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Using Fuzzy Structural Information
for the Recognition of Cerebral Structures
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For neurological studies, brain images are currently a classical tool used in clinical routine and research. The most
appropriate system to observe brain anatomy is tridimensional magnetic resonance imaging, and a major issue of image
processing is to segment automatically cerebral structures. We present an original recognition method which is progressive
and atlas-guided. As our process is sequential, we rely on objects that have been already recognized to perform the
segmentation of objects which are a priori more and more difficult to obtain. To this aim, we take into account structural
information processed as fuzzy spatial constraints; we use a priori radiometric, morphology and localization knowledge,
and relative distance and direction relationships between objects. In this paper, we focus on the representation of such

structural information.
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1. Introduction

Since anatomical brain imaging serves as a reference
for clinical investigation and for functional imaging as
well, segmentation of brain structures is of prime im-
portance for many different applications: morphome-
try, pathology detection and measurement, diagnosis,
surgery and radio-therapy planning, functional imag-
ing, neuro-sciences and so forth.

A large body of literature has been devoted to brain
image segmentation (see e.g. the syntheses in [1,9]).
The use of artificial intelligence techniques in this do-
main concerns tissue classification, structure identifica-
tion and diagnosis.

In magnetic resonance images (MRI), the classes that
can be observed are, for the outer part of the brain, air,
skin, muscle, fat and skull, and for the brain, white mat-
ter, grey matter and cerebro-spinal fluid. Although the
radiometry of these classes can be described by statis-
tical laws that significantly overlap, classifiers can sep-
arate the three main brain tissues. Both fuzzy cluster-
ing e.g. [8,15] and neural networks e.g. [6,16] have been
widely used. Unfortunately, the recognition of internal
structures remains difficult. For instance, the differ-
ent grey nuclei which are constituted of grey matter
cannot be distinguished using only radiometric infor-
mation [12].

To face this problem, other methods make use of
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models. These models can be implicit like Physics-
based deformable models e.g. [17,19] or explicit in at-
las deformation techniques. Implicit models are often
used when one specific structure of interest has to be
detected, while atlas-based approaches can segment all
structures but have to deal with difficult problems due
to the anatomical variability. To find the atlas defor-
mation that fits the image, the methods rely on ho-
mologous points [10], on surfaces [18], or on the whole
volume [7,11].

In this paper, we propose a new atlas-based method
for the recognition of brain internal structures in mag-
netic resonance images. Whereas existing atlas-based
methods try to find a global deformation between the
atlas and the image in order to identify anatomical ob-
jects, our method is sequential: one step aims at rec-
ognizing one single anatomical object and then refines
the correspondence between the image and the atlas.

With the help of the atlas, the segmentation of an
anatomical structure can be conditional to a region of
interest with imprecise limits. A recognition step bene-
fits also from knowledge that has been obtained during
the previous steps and from relations between the ob-
ject we look at and previously recognized objects. All
this information is modeled with fuzzy sets in the image
space. A two-stage fusion process leads to the selection
of the radiometric mode of the object in the MRI ac-
quisition and a final fusion process leads to the object
recognition.

At each step, the correspondence between the sur-
faces of already recognized objects in the image and
their equivalents in the atlas is found with a registration
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technique. A discrete deformation field is then inferred.

Section 2 gives an overview of our method and
presents the different sub-steps of the recognition of one
object. Section 3 details the construction of fuzzy sets
from symbolic expressions and constitutes the core of
this paper. Section 4 explains how to select the correct
radiometric mode of the object in the MRI volume. At
last, section 5 presents our results and concludes.

2. Method overview

To guide the recognition, we make use of an atlas
which is neither a probabilistic atlas nor a mean atlas
but a labeled image obtained from a MRI acquisition of
a normal subject. A slice extracted from the atlas 3D
volume is shown in Figure 1 (left); the right view shows
the corresponding slice in the 3D MRI acquisition to be
processed. Let us consider one step of the recognition
process; during the preceding steps, several anatomical
objects have been segmented and the correspondence
that makes the image match the atlas has been com-
puted according to the segmented objects. The current
step can be described by seven sub-steps: the first five
ones concern the recognition of another particular ob-
ject and the two last sub-steps deal with the correspon-
dence update to take into account this object.

