHDA can thus be labelled as a
source event or a target event, or as both. Target events may not be terminated while source
events cannot be “unstarted”. Moreover, start cells must only contain source events, and
target cells only target events. The advantage of this variant is that source and target events
of an iHDA can be traced along its execution, as shown for instance in Figure 16 below.

Concurrency lists with interfaces. A concurrency list with interfaces (iconclist) is a
triple (S,U, T) of a conclist U , a source interface S ⊆ U and a target interface T ⊆ U .

We also write SUT or just U for an iconclist (S,U, T). In the latter case, we write SU
and TU for the interfaces of U . Conclists may be regarded as iconclists with empty interfaces
and iconclists as discrete ipomsets.

An ilo-map f : U → V is an lo-map that also satisfies SU = f−1(SV) and TU = f−1(TV).
An iconclist isomorphism is an invertible ilo-map. We write U ∼= V if iconclists U and V
are isomorphic.

As for conclists, there is at most one isomorphism between iconclists. Isomorphism classes
of iconclists can be modelled as words over the extended alphabet Σ• = {a, •a, a•, •a• | a ∈ Σ},
where •a indicates membership in a source interface and so on. As in Figure 1, we represent
such words as column vectors.

Let U = (SU , U, TU) and V = (SV , V, TV) be iconclists. An iconclist map from U to V
is a conclist map dA,B : U → V such that

• source and target events are preserved: d−1
A,B(SV) = SU and d−1

A,B(TV) = TU ,

22:28 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

•a

•b•

•a

c•
0

•b•

•e
1

Figure 15: An example of an iconclist map. Annotations 0 and 1 indicate events that have
not yet started (0) or terminated (1), as in Figure 7. Bullets indicate source and
target interfaces. Note that c• cannot be marked by 1 since it is in the target
interface; similarly, •e cannot be marked by 0. No marking is possible for •b• and
thus it must be in the image.

• source events cannot be unstarted and target events not be terminated: A ∩ SV = ∅ =
B ∩ TV .

See Figure 15 for an example. Compositions of iconclist maps are defined as for conclist
maps.

The full labelled precube category with interfaces, I , has iconclists as objects and iconclist
maps as morphisms. Every pair of isomorphic iconclists admits exactly one isomorphism
between them. Thus, we define the labelled precube category with interfaces I□ as the quotient
of I by isomorphisms. The quotient functor I → I□ is an equivalence of categories. The
category I□ is skeletal, and its objects are words on Σ• = {a, ra, a r, ra r | a ∈ Σ}.

We can assign an iconclist with empty interfaces to any conclist using the inclusion
functors ∋ U 7→ ∅U∅ ∈ I and □→ I□. Conversely, there are forgetful functors I□→ □
and I → that ignore interfaces and assign the underlying conclist to each iconclist.

The involutive reversal functor on I and I□ maps SUT to TUS and dA,B to dB,A. It
swaps events that have not yet started and those that have terminated.

Precubical sets with interfaces and iHDAs. A precubical set with interfaces (ipc-
set) is a presheaf on I□. We write X[U] for the value of X on object U of I□, and
δA,B = X[dA,B] : X[U] → X[U \ (A ∪ B)] for the face map associated to the coface map
dA,B : U \ (A ∪B)→ U . Elements of X[U] are cells of X. We write Cell(X) =

⊔
U∈I□X[U]

for the set of cells of X. An ipc-set Y is an ipc-subset of X if Y [U] ⊆ X[U] for all U ∈ I□
and the face maps of Y are the restrictions of face maps of X.

If x ∈ X[SUT], we write iev(x) = SUT ∈ I□ and ev(x) = U ∈ □. As before, we also
write δ0A for X[d0A] and δ

1
B for X[d1B]. We may view a precubical set as an ipc-set X such

that X[SUT] = ∅ whenever S ̸= ∅ or T ̸= ∅. As for pc-sets, Cell(X) may be regarded as the
category of elements of X, with the projection functor iev : Cell(X)→ I□. We often view X
as a set of cells, that is, objects of Cell(X).

A higher-dimensional automaton with interfaces (iHDA) is a finite ipc-set X with subsets
X⊥ of start cells and X⊤ of accept cells. These are required to satisfy S = U for all x ∈ X⊥
with iev(x) = SUT , and T = U for all x ∈ X⊤ with iev(x) = SUT . Neither X⊥ nor X⊤ is
necessarily an ipc-subset.

HDAs are not simply special cases of iHDAs due to the above requirements on interfaces
of start and accept cells. See Figure 16 for examples.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:29

[b|U |a][b|U |∅]

[∅|U |a][∅|U |∅]

[•a]

[•a]

[b]

[c•]

[c•]

[d•]

[•ab] [bc•]

[c•d•]

⊥

⊤

Figure 16: Left: the standard icube □U for U = [• ab r] with names of cells. Right: an
example of an iHDA with iconclists associated to particular cells. The presence
of interfaces causes that some faces are “missing”. Those are indicated by dashed
lines or circles.

An ipc-map is a natural transformation f : X → Y of ipc-sets X, Y , an iHDA-map
must preserve start and accept cells as well: f(X⊥) ⊆ Y⊥ and f(X⊤) ⊆ Y ⊤. We write I□Set
and iHDA for the resulting categories of ipc-sets and iHDAs.

The reversal on I□ translates to ipc-sets and iHDAs. It maps δA,B to δB,A and exchanges
start and accept cells if present.

Standard icubes. The standard icube I□U is the presheaf represented by an iconclist
U ∈ I□, that is, I□U [W] = I□(W,U). Every morphism dA,B ∈ I□(U, V) defines an ipc-map

I□dA,B : I□U → I□V , which gives a functor I□ ∋ U 7→ I□U ∈ I□Set.
An example of a standard icube is given on the left in Figure 16.
The analogue of Lemma 3.4 holds for iHDA as well. For every iHDA X and cell

x ∈ X[U] there exists a unique iHDA-map ιx : I□U → X such that ιx(idU) = x. (Note that
idU = [∅|U |∅] ∈ I□(U,U) ∼= I□U [U] is the top cell of I□U).

Executions of iHDAs. Paths in iHDAs, their ipomsets and languages are defined by
analogy to HDAs in Section 5. A path in an iHDA X is a sequence (x0, φ1, . . . , xn) such that
every step (xk−1, φk, xk) is either an up-step δ0A(x) ↗A x = (δ0A(x), d

0
A, x) or a down-step

x↘B δ1B(x) = (x, dB1 , δ
1
B(x)). The ipomset of a path is a gluing composition of ipomsets of

consecutive steps, which are (U\A)UU and UU(U\B) for up-steps and down-steps as specified
above.

The set of ipomsets of accepting paths forms the language Lang(X) of X. We will see in
the next section that Lang(X) is down-closed, that is, an interval ipomset language. Further,
any iHDA can be translated to an HDA that recognises the same language, and vice versa.

As for HDA maps, we call an iHDA map f : X → Y a weak equivalence if for every
accepting path β ∈ PY there is an accepting path α ∈ PX such that f(α) = β. The analogue
of Lemma 5.10 holds for iHDA: for every iHDA map f : X → Y we have Lang(X) ⊆ Lang(Y),
and Lang(X) = Lang(Y) if f is a weak equivalence.

22:30 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

11. Higher-dimensional automata with and without interfaces

In this section we discuss the relationship between HDAs and iHDAs. We show that there
are two functors that translate between them: the resolution Res : HDA→ iHDA and the
closure Cl : iHDA→ HDA, both of which preserve languages. Finite HDAs and finite iHDAs
therefore recognise the same class of regular languages.

Resolution. The resolution of a precubical set X is the ipc-set Res(X) = X ◦ F, where
F : I□→ □ is the forgetful functor.

For SUT ∈ I□ and A,B ⊆ U , the definition of Res expands to

Res(X)[SUT] = {(x;S, T) | x ∈ X[U]},
δA,B((x;S, T)) = (δA,B(x);S \B, T \A).

The functor F : I□ → □ forgets interfaces, but the composition I□
F→ □

X→ Set produces
copies of cells of X equipped with all possible combinations of interfaces. Notation such as
(x;S, T) indicates that Res(X)[SUT] is essentially the same set as X[U], but each x ∈ X[U]
is tagged with S and T . For every HDA X we define (x;S, T) ∈ Res(X)[SUT] to be a start
cell if x ∈ X⊥ and S = U , and an accept cell if x ∈ X⊤ and T = U .

This extends Res to a functor HDA→ iHDA. Every cell x ∈ X[U] produces 4|U | cells in
Res(X). Thus Res(X) is finite whenever X is.

Example 11.1. For an HDA X with x ∈ X[a] and v, w ∈ X[∅],

Res

 x

v

w
 =

(x; ∅, ∅)

(x; a, ∅)

(x; ∅, a)

(x; a, a)

(v; ∅, ∅)

(w; ∅, ∅)

Proposition 11.2. If X is an HDA, then Lang(Res(X)) = Lang(X).

Proof. If ((x0;S0, T0), φ1, (x1;S1, T1), φ2, . . . , φn, (xn;Sn, Tn)) is an accepting path in Res(X),
then (x0, φ1, x1, φ2 . . . , φn, xn) is an accepting path in X with the same event ipomset.
Conversely, if α = (x0, φ1, x1, . . . , φn, xn), xk ∈ X[Uk] is an accepting path in X, we define
Sk and Tk recursively (recall that, by Lemma 5.6, the Uk may be taken as subsets of ev(α)):

• S0 = U0, Tn = Un,
• if φk = d0Uk\Uk−1

, then Sk = Sk−1 and Tk−1 = Tk ∩ Uk−1,

• if φk = d1Uk−1\Uk
, then Sk = Sk−1 ∩ Uk and Tk−1 = Tk.

This yields an accepting path ((xk;Sk, Tk), φk) in Res(X) with the same event ipomset as α
in X.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:31

a

b

c

c′

⊤

d

x y

z

q

⊥
[x; a, ∅]

[x; b, ∅]

[a; ∅, ∅]

[y; b, ∅]

[c; ∅, ∅]

[c′; ∅, ∅]

⊤

[y; ∅, c]

[z; ∅, c]

[x; ∅, ∅] [y; ∅, ∅]

[z; ∅, ∅]

[q; ∅, ∅]

[a; a, ∅]

[x; ab, ∅] [y; b, c]

[c; ∅, c]

[c′; ∅, c]

⊥

Figure 17: An example of an iHDA (left) and its closure (right). Not all cells are captioned.
The iconclists of cells on the left are iev(x) = [•a•b], iev(y) = [•bc•], iev(z) = [c•d].

Closure. The closure is the left adjoint to resolution, though we neither need nor prove
this fact in this article. Instead, we give an explicit definition.

The closure of the ipc-set X is the pc-set Cl(X) defined, for all U ∈ □, as

Cl(X)[U] = {[x;A,B] | ∃ SVT ∈ I□ : x ∈ X[V], A ⊆ S,B ⊆ T,A ∩B = ∅, U = V \ (A ∪B)}.
We write [x;A,B] instead of (x;A,B) to distinguish the provenance of these elements.

Face maps are given by

δC,D([x;A,B]) = [δC\S,D\T (x);A ∪ (C ∩ S), B ∪ (D ∩ T)],
where U and SVT are as above and the C,D ⊆ U satisfy C ∩D = ∅. An ipc-map f : X → Y
induces a pc-map Cl(f) : Cl(X)→ Cl(Y) such that Cl(f)[U]([x;A,B]) = [f(x);A,B]. This
makes Cl : I□Set→ □Set a functor.

Intuitively, Cl(X) fills in the missing cells of the ipc-set X. The function δC\SV ,D\TV

takes as much of the face map as possible, while the remaining events that should be
unstarted or terminated are added to A and B, respectively. See Figure 17 for an example.

For an iHDA X we define

Cl(X)⊥ = {[x; ∅, ∅] | x ∈ X⊥} and Cl(X)⊤ = {[x; ∅, ∅] | x ∈ X⊤}.
This extends Cl to a functor iHDA→ HDA, which is the left adjoint of the extension of the
functor Res.

Lemma 11.3. If SUT is an iconclist, then Cl(I□SUT) ∼= □U .

Proof. The isomorphism maps a cell [A|B] ∈ □U [U\(A∪B)] into [[(A\S)|(B\T)];A∩S,B∩T]
in the set Cl(I□SUT)[U \ (A ∪B)].

Proposition 11.4. If X is an iHDA, then Lang(Cl(X)) = Lang(X).

Proof. If (x0, φ1, . . . , φn, xn) is an accepting path in X, then

([x0; ∅, ∅], φ1, . . . , φn, [xn; ∅, ∅])
is an accepting path in Cl(X). Conversely, let α = ([x0;A0, B0], φ1, . . . , φn, [xn;An, Bn]) be
a path in Cl(X). Then, for all φk = d0Ck

, we have Ak−1 ⊇ Ak and Bk−1 = Bk, and for all

φk = d1Dk
, Ak−1 = Ak and Bk−1 ⊆ Bk. Hence A0 ⊇ · · · ⊇ An and B0 ⊆ · · · ⊆ Bn. If α is

accepting, then A0 = Bn = ∅ and thus Ak = Bk = ∅ for all k.

22:32 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

Proposition 11.5. HDAs and iHDAs recognise the same class of languages: that of regular
languages.

Proof. Resolution and closure preserves finiteness of automata. The result then follows from
Propositions 11.2 and 11.4.

We conclude with an easy technical lemma that is needed later on.

Lemma 11.6. Let X be an iHDA, x ∈ X and [y;A,B] ∈ Cl(X). Then [y;A,B] is a face of
[x; ∅, ∅] in Cl(X) if and only if y is a face of x in X.

Proof. If y = δC,D(x), then

δA,B(δC,D([x; ∅, ∅])) = δA,B([y; ∅, ∅]) = [y;A,B],

and if [y;A,B] = δC,D([x; ∅, ∅]), then y = δC\S,D\T (x), where S = Siev(x), T = Tiev(x).

Simple languages. An iHDA X is start simple if it has exactly one start cell, accept simple
if it has exactly one accept cell, and simple if it is both start and accept simple. A regular
language is simple if it is recognised by a simple iHDA.

Example 11.7. HDAs with one start and one accept cell recognise a larger class of
languages that simple iHDA. The HDA X with a single 0-cell x, a 1-loop labelled a on x,
and X⊥ = X⊤ = {a} is simple and recognises the language of all ipomsets [•a · · · a•], but
no simple iHDA does. This is because [•a•] may only be an ipomset of a constant path (x)
such that x ∈ X[•a•] and x ∈ X⊥ ∩X⊤. Yet the event a cannot be terminated in any path
starting at x, so no such path may recognise [•aa•].

Lemma 11.8. Every regular language is a finite union of simple regular languages.

Proof. Proposition 11.5 allows us to work with a suitable iHDA X. Let X⊥ = {xi⊥}mi=1 and

X⊤ = {x⊤j }nj=1. For each pair (i, j), let Xj
i be the iHDA with the same underlying ipc-set

as X and (Xj
i)⊥ = {xi⊥}, (X

j
i)

⊤ = {x⊤j }. Then Lang(X) =
⋃

i,j Lang(X
j
i).

Intuitively, we switch off all start and accept states but one of each in this proof.

Normal form of paths on closures of iHDAs. The next lemma gives a normal form for
paths on HDAs that are closures of iHDAs.

Lemma 11.9. Let X ∈ iHDA, α ∈ PCl(X). Then α is subsumed by a path of the form

([x;C ∪A,D]↗A [x;C,D]) ∗ β ∗ ([y;C,D]↘B [y;C,D ∪B]),

where β = ([x0;C,D], φ0, . . . , [xn;C,D]).

See Figure 18 for an example. Note that the restriction of α = ([xk;Ak, Bk], φk) ∈ PCl(X)

to the first coordinate gives a path α′ = (xk, φ
′
k) ∈ PX with, possibly, trivial steps (i.e.,

φ′
k = d0∅ or φ′

k = d1∅). In Lemma 11.9 we regard A,B,C,D as subsets of ev(α′).

Proof. Without loss of generality we assume that α is a dense path, that is, all its steps
either start (d0{a}) or terminate (d1{a}) a single event a. Every single step σ in α falls into

one of three categories:

(+) σ = [x;A,B]↘b [x;A,B ∪ {b}] for b ∈ Tev(x),

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:33

[x; b, ∅] [y; b, ∅]

[y; ∅, c]

[z; ∅, c]

[y; ∅, ∅]

[x; ab, ∅] [b; b, ∅]

[c; ∅, c]

[c′; ∅, c]

α

[c′; ∅, ∅]

[x; ∅, ∅]

[y; ∅, ∅]

[z; ∅, ∅]

[x; ab, ∅]

[c′; ∅, c]

[b; ∅, ∅]

[c; ∅, ∅]

β

Figure 18: An illustration of Lemma 11.9 using the iHDA from Figure 17. The orange path
α on the left is subsumed by ([x; ab, ∅]↗ab [x; ∅, ∅]) ∗ β ∗ ([c′; ∅, ∅]↘c [c

′; ∅, c]) on
the right.

(−) σ = [x;A ∪ {a}, B]↗a [x;A,B] for a ∈ Sev(x),
(0) neither of the above, so σ = [x;A,B]↘b [δ

1
b (x);A,B] or σ = [δ0a(x);A,B]↗a [x;A,B].

We show that the steps of α can be rearranged so that all (0)-steps are preceded by (−)-steps
and succeeded by (+)-steps. Let SUT = iev(x). For b ∈ T , c ∈ U \ T ,(

[x;A,B]↘b [x;A,B ∪ {b}]↘c [δ
1
c (x);A,B ∪ {b}]

)
≃

(
[x;A,B]↘c [δ

1
c (x);A,B]↘b [δ

1
c (x);A,B ∪ {b}]

)
.

For a ∈ U \ S, b ∈ T ,(
[δ0a(x);A,B]↘b [δ

0
a(x);A,B ∪ {b}]↗a [x;A,B ∪ {b}]

)
⊑

(
[δ0a(x);A,B]↗a [x;A,B]↘b [x;A,B ∪ {b}]

)
.

Thus every (+)-step followed by a (0)-step, can be swapped, possibly passing to a subsuming
path. Likewise, we can swap every (0)-step followed by a (−)-step. Further, for a ∈ S, b ∈ T ,

([x;A ∪ {a}, B]↘b [x;A ∪ {a}, B ∪ {b}]↗a [x;A,B ∪ {b}])
⊑ ([x;A ∪ {a}, B]↗a [x;A,B]↘b [x;A,B ∪ {b}]) ,

so every (+)-step followed by a (−)-step can be swapped, too. Finally, we can concatenate
all (−)-steps, (0)-steps and (+) steps to obtain the conclusion.

12. Cylinders

In this section we introduce cylinders for ipc-sets. This construction is motivated by the
double mapping cylinder from topology and may be regarded as a significant generalization
of resolving ε-transitions. For a pair of ipc-maps f : Y → X and g : Z → X, we construct
an ipc-set C(f, g), which is equivalent to X in a sense explained below. This allows us to

replace f and g by injections f̃ : Y → C(f, g) and g̃ : Z → C(f, g) whose images are initial
and final in C(f, g), respectively, in the sense of the following definition. Cylinders are used

22:34 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

later as tools that separate initial and accept states in iHDAs, that is, which replace them
by proper ones in such a way that the languages accepted do not change.

Initial and final inclusions. Let X be an ipc-set. A ipc-subset Y ⊆ X is initial if it is
down-closed with respect to the reachability preorder ⪯ in X. Equivalently, Y is initial in
X if δ1B(x) ∈ Y implies x ∈ Y for all x ∈ X[U] and B ⊆ U \ TU . (Since Y is an ipc-set, the
implication x ∈ Y =⇒ δ0A(x) ∈ Y follows.) By reversal, Y is final if it is up-closed with
respect to ⪯ or, equivalently, δ0A(x) ∈ Y implies x ∈ Y . An initial (final) inclusion is an
injective ipc-map whose image is an initial (final) ipc-subset.

Lemma 12.1. Let f : Y → X be an initial (final) inclusion of ipc-sets. Then its closure
Cl(f) : Cl(Y)→ Cl(X) is an initial (final) inclusion of pc-sets.

Proof. Suppose f is an initial inclusion, x ∈ X[U], and δ1D([x;A,B]) ∈ im(Cl(f)). Then
δ1D\TU

(x) ∈ im(f) because

δ1D([x;A,B]) = [δ1D\TU
(x);A,B ∪ (D ∩ TU)] ∈ im(Cl(f)).

Thus x ∈ im(f) because f is initial, and [x;A,B] ∈ im(Cl(f)) follows. The proof for final
inclusions is similar.

Proper iHDAs. The start and accept maps of an iHDA X are the ipc-maps

ιX⊥ =
⊔

x∈X⊥

ιx :
⊔

x∈X⊥

I□iev(x) → X and ι⊤X =
⊔

x∈X⊤

ιx :
⊔

x∈X⊤

I□iev(x) → X.

An iHDA is start proper if its start map is an initial inclusion and accept proper if its
accept map is a final inclusion. An iHDA is proper if it is start proper, accept proper and
the images of the start map and the accept map are disjoint.

The following lemma and example explain the structure of start and accept proper
iHDAs.

Lemma 12.2. All start cells of start proper iHDAs are ⪯-minimal. All accept cells of accept
proper iHDAs are ⪯-maximal.

Proof. Let x⊥ ∈ X⊥ and U = iev(x⊥). Then obviously SU = U . The top cell c = [∅|U |∅]
of I□U is thus ⪯-minimal, in particular when regarded as a cell in

⊔
x∈X⊥

I□iev(x). But

x⊥ = iX⊥ (c) and initial inclusions preserve ⪯-minimal elements. So x⊥ is ⪯-minimal. The
claim for accept cells follows by reversal.

Example 12.3. The condition of Lemma 12.2 is not sufficient for properness. The following
diagrams show examples of iHDAs that are not start proper:

⊥X

⊥

⊥Y

v

x

x

Z

q⊥

Edges marked with x have been identified. In the first diagram, the start map ιX⊥ is an

inclusion, but not initial. In the second and third diagram, neither ιY⊥ nor ιZ⊥ is an inclusion:

ιY⊥ maps two different vertices to v; ιZ⊥ maps two different edges of I□iev(q) to x.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:35

Lifting properties. An ipc-map f : Y → X has the future lifting property (FLP) if for
every up-step α = (δ0A(x)↗A x) in X and every y ∈ Y such that f(y) = δ0A(x) there is an
up-step β = (y ↗A z) in Y such that f(β) = α. The past lifting property (PLP) is defined
by reversal.

FLP and PLP are equivalent to the lifting properties in the following diagrams:

FLP: I□U\A Y

I□U X

I□d0
A

ιy

ιx

f
ιz

PLP: I□U\B Y

I□U X

I□d1
B

ιy

ιx

f
ιz

The next lemma states that path lifting properties allow to lift paths along f , given
that their source or target cells can be lifted. It is immediate from the definitions.

Lemma 12.4. An ipc-map f : Y → X has the FLP if and only if for every α ∈ PX and
y ∈ f−1(src(α)) there exists a path β ∈ PY such that src(β) = y and f(β) = α. An analogous
property holds for PLP.

Let f : Y → X be an ipc-map and S, T ⊆ X, that is, these are subsets, but not
necessarily ipc-subsets. Then f has the total lifting property (TLP) with respect to S and
T if for every path α ∈ PX with src(α) ∈ S and tgt(α) ∈ T and every y ∈ f−1(src(α)) and
z ∈ f−1(tgt(α)), there exists a path β ∈ PY (y, z) such that f(β) = α.

Proposition 12.5. Let f : Y → X be an iHDA map such that the functions Y⊥ → X⊥ and
Y ⊤ → X⊤ induced by f are surjective. Suppose at least one of the following holds:

(1) f has the future lifting property and Y ⊤ = f−1(X⊤),
(2) f has the past lifting property and Y⊥ = f−1(X⊥),
(3) f has the total lifting property with respect to X⊥ and X⊤.

Then f is a weak equivalence.

Proof. For (1), there exists an y ∈ Y⊥ such that f(y) = src(α) by assumption, and β ∈ PY

such that src(β) = y and f(β) = α by Lemma 12.4. Moreover,

tgt(β) ∈ f−1(tgt(α)) ⊆ f−1(X⊤) = Y ⊤.

Item (2) follows from (1) by reversal.
For (3), there are y ∈ Y⊥, z ∈ Y ⊤ such that f(y) = src(α), f(z) = tgt(α) by assumption.
Since f has the TLP, there exists a β ∈ PY (y, z) such that f(β) = α.

Cylinders. Let X,Y, Z ∈ I□Set and f : Y → X, g : Z → X be ipc-maps. Assume further
that f and g have disjoint images. This is not directly used in the construction, but crucial
in proofs.

The cylinder C(f, g) is the ipc-set such that C(f, g)[U] is the set of (x,K,L, φ, ψ), where

• x ∈ X[U];
• K is an initial ipc-subset of I□U ;
• L is a final ipc-subset of I□U ;
• φ : K → Y is an ipc-map such that f ◦ φ = ιx|K ;

22:36 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

f̃(Y)Y
f̃ g̃

jp

f g

g̃(Z) Z

j(X)

X

C(f, g)

(I□dA,B)−1(K) I□V (I□dA,B)−1(L)

K I□U L

Y X Z

I□dA,B I□dA,B I□dA,B

φ ιx ψ

f g

Figure 19: The cylinder C(f, g) and a diagram defining its cell.

• ψ : L→ Z is an ipc-map such that g ◦ ψ = ιx|L.
For dA,B ∈ I□(V,U) and (x,K,L, φ, ψ) ∈ C(f, g)[U], we put

δA,B(x,K,L, φ, ψ) = (δA,B(x), (I□
dA,B)−1(K), (I□dA,B)−1(L), φ ◦ I□dA,B , ψ ◦ I□dA,B).

Equivalently, C(f, g)[U] is the set of commutative diagrams of solid arrows in Figure 19
and the face map δA,B composes the diagram with the dashed arrows. The following is then
clear (recall that f(Y) ∩ g(Z) = ∅).

Lemma 12.6. Let (x,K,L, φ, ψ) ∈ C(f, g). Then K ⊆ (ιx)
−1(f(Y)) and L ⊆ (ιx)

−1(g(Z)).
Thus K ∩ L = ∅, x ∈ f(Y) implies L = ∅, and x ∈ g(Z) implies K = ∅.

C(f, g) is equipped with the ipc-maps shown in Figure 19. They are defined by

j(x) = (x, ∅, ∅, ∅, ∅), p(x,K,L, φ, ψ) = x,

f̃(y) = (f(y), I□iev(y), ∅, ιy, ∅), g̃(z) = (g(z), ∅, I□iev(z), ∅, ιz).
Intuitively, C(f, g) may be regarded as a result of the following procedure: in the disjoint

union of Y ⊔X ⊔Z, add ε-transitions y → f(y) for all cells y ∈ Y and g(z)→ z for all z ∈ Z.
Next, resolve all ε-transitions. (Alas, we know no satisfactory definition of ε-transitions for
ipc-sets). See Figure 20 for an example.

Next we collect some of properties of cylinders.

Lemma 12.7.

(1) p ◦ f̃ = f , p ◦ g̃ = g, and p ◦ j = idX .

(2) f̃ is an initial inclusion and f̃(Y) = {(x,K,L, φ, ψ) ∈ C(f, g) | K = I□iev(x), L = ∅}.
(3) g̃ is a final inclusion and g̃(Z) = {(x,K,L, φ, ψ) ∈ C(f, g) | K = ∅, L = I□iev(x)}.
(4) j is an inclusion and j(X) = {(x, ∅, ∅, ∅, ∅) ∈ C(f, g)}.
(5) f̃(Y), g̃(Z) and j(X) are pairwise disjoint.

Proof. Item (1) is straightforward from the definition.
For (2), let Y ′ ⊆ C(f, g) be the right-hand side of the equation. We show that

h : Y ′ ∋ (x, I□iev(x), ∅, φ, ∅) 7→ φ([∅|∅]) ∈ Y

is the inverse of f̃ : Y → Y ′. Indeed,

h(f̃(y)) = h(f(y), I□iev(y), ∅, ιy, ∅) = ιy([∅|∅]) = y

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:37

Y

X

d

p

q

b

c
a

r
s

(a,□e, d)

(r,□∅, p)

(r,□∅, q)

(b, ∅, ∅)

(c, ∅, ∅)(a, ∅, ∅) (r, ∅, ∅)

(a, 0, p) (b, 0, p)

(a, 0, q)
(b, 0, q)

(s, ∅, ∅)

Figure 20: The cylinder C(f, ∅) for a map f : Y → X determined by f(d) = a. All edges
are labelled by e. Cells are marked by sequences (x,K,φ(y)), where y is the top
cell of K. K = 0 stands for {[e|∅]} ⊆ □e.

and

f̃(h(x, I□iev(x), ∅, φ, ∅)) = f̃(φ([∅|∅])) = (f(φ([∅|∅]), I□iev(x), ∅, ιφ([∅|∅]), ∅)

= (ιx([∅|∅]), I□iev(x), ∅, φ, ∅)

= (x, I□iev(x), ∅, φ, ∅).

In the above, f ◦φ = ιx holds by definition, and φ = ιφ([∅|∅]) since ipc-maps from I□iev(x) are

determined by their values on [∅|∅]. Thus, f̃ defines an isomorphism between Y and its image
Y ′. It remains to show that Y ′ ⊆ C(f, g) is an initial subset. Suppose δ1B(x,K,L, φ, ψ) ∈ Y ′.

Then (I□d1B)−1(K) = I□U\B and (I□d1B)−1(L) = ∅. Hence, K is an initial subset of I□U

containing an upper face [∅|B], so also [∅|∅] ∈ K and then K = I□iev(x). Therefore, L = ∅
and (x,K,L, φ, ψ) ∈ Y ′.

Finally, (3) follows from (2) by reversal, (4) is obvious from the definition and (5) follows

from (2)–(4) since I□iev(x) ̸= ∅ for all x ∈ X.

Lifting properties of cylinders. The following proposition allows us to use cylinders for
replacing iHDAs with proper iHDAs that accept the same languages.

Proposition 12.8. The projection p : C(f, g)→ X has the future and past lifting property,
as well as the total lifting property with respect to f(Y) and g(Z).

Proof. Suppose x ∈ X[U], y ∈ C(f, g)[U \A] and p(y) = δ0A(x). Then y = (δ0A(x),K, L, φ, ψ)

for some K, L, φ, ψ. For z = (x, I□d0A(K), I□d0A(L), φ ◦ (I□d0A)−1, ψ ◦ (I□d0A)−1) we have
p(z) = x and δ0A(z) = y. Thus p has the FLP, and the PLP follows by reversal.

For the TLP, let α = (x0, ω1, . . . , xn) ∈ PX , y, z ∈ C(f, g), and suppose p(y) = x0,
p(z) = xn. Then y = (x0,K0, ∅, φ0, ∅) and z = (xn, ∅, Ln, ∅, ψn) for some K0, φ0, Ln, ψn,
and the remaining items are empty by Lemma 12.6. We abbreviate Uk = iev(xk).

Define Kk ⊆ I□Uk and φk : Kk → Y inductively:

• if ωk = d1B, B ⊆ Uk−1 \ TUk−1
, then Kk = (I□d1B)−1(Kk−1), φk = φk−1 ◦ I□d1B ;

• if ωk = d0A, A ⊆ Uk \ SUk
, then Kk = I□d0A(Kk−1), φk = φk−1 ◦ (I□d0A)−1.

22:38 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

We further define Lk and ψk inductively in backwards fashion. Now

β = ((x0,K0, L0, φ0, ψ0), ω1, . . . , (xn,Kn, Ln, φn, ψn))

is a path in C(f, g) such that p(β) = α. Moreover, L0 = ∅ = Kn by Lemma 12.6, and
therefore src(β) = y and tgt(β) = z. The TLP with respect to f(Y) and g(Z) is thus
established.

Using cylinders we can now show that it suffices to focus on start or accept proper iHDAs
as recognisers of regular languages. Recall that by Lemma 11.8, every regular language is a
finite union of simple regular languages. This prepares us for the gluing compositions of
iHDAs in the following sections.

Proposition 12.9. Every simple regular language is recognised by a start simple and start
proper iHDA, and by an accept simple and accept proper iHDA.

Proof. We prove only the first claim; the second then follows by reversal. Suppose L is
recognised by the simple iHDA X with start cell x⊥ ∈ X[U]. Let Y be the iHDA with
underlying precubical set C(ιX⊥ , ∅), where ∅ : ∅ → X is the empty map. Further, let

y⊥ = (x⊥, I□U , ∅, idI□U , ∅) be the only start cell of Y and Y ⊤ = p−1(X⊤). Since ιY⊥ = ι̃X⊥ ,
Y is start proper by Lemma 12.7(b). Moreover, the projection p : Y → X has the FLP by
Proposition 12.8. Thus Lang(Y) = Lang(X) = L by Proposition 12.5(a).

Proposition 12.10. If the language L is regular, then so is L \ Id.

Proof. Suppose first that L is simple. Let X be a start simple and start proper iHDA
recognising L, owing to Proposition 12.9, and let Y be the iHDA with the same underlying
ipc-set and start cells as X, and with accept cells Y ⊤ = X⊤ \ X⊥. By Lemma 12.2, an
accepting path α ∈ PX is accepting in Y if and only if it has positive length (ev(α) is not
an identity). Thus Lang(Y) = Lang(X) \ Id = L \ Id is regular. If L is not simple, then let
L =

⋃
i Li be a finite sum of simple languages. Then L \ Id = (

⋃
i Li) \ Id =

⋃
i(Li \ Id) is

regular by the first case and Proposition 5.12.

13. Gluing toolbox

We now present several constructions of composite HDAs from simpler pieces and study
properties of their paths.

Sequential gluing. We fix precubical sets X1, . . . , Xn and Y1, . . . , Yn−1, initial inclusions
fk : Yk → Xk+1 and final inclusions gk : Yk → Xk (1 ≤ k < n). We also assume that the
fk−1(Yk−1), gk(Yk) ⊆ Xk are disjoint subsets and that the Yk are acyclic, which means by
definition that they are partially ordered by the reachability preorder ⪯ (see Section 5).

The sequential gluing given by this data forms the precubical set

Z = Zn((Xk)
n
k=1, (Yk)

n−1
k=1 , (fk)

n−1
k=1 , (gk)

n−1
k=1),

which is the colimit of the diagram

X1

Y1

X2

Y2 Yn−1

Xn
. . .

g1
f1

g2
f2

gn−1
fn−1 . (13.1)

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:39

X1

X2

X3

X4

z1

r0

⊥

z2

z3

r1

z4

r2

z5 = z8

z6
z7

z9 z10

r3

z11

z12

r4⊤

Figure 21: Example of checkpoint sequence.

Colimits of presheaves can be calculated pointwise. So Z is obtained from
⊔n

k=1Xn

by identifying cells gk(y) ∈ Xk and fk(y) ∈ Xk+1 for all 1 ≤ k ≤ n − 1 and y ∈ Yk. Let
jk : Xk → Z and ik : Yk → Z denote the structural maps.

Lemma 13.1. The maps ik and jk are injective for all 1 ≤ k < n. Moreover, ik(Yk) =
jk(Xk) ∩ jk+1(Xk+1).

Proof. As fk−1(Yk−1)∩gk(Yk) = ∅, each cell xk ∈ Xk can be identified with at most one other
cell in either Xk−1 or Xk+1. Consequently, different cells of Xk are never identified. Since
jk+1◦fk = ik = jk◦gk, we have ik(Yk) ⊆ jk(Yk)∩jk+1(Yk+1). Further, if jk(xk) = jk+1(xk+1)
then xk and xk+1 represent the same element in Z. Equivalence classes have at most two
elements, so xk = gk(y) and xk+1 = fk(y) for some y ∈ Yk.

It follows that Xk is isomorphic to its image jk(Xk) in Z and Yk is isomorphic to ik(Yk).
For simplicity, we regard Xk and Yk as precubical subsets of Z such that Yk = Xk ∩Xk+1 is
a final subset of Xk and an initial subset of Xk+1. We can then turn Z into an HDA with
Z⊥ = (X1)⊥, Z

⊤ = (Xn)
⊤ for any HDAs X1, Xn.

A checkpoint sequence for an accepting path α = (z1, φ1, . . . , zm) ∈ PZ is a sequence
(r0, r1, . . . , rn) such that r0 = z1, rn = zm and, for every 0 < k < n, rk ∈ Yk and rk = zl for
some l = l(k). See Figure 21 for an example.

Lemma 13.2. Every accepting path α ∈ PZ admits a checkpoint sequence. If (rk)
n
k=0 is a

checkpoint sequence for α, then

(1) the indices l(k) are uniquely determined by (rk)
n
k=0 and increasing,

(2) zl(k−1), zl(k−1)+1, . . . , zl(k) ∈ Xk,
(3) α = β1 ∗ . . . ∗ βn, where βk = (zl(k−1), φl(k−1), . . . , zl(k)) ∈ PXk

(rk−1, rk).

Proof. Define the function h : Z → N by

h(z) =

{
2k if z ∈ Yk,
2k − 1 if z ∈ Xk \ (Yk−1 ∪ Yk).

If z ∈ Yk, then δ0A(z), δ
1
B(z) ∈ Yk. If z ∈ Xk \ (Yk−1 ∪ Yk), then δ0A(z) ∈ Xk \ Yk, since

Yk ⊆ Xk is a final subset, and δ1B(z) ∈ Xk \ Yk−1, since Yk−1 ⊆ Xk is an initial subset.
Therefore, if (z, φ, z′) is a step in Z, then either h(z) = h(z′) or h(z) = h(z′)− 1.

Let α = (z1, φ1, . . . , zm). The sequence h(z1), . . . , h(zm) is then increasing by steps
of size 0 and 1, and h(z1) ∈ {1, 2}, h(zm) ∈ {2n − 2, 2n − 1}. Thus, there is a sequence

22:40 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

l(1) < · · · < l(n− 1) of indices such that h(zl(k)) = 2k, that is, rk = zl(k) ∈ Yk and (rk) is a
checkpoint sequence for α.
For (1), fix a checkpoint sequence (rk) for α. Suppose rk = zl = zl′ ∈ Yk for l ≤ l′. Then
h(zj) = 2k for all l ≤ j ≤ l′ and (zl, φl, . . . , zl′) is a cycle in Yk. By assumption, Yk is acyclic,
and therefore l = l′ = l(k). The sequence l(k) is increasing because the sequence h(zi) is.
For (2), note that 2k − 2 = h(zl(k−1)) ≤ h(zj) ≤ h(zl(k)) = 2k for every l(k − 1) ≤ j ≤ l(k).
Thus, zj ∈ Xk.
Finally, (3) follows from (2) and injectivity of the maps jk.

Vertical decomposition. We reuse the notation from the previous subsection. We assume
that Yk =

⊔
q∈Ck

Yk,q is written as a disjoint union of components. For any sequence

q = (qk)
n−1
k=1 , qk ∈ Ck we write

Z(q) = Zn((Xk)
n
k=1, (Yk,qk)

n−1
k=1 , (fk|Yk,qk

)n−1
k=1 , (gk|Yk,qk

)n−1
k=1).

This is the sequential gluing of the Xk’s in which we do not glue along the whole pc-sets
Yk, but only along their chosen components. By taking the union indexed by all possible
choices we obtain an HDA that is weakly equivalent to the original sequential gluing:

Proposition 13.3. The map
⊔

q∈C1×···×Cn−1
Z(q)→ Z induced by the identities on Xk and

the inclusions Yk,qk ⊆ Yk is a weak equivalence.

Proof. Suppose α ∈ PZ is an accepting path and (rk) a checkpoint sequence for α. Let qk
be the index of the component Yk,qk containing rk. The representation α = β1 ∗ · · · ∗ βn
associated to (rk) also defines a path α′ in Z(q), which obviously maps to α under the
canonical map.

Self-gluing. Let X be an HDA, Y a precubical set, f : Y → X an initial inclusion and
g : Y → X a final inclusion. Suppose Y is acyclic and the sets f(Y), g(Y), X⊥ and X⊤

are pairwise disjoint. Below we identify f(Y), the “initial” copy of Y in X, with the “final”
copy g(Y). Then we show that the resulting automaton is weakly equivalent to the union of
the sequence of the finite gluing compositions.

Define an HDA

V = V(X,Y, f, g) = colim

(
Y

f−→−→
g
X

)
. (13.2)

Let j : X → V , i : Y → V be the structural maps, let V⊥ = j(X⊥) and V
⊤ = j(X⊤). Hence

V is obtained from X by identifying cells f(y) and g(y) for y ∈ Y . Every cell z ∈ V is either
represented by a single cell x ∈ X if z ̸∈ i(Y) or by a pair of cells (f(y), g(y)), y ∈ Y .

Unlike for sequential gluings, we cannot assume that X is proper. Hence j is not
necessarily injective and X need not be a precubical subset of V .

For n ≥ 1 let

Zn(X,Y, f, g) = Zn((Xk)
n
k=1, (Yk)

n−1
k=1 , (fk)

n−1
k=1 , (gk)

n−1
k=1)

where we take Xk = X, Yk = Y , fk = f , gk = g for all k. As before, we let

Zn(X,Y, f, g)⊥ = (X1)⊥, Zn(X,Y, f, g)
⊤ = (Xn)

⊤.

The transformation from diagram (13.1) to (13.2) that maps all Xk’s into X, Yk’s into Y ,
fk’s into f and gk’s into g induces a map πn : Zn(X,Y, f, g)→ V(X,Y, f, g).

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:41

Proposition 13.4. The map

π =
⊔
πn : Zn(X,Y, f, g)→ V(X,Y, f, g)

is a weak equivalence.

Proof. Suppose α = (z1, φ1, . . . , zm) ∈ PV is an accepting path. We can choose a sequence
1 < l(1) < . . . < l(n− 1) < m of indices such that zl(k) ∈ i(Y). Then there exists b(k) with
l(k − 1) < b(k) < l(k) such that zb(k) ̸∈ i(Y) (1 < k < n− 1) and k is maximal. Further, let
b(0) = 1, b(n) = m. Equivalently, we can choose one representative l(k) from every sequence
of consecutive cells of α that belong to i(Y), and we can choose representatives b(k) from all
sequences of cells that not belong to i(Y). For 1 < k < n− 1 we choose cells xks ∈ j−1(zs)
for l(k − 1) ≤ s ≤ l(k). If zs ̸∈ i(Y), then xks is the only element of j−1(zs). Otherwise,
j−1(zs) = {f(ys), g(ys)} for some ys ∈ Y and we put xks = f(ys) for s < b(k) and xks = g(ys)
for s > b(k).

We show that βk = (xkl(k−1), φl(k−1), . . . , x
k
l(k)) is a path in X. Pick an arbitrary index

s ∈ {l(k − 1), . . . , l(k)− 1} and assume that φs = d1B. We must check that δ1B(x
k
s) = xks+1.

It is clear that both δ1B(x
k
s) and xks+1 belong to j−1(zs+1) because zs+1 = δ1B(zs). If

zs+1 ̸∈ i(Y), then j−1(zs+1) has one element and there is nothing to prove. Otherwise,
j−1(zs+1) = {f(y), g(y)} for some y ∈ Y .

• If zs ̸∈ i(Y), then s+1 > b(k), and thus, by definition, xks+1 = g(y). Further, δ1B(x
k
s) ̸∈ f(Y)

(since xks ̸∈ f(Y) and f(Y) is an initial subset of X). Hence δ1B(x
k
s) = g(y) = xks+1.

• If zs ∈ i(Y), then either s > b(k) and xks , x
k
s+1 ∈ g(Y), or s+1 < b(k) and xks , x

k
s+1 ∈ f(Y).

In both cases δ1B(x
k
s) = xks+1.

The case φk = d0A follows by reversal. Finally, βk ∈ PX .

Let αk = (xkl(k−1), φl(k−1), . . . , x
k
l(k)) ∈ PX . Then clearly j(βk) = αk and there are cells

yk ∈ Y such that tgt(βk) = g(yk) and src(βk+1) = f(yk). Then γ = j1(β1) ∗ · · · ∗ jn(βn),
where jk : X ∼= Xk → Zn(X,Y, f, g) is the structural map, is a well-defined concatenation.
This yields

πn(γ) = πn(j1(β1) ∗ · · · ∗ jn(βn)) = j(β1) ∗ · · · ∗ j(βn) = α

and the claim holds.

14. Sequential composition of simple iHDAs

Let X1, . . . , Xn ∈ iHDA. Suppose that X1 is accept simple and accept proper, that
X2, . . . , Xn−1 are simple and proper, and that Xn is start simple and start proper. Let
xk⊥ (k > 1) and x⊤k , for k < n, be the only start and accept cells of Xk, and assume that

ev(x⊤k) = ev(xk+1
⊥) = Uk. The domains of both maps Cl(ιx⊤

k
) and Cl(ιxk+1

⊥
) are thus equal to

□Uk by Lemma 11.3. We do not require that iev(x⊤k) = iev(xk+1
⊥).

The sequential composition of X1, . . . , Xn is the HDA

X1 ∗ · · · ∗Xn = Zn(Cl(Xk)
n
k=1, (□

Uk)n−1
k=1 ,Cl(ιxk

⊥
)n−1
k=1 ,Cl(ιx⊤

k
)n−1
k=1) (14.1)

with (X1 ∗ · · · ∗Xn)⊥ = Cl(X1)⊥, (X1 ∗ · · · ∗Xn)
⊤ = Cl(Xn)

⊤. The assumptions required by
(13.1) are thus satisfied: the cubes □Uk are acyclic and the images of Cl(ιxk

⊥
) and Cl(ιx⊤

k
)

are disjoint by properness of the Xk. Note that the sequential composition considered is an

22:42 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

n-ary operation: it maps a sequence of iHDAs to an HDA. For short, we henceforth write Z
for the HDA in (14.1).

We have iev(x⊤k) = Sk
(Uk)Uk

and iev(xk+1
⊥) = Uk

(Uk)Tk
for some Sk, Tk ⊆ Uk, which

are not necessarily disjoint. The ik : □Uk → Z, jk : Cl(Xk) → Z are structural maps,
which we sometimes omit, regarding Cl(Xk) and □Uk as precubical subsets of Z. Let

uk = ik([∅|∅]) = jk([x
⊤
k ; ∅, ∅]) = jk+1([x

k+1
⊥ ; ∅, ∅]).

Proposition 14.1. Lang(X1) ∗ · · · ∗ Lang(Xn) ⊆ Lang(X1 ∗ · · · ∗Xn).

Proof. If P ∈ Lang(X1) ∗ · · · ∗ Lang(Xn), then P ⊑ Q1 ∗ · · · ∗Qn for some Qk ∈ Lang(Xk).
Choose accepting paths βk ∈ PCl(Xk) such that ev(βk) = Qk, according to Proposition 11.4.

Since tgt(βk) = [x⊤k ; ∅, ∅] and src(βk+1) = [xk+1
⊥ ; ∅, ∅] represent the same cell uk in Z, the βk

can be composed. Then

P ⊑ Q1 ∗ · · · ∗Qn = ev(β1) ∗ · · · ∗ ev(βn) = ev(β1 ∗ . . . ∗ βn) ∈ Lang(X1 ∗ · · · ∗Xn).

The defect of an accepting path α ∈ PZ is

min

{
n−1∑
k=1

(|Uk| − dim(rk)) | (rk)nk=0 is a checkpoint sequence for α

}
.

The defect of α measures how far α passes from the cells uk. It is non-negative since
dim(□Uk) = |Uk| and equal to 0 if and only if rk = uk for all 1 ≤ k < n since uk are the only
cells in □U of dimension |Uk|. A checkpoint sequence for which the minimum is obtained is
called maximal, because it consists of cells with the maximal dimensions possible.

Lemma 14.2. Let α ∈ PZ be a path that is not subsumed by another path with a smaller
defect. Then (uk)

n
k=0 is a checkpoint sequence for α (we assume u0 = src(α), uk = tgt(α)).

Proof. Let (rk) be a maximal checkpoint sequence for α. By assumption, rk = δEk,Fk
(uk)

and Ek, Fk are uniquely determined by injectivity of ik. We wish to show that Ek = Fk = ∅.
Let r0 = src(α), rn = tgt(α). Let α = β1 ∗ · · · ∗ βn, βk ∈ PXk

(rk−1, rk), be the
representation determined by (rk)

n
k=0 according to Lemma 13.2.(c). By Lemma 11.9, every

path βk is subsumed by a path γk of the form

(rk−1 = [y;Ck ∪Ak, Dk]↗Ak [y;Ck, Dk]) ∗ β′k ∗ ([z;Ck, Dk]↘Bk
[z;Ck, Dk ∪Bk] = rk).

We show that Bk = ∅. For k = n, [z;Ck, Dk ∪ Bk] = [x⊤n ; ∅, ∅] ∈ Cl(Xn)
⊤ and thus

Cn = Dn ∪ Bn = ∅. For k < n, the cell rk is a face of uk. Then [z;Ck, Dk ∪ Bk] is a
face of [x⊤k ; ∅, ∅] by injectivity of jk, z is a face of x⊤k by Lemma 11.6 and [z;Ck, Dk] is

a face of [x⊤k ; ∅, ∅] by the same lemma. Thus [z;Ck, Dk] is a face of uk, or equivalently,

[z;Ck, Dk] ∈ □Uk . If B ̸= ∅, then [z;Ck, Dk] is of higher dimension than rk = [z;Ck, Dk∪Bk].
Then,

(r1, . . . , rk−1, [z;Ck, Dk], rk+1, . . . , rn−1)

is a checkpoint sequence that contradicts the maximality of (rk) and shows that Bk = ∅. Sim-
ilarly, Ak = ∅ follows by reversal. This shows that every βk has the form ([zkj ;Ck, Dk], φ

k
j)

mk
j=1,

that is, the second and third coordinates in βk remain constant.
Next, we relate the sets Ck, Dk, Ek and Fk. For every k = 1, . . . , n− 1,

rk = δEk,Fk
([x⊤k ; ∅, ∅]) = [δ0Ek\Sk

(x⊤k);Ek ∩ Sk, Fk],

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:43

and hence Ck = Ek ∩ Sk, Dk = Fk. Moreover,

rk = δEk,Fk
([xk+1

⊥ ; ∅, ∅]) = [δ0Fk\Tk
(xk+1

⊥);Ek, Fk ∩ Tk],
and thus Ck+1 = Ek, Dk+1 = Fk ∩ Tk. Therefore, Ck ⊆ Ck+1 and Dk ⊇ Dk+1. Furthermore,
C1 = D1 = ∅ since src(β1) ∈ Cl(X1)⊥ and Cn = Dn = ∅ since tgt(βn) ∈ Cl(Xn)

⊤. The sets
Ck, Dk, Ek and Fk are therefore empty, rk = δEk,Fk

(uk) = uk and α has defect 0.

Lemma 14.3. Every accepting path γ ∈ PZ is subsumed by a path α with checkpoint sequence
(src(α), u1, . . . , un−1, tgt(α)). Thus α traverses the interiors of the gluing cubes □Uk .

Proof. Let α ∈ PZ be a path with minimal defect among all paths subsuming γ. The
conclusion then follows by Proposition 14.2.

Proposition 14.4. Lang(X1 ∗ · · · ∗Xn) = Lang(X1) ∗ · · · ∗ Lang(Xn).

Proof. Let P ∈ Lang(Z) and γ ∈ PZ be an accepting path such that ev(γ) = P . Then
γ is subsumed by an α ∈ PZ with checkpoint sequence (uk)

n
k=0 by Lemma 14.3 and the

βk ∈ PCl(Xk) determined by (uk)
n
k=0, according to Lemma 13.2, are accepting. Therefore

P = ev(γ) ⊑ ev(α)

= ev(j1(β1) ∗ · · · ∗ jn(βn))
= ev(β1) ∗ · · · ∗ ev(βn) ∈ Lang(Cl(X1)) ∗ · · · ∗ Lang(Cl(Xn))

= Lang(X1) ∗ · · · ∗ Lang(Xn)

and thus Lang(Z) ⊆ Lang(X1) ∗ · · · ∗ Lang(Xn). The converse inclusion follows from Propo-
sition 14.1.

After all these preparations we can finally show that gluing compositions of regular
languages are regular.

Proof of Proposition 6.4. Let L and M be regular languages. If they are simple, then there
exist simple iHDAs X and Y that recognise L and M . Proposition 12.9 allows us to assume
that X is accept simple and accept proper and that Y is start simple and start proper.
Proposition 14.4 then implies that

Lang(X ∗ Y) = Lang(X) ∗ Lang(Y) = L ∗M
is regular. Otherwise, if L and M are not simple, then L =

⋃
i Li and M =

⋃
j Mj for simple

regular languages Li and Mj by Lemma 11.8. In this case,

L ∗M =
(⋃

i

Li

)
∗
(⋃

j

Mj

)
=

⋃
i

⋃
j

Li ∗Mj

is regular by Proposition 5.12.

15. Kleene plus

Suppose X is an iHDA such that Lang(X) is separated. We construct an HDA X+ such
that Lang(X+) = Lang(X)+. We wish to identify accept cells with start cells that have the
same events. But identifying all of them would produce too many accepting paths. For every
accept cell y we thus add a copy for every start cell compatible with y, and an extra one to
replace the original one – and likewise for start cells. We must then ensure that the iHDA
constructed is proper. The following fact ensures that we can construct the cylinder below.

22:44 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

[⊥\x]
[⊥\w]

[y/⊤]
[z/⊤]

[y\x]
[z\x]

[y/w]

[y/x]

[y\w]
[z\w]

[z/w]

[z/x]

Figure 22: A specimen of spider

Lemma 15.1. Let X ∈ iHDA and Lang(X) be separated. Then im(ιX⊥) ∩ im(ι⊤X) = ∅.

Proof. Suppose y ∈ im(ιX⊥) ∩ im(ι⊤X) for some y ∈ X[V]. Then δ1B(x) = y = δ0A(z) for some

U,W ∈ I□, x ∈ X⊥[U], z ∈ X⊤[W], B ⊆ U , A ⊆ W and U \ B = V = W \ A because
start/accept cells have only upper/lower faces. Then every event of the ipomset

ev
(
x↘B y ↗A z

)
= UUV ∗ VWW

in Lang(X) lies in one of the interfaces U , W and Lang(X) is not separated.

Let G = {(y, x) | y ∈ X⊤, x ∈ X⊥, ev(x) = ev(y)}, let G⊥ = {(⊥, x) | x ∈ X⊥} and
G⊤ = {(y,⊤) | y ∈ X⊤}. Define

J⊥ =
⊔

(y,x)∈G∪G⊥

I□iev(x) and J⊤ =
⊔

(y,x)∈G∪G⊤

I□iev(y).

Further, let w⊥ =
⊔
ιx : J⊥ → X, w⊤ =

⊔
ιy : J⊤ → X. The maps w⊥ and w⊤ are similar

to the start and accept maps, but more than one cube can be mapped into a start or accept
cell.

We define the spider of X as the cylinder Sp(X) = C(w⊥, w
⊤). It is well-defined because

im(w⊥) ∩ im(w⊤) = im(ιX⊥) ∩ im(ι⊤X) = ∅, since Lang(X) is separated and by Lemma 15.1.
The spider is equipped with an initial inclusion w̃⊥ : J⊥ → Sp(X) and a final inclusion
w̃⊤ : J⊤ → Sp(X) (Lemma 12.7). We write

[y\x] = w̃⊥((y, x), [∅|∅]) ∈ Sp(X)[iev(x)],

[y/x] = w̃⊤((y, x), [∅|∅]) ∈ Sp(X)[iev(y)]

for (y, x) ∈ G ∪G⊥ in the upper line and (y, x) ∈ G ∪G⊤ in the lower line.
Each cell [y\x] is a “copy” of x that is to be connected to a copy [y/x] of y. Such

copies serve as start and accept cells of Sp(X): we put Sp(X)⊥ = {[⊥\x] | x ∈ X⊥} and
Sp(X)⊤ = {[y/⊤] | y ∈ X⊤}. See Figure 22 for an example.

We also use Sp(X) in combination with other sets of start and accept cells: for each
subset S, T ⊆ Sp(X), Sp(X)TS denotes the iHDA with underlying ipc-set Sp(X), start cells
S and accept cells T . We use a similar convention for X.

Lemma 15.2. For (y′, x) ∈ G ∪G⊥, (y, x
′) ∈ G ∪G⊤, the projection map

p : Sp(X)
[y/x′]
[y′\x] → Xy

x

is a weak equivalence.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:45

Proof. We have p([y′\x]) = x ∈ im(w⊥) and p([y/x
′]) = y ∈ im(w⊤). Since p has the TLP

with respect to x, y by Proposition 12.8, it is a weak equivalence by Proposition 12.5(c).

Every accepting path α ∈ PX(x, y) can therefore be lifted to a path from any copy of x
to any copy of y.

Next, we identify “start copies” with “accept copies”. To achieve this we need to pass
to HDAs. We abbreviate CSp(X) = Cl(Sp(X)). We regard cells [y\x] and [y/x] as cells of
CSp(X) – formally, we should write [[y\x]; ∅, ∅] and [[y/x]; ∅, ∅] instead.

Let W⊥(X) ⊆ J⊥, W⊤(X) ⊆ J⊤ be the unions of cubes indexed by G (we omit G⊥ and

G⊤, respectively). The closures of W⊥(X) and W⊤(X) are naturally isomorphic to

W(X) =
⊔

(x,y)∈G

□ev(x) =
⊔

(x,y)∈G

□ev(y)

by Lemma 11.3. Let f, g : W(X) → CSp(X) be the closures of the restrictions f =

Cl(w̃⊥|W⊥(X)) and g = Cl(w̃⊤|W⊤(X)). Since W⊥(X) ⊆ J⊥ and W⊤(X) ⊆ J⊤ are initial and

final subsets, f is an initial inclusion and g a final one by Lemma 12.1. Now we are ready to
define the HDA

X+ = V(CSp(X),W(X), f, g).

It remains to show that Lang(X+) = Lang(X)+. The map⊔
n≥1

Zn(CSp(X),W(X), f, g)→ V(CSp(X),W(X), f, g) (15.1)

is a weak equivalence by Proposition 13.4. For any sequence Γ = (xk, yk)
n−1
k=1 ∈ G

n−1 and
Uk = ev(xk) = ev(yk) we define

Sn(X; Γ) = Zn(CSp(X)nk=1, (□
Uk)n−1

k=1 ,Cl(ι[yk\xk])
n−1
k=1 ,Cl(ι[yk/xk])

n−1
k=1)

= Sp(X)
[y1/x1]
[⊥\X⊥] ∗ Sp(X)

[y2/x2]
[y1\x1]

∗ · · · ∗ Sp(X)
[X⊤/⊤]
[yn−1\xn−1]

,

where [⊥\X⊥] = {[⊥\x] | x ∈ X⊥}, [X⊤/⊤] = {[y/⊤] | y ∈ X⊤}.
Proposition 13.3, applied to the decomposition (15.1), shows that⊔

Γ∈Gn−1

Sn(X; Γ)→ Zn(CSp(X),W(X), f, g)

is a weak equivalence. As weakly equivalent HDAs have equal languages (Lemma 5.10), we
obtain the following fact.

Lemma 15.3. Lang(X+) =
⋃

n≥1

⋃
Γ∈Gn−1 Lang(Sn(X; Γ)).

Proposition 14.4 and Lemma 15.2 then imply that

Lang(Sn(X; Γ))

= Lang
(
Sp(X)

[y1/x1]
[⊥\X⊥]

)
∗ Lang

(
Sp(X)

[y2/x2]
[y1\x1]

)
∗ · · · ∗ Lang

(
Sp(X)

[X⊤/⊤]
[yn−1\xn−1]

)
= Lang(Xy1

X⊥
) ∗ Lang(Xy2

x1
) ∗ · · · ∗ Lang(XX⊤

xn−1
). (15.2)

Lemma 15.4.
⋃

Γ∈Gn−1 Lang(Sn(X; Γ)) = Lang(X)n.

22:46 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

Proof. We have

Lang(X)n = Lang(X) ∗ · · · ∗ Lang(X)

=
(⋃
y1∈X⊤

Lang(Xy1
X⊥

)
)
∗
(⋃
x1∈X⊥
y2∈X⊤

Lang(Xy2
x1
)
)
∗ · · · ∗

(⋃
xn−1∈X⊥

Lang(XX⊤
xn−1

)
)

=
⋃

x1,...,xn−1∈X⊥
y1,...,yn−1∈X⊤

Lang(Xy1
X⊥

) ∗ Lang(Xy2
x1
) ∗ · · · ∗ Lang(XX⊤

xn−1
)

(†)
=

⋃
Γ=(xk,yk)∈Gn−1

Lang(Xy1
X⊥

) ∗ Lang(Xy2
x1
) ∗ · · · ∗ Lang(XX⊤

xn−1
)

(15.2)
=

⋃
Γ∈Gn−1

Lang(Sn(X; Γ)).

In (†) we use the fact that Lang(Xyk
xk−1) ∗ Lang(X

yk+1
xk) = ∅ whenever ev(yk) ̸= ev(xk).

Proposition 15.5. The Kleene plus of a separated regular language is regular.

Proof. From Lemmas 15.3 and 15.4 it follows that

Lang(X+) =
⋃
n≥1

Lang(X)n = Lang(X)+.

Finally we can prove that the Kleene plus of any regular language is regular.

Proof of Proposition 6.5. Suppose L is regular. If L ∩ Id = ∅, then Ln is separated for
sufficiently large n by Lemma 4.6. In this case,

L+ =
n⋃

i=1

Li ∪
(n⋃

i=1

Li
)
∗ (Ln)+

is regular by Propositions 5.12, 6.4 and 15.5. If L ∩ Id ̸= ∅, then
L+ = ((L ∩ Id) ∪ (L \ Id))+ = (L ∩ Id) ∪ (L \ Id)+

is regular by Propositions 5.12 and 12.10.

As outlined in Section 6, the proof of the Kleene theorem for higher-dimensional automata
is now complete.

16. Conclusion

Automata accept languages, but higher-dimensional automata have for a long time been an
exception to this rule. Here, we have proved a Kleene theorem for HDAs, connecting models
to behaviours through an equivalence between regular and rational languages.

Showing that regular languages are rational was quite direct, while the converse direction
required some effort. One reason is that HDAs may be glued not only at states, but also
at higher-dimensional cells. This led us to consider languages of ipomsets and to equip
HDAs with interfaces, yielding iHDAs. After showing that HDAs and iHDAs recognise the
same languages, we used constructions inspired by topology to glue (i)HDAs and show that
rational operations on languages can be reflected by operations on them.

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:47

Kleene theorems build bridges between machines and languages, and there is a vast
literature on this subject. In non-interleaving concurrency, one school considers Mazurkiewicz
trace languages. Zielonka introduces asynchronous automata and shows that languages are
regular if and only if they are recognisable [Zie87]. Droste’s automata with concurrency
relations have similar properties [Dro94]. Yet not all rational trace languages that are
generated from singletons using union, concatenation and Kleene star are recognisable
[CG95]. Trace languages use a binary notion of independence and already 2-dimensional
HDAs may exhibit behaviour that cannot be captured by trace languages [Gou02].

Another school studies Kleene theorems for series-parallel pomset languages and au-
tomata models for these, such as branching and pomset automata [LW00,KBL+19], and
Petri automata [BP17]. Series-parallel pomsets are incomparable to the interval orders
accepted by Petri nets or HDAs [Vog92,FJSZ22b].

HDAs have been developed first of all with a view on operational, topological and
geometric aspects of concurrency, see [FGH+16] and the extensive bibliography in [vG06a].
But languages for HDAs have only been introduced recently [FJSZ21]. Topological intuitions
have also guided our present work, for example in the cylinder construction.

Our formalisation of (i)HDAs as presheaves on a category of labelled posets opens up
connections to presheaf automata [Sob15], coalgebra, and open maps [JNW96], which we
intend to explore. Finally, our introduction of iHDA morphisms akin to cofibrations and
trivial fibrations hints at factorisation systems. Weak factorisation systems and model
categories have been considered in a bisimulation context, for example in [KR05], and we
wonder about the connection.

Acknowledgments. We are very grateful to the anonymous reviewers who helped us to
improve the presentation of our results significantly.

References

[BP17] Paul Brunet and Damien Pous. Petri automata. Logical Methods in Computer Science, 13(3),
2017. doi:10.23638/LMCS-13(3:33)2017.

[CG95] Christian Choffrut and Leucio Guerra. Logical definability of some rational trace languages.
Mathematical Systems Theory, 28(5):397–420, 1995. doi:10.1007/BF01185864.

[Dro94] Manfred Droste. A Kleene theorem for recognizable languages over concurrency monoids. In Serge
Abiteboul and Eli Shamir, editors, ICALP, volume 820 of Lecture Notes in Computer Science,
pages 388–399. Springer, 1994. doi:10.1007/3-540-58201-0_84.

[FGH+16] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin Raussen.
Directed Algebraic Topology and Concurrency. Springer, 2016. doi:10.1007/978-3-319-15398-8.

[Fis85] Peter C. Fishburn. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley,
1985.

[FJSZ21] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Languages of
higher-dimensional automata. Mathematical Structures in Computer Science, 31(5):575–613, 2021.
doi:10.1017/S0960129521000293.

[FJSZ22a] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemianski. A Kleene theorem
for higher-dimensional automata. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors,
CONCUR, volume 243 of Leibniz International Proceedings in Informatics, pages 29:1–29:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/

LIPIcs.CONCUR.2022.29, doi:10.4230/LIPICS.CONCUR.2022.29.
[FJSZ22b] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Posets with interfaces

as a model for concurrency. Information and Computation, 285(B):104914, 2022. doi:10.1016/j.
ic.2022.104914.

https://doi.org/10.23638/LMCS-13(3:33)2017
https://doi.org/10.1007/BF01185864
https://doi.org/10.1007/3-540-58201-0_84
https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.1017/S0960129521000293
https://doi.org/10.4230/LIPIcs.CONCUR.2022.29
https://doi.org/10.4230/LIPIcs.CONCUR.2022.29
https://doi.org/10.4230/LIPICS.CONCUR.2022.29
https://doi.org/10.1016/j.ic.2022.104914
https://doi.org/10.1016/j.ic.2022.104914

22:48 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

[FRG06] Lisbeth Fajstrup, Martin Raussen, and Eric Goubault. Algebraic topology and concurrency.
Theoretical Computer Science, 357(1-3):241–278, 2006.

[GM03] Marco Grandis and Luca Mauri. Cubical sets and their site. Theory and Applications of Categories,
11(8):185–211, 2003.

[Gou02] Eric Goubault. Labelled cubical sets and asynchronous transition systems: an adjunction. In
CMCIM, 2002. http://www.lix.polytechnique.fr/~goubault/papers/cmcim02.ps.gz.

[Gra81] Jan Grabowski. On partial languages. Fundamentae Informatica, 4(2):427, 1981.
[Gra09] Marco Grandis. Directed algebraic topology: models of non-reversible worlds. New mathematical

monographs. Cambridge University Press, 2009.
[JNW96] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Information

and Computation, 127(2):164–185, 1996.
[KBL+19] Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. On series-parallel

pomset languages: Rationality, context-freeness and automata. Journal of Logic and Algebraic
Methods in Programming, 103:130–153, 2019. doi:10.1016/j.jlamp.2018.12.001.

[KR05] Alexander Kurz and Jǐŕı Rosický. Weak factorizations, fractions and homotopies. Applied Cate-
gorical Structures, 13(2):141–160, 2005.

[LW00] Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theoretical Computer Science, 237(1-2):347–380, 2000. doi:10.1016/S0304-3975(00)00031-1.

[Pra91] Vaughan R. Pratt. Modeling concurrency with geometry. In POPL, pages 311–322, New York
City, 1991. ACM Press.

[Sob15] Pawel Sobocinski. Relational presheaves, change of base and weak simulation. J. Comput. Syst.
Sci., 81(5):901–910, 2015. doi:10.1016/j.jcss.2014.12.007.

[vG91] Rob J. van Glabbeek. Bisimulations for higher dimensional automata. Email message, June 1991.
http://theory.stanford.edu/~rvg/hda.

[vG06a] Rob J. van Glabbeek. On the expressiveness of higher dimensional automata. Theoretical Computer
Science, 356(3):265–290, 2006. See also [vG06b].

[vG06b] Rob J. van Glabbeek. Erratum to “On the expressiveness of higher dimensional automata”.
Theoretical Computer Science, 368(1-2):168–194, 2006.

[Vog92] Walter Vogler. Modular Construction and Partial Order Semantics of Petri Nets, volume 625 of
Lecture Notes in Computer Science. Springer, 1992. doi:10.1007/3-540-55767-9.

[Win77] Józef Winkowski. An algebraic characterization of the behaviour of non-sequential systems.
Information Processing Letters, 6(4):105–109, 1977. doi:10.1016/0020-0190(77)90021-7.

[Zie87] Wies law Zielonka. Notes on finite asynchronous automata. RAIRO - Theoretical Informatics and
Applications, 21(2):99–135, 1987. doi:10.1051/ita/1987210200991.

Appendix A. Definitions of HDAs

Precubical sets and HDAs appear in different incarnations in the literature, all of them more
or less equivalent. We discuss some of these in this Appendix to relate them with our own
approach, but make no claim as to completeness.

Precubical sets. Precubical sets à la Grandis [GM03,Gra09] are presheaves on a small
category □G, defined by the following data:

• objects are {0, 1}n for n ≥ 0;
• elementary coface maps dνi : {0, 1}n → {0, 1}n+1, for i = 1, . . . , n + 1 and ν = 0, 1, are
given by dνi (t1, . . . , tn) = (t1, . . . , ti−1, ν, ti, . . . , tn).

Elementary coface maps compose to coface maps {0, 1}m → {0, 1}n for n ≥ m in the
standard way.

□G-sets, that is, elements X ∈ Set□
op
G , are then graded sets X = {Xn}n≥0, where

Xn = X[{0, 1}n], together with face maps Xn → Xm for n ≥ m. The elementary face maps

http://www.lix.polytechnique.fr/~goubault/papers/cmcim02.ps.gz
https://doi.org/10.1016/j.jlamp.2018.12.001
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1016/j.jcss.2014.12.007
http://theory.stanford.edu/~rvg/hda
https://doi.org/10.1007/3-540-55767-9
https://doi.org/10.1016/0020-0190(77)90021-7
https://doi.org/10.1051/ita/1987210200991

Vol. 20:4 KLEENE THEOREM FOR HIGHER-DIMENSIONAL AUTOMATA 22:49

are denoted δνi = X[dνi]. They must satisfy the precubical identity, for any ν, µ ∈ {0, 1} and
i < j:

δνi δ
µ
j = δµj−1δ

ν
i . (A.1)

This description of □G-sets may be taken as a definition without using presheaves.
For example, van Glabbeek [vG06a] defines a precubical set Q = (Q, s, t) as a family of
sets (Qn)n≥0 and maps si : Qn → Qn−1, 1 ≤ i ≤ n, such that αi ◦ βj = βj−1 ◦ αi for all
1 ≤ i < j ≤ n and α, β ∈ {s, t}. This is equivalent to the above.

We have previously introduced another base category, Z, defined as follows [FJSZ21]:

• objects are totally ordered sets (S, 99KS);
• morphisms S → T are pairs (f, ε), where f : S ↪→ T is an order preserving injection and
ε : T → {0, , 1} satisfies f(S) = ε−1().

The element stands for “active”, a notation previously used by van Glabbeek. Writing
A = ε−1(0) and B = ε−1(1) makes the above notion of morphism equivalent to the triples
(f,A,B) consisting of f : S ↪→ T (order preserving and injective) and A,B ⊆ T such that
T = A⊔f(S)⊔B (disjoint union). Except for the labels, this is our definition of in Section
3.

Using this definition, it can be shown that the full subcategory of Z spanned by the
objects ∅ and {1, . . . , n} for n ≥ 1 is skeletal and equivalent to Z [FJSZ21]. Moreover, this
subcategory, □Z, is isomorphic to □G, and the presheaf categories on Z and on □Z (and
thus also on □G) are uniquely naturally isomorphic. It is clear that □Z is a representative
of the quotient of Z with respect to isomorphisms, so, except for the labelling, this is again
our category □ from Section 3.

The advantage of Z and over the skeletal versions is that the precubical identity
(A.1) is automatic and that there is a built-in notion of events and actions, that is, in a

Z-set X, each cell x ∈ X[U] has events U .

HDAs. Higher-dimensional automata are Σ-labelled precubical sets with specified start
and accept cells. The labelling may be obtained using the labelling object !Σ [Gou02]. This
is the precubical set with !Σn = Σn and δνi ((a1, . . . , an)) = (a1, . . . , ai−1, ai+1, . . . , an). A
labelled precubical set is then a precubical map X → !Σ, that is, an object of the slice
category of precubical sets over !Σ.

Each labelling function λ : X → !Σ induces a function λ1 : X1 → Σ satisfying
λ1(δ

0
1(x)) = λ1(δ

1
1(x)) and λ1(δ

0
2(x)) = λ1(δ

1
2(x)) for all x ∈ X2. Conversely, each such

function extends uniquely to a precubical map X → !Σ [FJSZ21, Lemma 14], so that λ1 may
be taken as the primary definition instead. This is the approach in [vG06a], where HDAs are
defined as precubical sets Q equipped with functions λ1 → Σ such that λ1(si(q)) = λ1(ti(q))
for all q ∈ Q2 and i = 1, 2, and subsets of start and accept states I, F ⊆ Q0.

Regarded as a presheaf, !Σ(S) = Set(S,Σ). Hence !Σ is representable in Set via the
forgetful functor Z → Set [FJSZ21]. Labels can thus be integrated into the base category,
which turns Z into our category , with labelled totally ordered sets as objects. Using
instead of Z allows working in a labelled setting ab initio instead of taking a slice category.

To summarise, starting from an HDAX as defined in this article, an HDA (Q, s, t, λ1, I, F)
à la van Glabbeek [vG06a] can be obtained as follows:

• Qn =
⊔

U∈□, |U |=nX[U].

• If x ∈ X[U], then si(x) = δ0u(x) and ti(x) = δ1u(x), where u ∈ U is the i-th smallest
element of U in the order 99KU .

22:50 U. Fahrenberg, C. Johansen, G. Struth, and K. Ziemiański Vol. 20:4

• If x ∈ X[U] ⊆ Q1 with U = ({e}, ∅, λ(e) = a), then λ1(x) = a.
• I = X⊥, F = X⊤.

Conversely, let (Q, s, t, λ1, I, F) be an HDA à la van Glabbeek. Then there are unique
labelling functions λn : Qn → Σn that satisfy λn−1(αi(q)) = δi(λn(q)) [FJSZ21, Lemma 14],
where α ∈ {s, t} and δi discards the i-th element of a sequence. We can then construct an
HDA X in the sense of this article as follows:

• X[U] = {q ∈ Qn | λn(q) = U} for U ∈ and |U | = n.
• δ0a(q) = si(q) and δ

1
a(q) = ti(q) for q ∈ X[U] and a ∈ U the i-th smallest element of U in

the order 99KU . The remaining face maps are composites of these.
• X⊥ = I and X⊤ = F .

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Overview
	3. Higher-dimensional automata
	Concurrency lists
	Conclist maps
	Labelled precube categories
	Precubical sets and higher-dimensional automata
	Standard cubes

	4. Pomsets with interfaces
	Iposets and ipomsets
	Compositions
	Ipomset languages and rational languages
	Separated languages

	5. Executions of higher-dimensional automata
	Paths
	Reachability and accessibility
	Ipomsets of paths
	Event consistency for paths
	Path equivalence and subsumption
	Regular languages

	6. Kleene theorem
	7. Regular languages are rational
	8. Track objects and tracks
	9. Tensor product of higher-dimensional automata
	10. Higher-dimensional automata with interfaces
	Concurrency lists with interfaces
	Precubical sets with interfaces and iHDAs
	Standard icubes
	Executions of iHDAs

	11. Higher-dimensional automata with and without interfaces
	Resolution
	Closure
	Simple languages
	Normal form of paths on closures of iHDAs

	12. Cylinders
	Initial and final inclusions
	Proper iHDAs
	Lifting properties
	Cylinders
	Lifting properties of cylinders

	13. Gluing toolbox
	Sequential gluing
	Vertical decomposition
	Self-gluing

	14. Sequential composition of simple iHDAs
	15. Kleene plus
	16. Conclusion
	Acknowledgments

	References
	Appendix A. Definitions of HDAs
	Precubical sets
	HDAs