Figure 1. Slice extracted from the atlas and from the image.

Sub-step 1  With the help of the correspondence field,
the object definition given by the atlas is projected in
the image.

Sub-step 2 This information is dilated with a fuzzy
morphological operator in order to define in the image
a region of interest that should contain the object we
look at (see section 3.1 for details). This region is an a
priori information.

Sub-step 3 Fuzzy classifications based on the radiome-
try are performed in the region of interest with different
numbers of classes (see section 4.1 for details).
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Sub-step 4 Each piece of symbolic information that
describes the object is expressed by a fuzzy set in the
image space. It can be an a priori radiometric knowl-
edge, a directional relationship with respect to an object
that has already been recognized, and so forth. Fuzzy
set construction is presented in section 3.

Sub-step 5 A two-stage fuzzy fusion process combines
the a priori information from sub-step 2 and symbolic
knowledge from sub-step 4 including the a priori ra-
diometric knowledge; we obtain two rough descriptions
of the object we look at. With the help of similar-
ity measures between these descriptions and the fuzzy
sets resulting from the classifications of sub-step 3, the
proper radiometric characteristic of the object in the
image is selected (the selection process is explained in
section 4.2). A final fusion process combines this radio-
metric information with all pieces of knowledge about
the object excluding the a prior: radiometric one; it
leads to a fuzzy object description. A regularization
followed by a binarization gives the object segmenta-
tion. This sub-step is illustrated in Figure 2.
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Figure 2. Sub-step 5: object recognition using information fusion.

Sub-step 6 A discrete deformation to make the object
definition provided by the atlas fit the segmented ob-
ject is calculated with an elastic registration algorithm
based on object surfaces.

Sub-step 7 A new global volume correspondence is in-
ferred from the set of surface deformations of the seg-
mented objects.
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3. From symbolic expressions to fuzzy sets

In the following, the image to be processed will be
denoted by I, and a point (volume element) in this im-
age, by v(I). In anatomy, different pieces of knowledge
about objects are given by symbolic expressions (sub-
steps 2 and 4). In our method, these expressions are
translated into fuzzy sets finowieage i the image space:

v(I) = prnowrease(v(I) ) € [0,1].

We rely on fuzzy set theory for three reasons: informa-
tion of various semantics can be expressed in this unique
formalism, it helps us to model information imprecision
and uncertainty, and the fusion process that leads to
recognition can take benefits from a great number of
operators [3].

Mynowledge -

3.1. A priori information

The projection in the image of the object definition
given by the atlas gives us an indication about both
the morphology and the localization of the object in
the image. Although this information is made accurate
with the help of the correspondence, we have to model
the imprecision due to our correspondence model and
to the variability of brain anatomy. It is done using a
fuzzy morphological dilation [2]. The parameters of the
dilation are set so that the resulting region of interest
should contain the object we look at.

We use a spherical fuzzy structuring element which
values have a radial symmetry. They are defined along
the radius r by a trapezoidal function e(r) whose value
is 1 for r <7 and 0 for » > rs. These two parameters
define the kernel and the support of the structuring el-
ement respectively and permit us to set the degree of
fuzziness of the resulting region of interest.

A region of interest of I is depicted in Figure 3 (top
left). It represents an a priori information about both
the morphology and the localization in I of the object to
be recognized. Let us denote by ..o this information
(here, it concerns the caudate nucleus).

3.2. Binary spatial constraint

For an object, spatial inclusion in another one (O™)
and spatial exclusions with other ones (indexed by ¢ and
denoted by O5**) give a binary constraint f.,paraine that
can be used in the fusion processes. Of course, such
considerations only rely on objects O that have already
been recognized.

1 if v(I) € {O™\ ;05 }
0 elsewhere.

Heonstraine (V(I) ) = {

Furthermore, this constraint ensures that the spatial
inclusion of object volumes in the image reflects the
one of the atlas.

Figure 3. Information expressions in the image space.

At this step of the recognition process, three anatomical
objects have been segmented: the brain and the two lat-
eral ventricles (in top right view, respectively the black
structure and its white holes). This figure depicts four
equivalent slices extracted from fuzzy set images and con-
cerning the recognition of the left caudate nucleus: the
a priori information (top left), the localization constraint
(top right), the a priori radiometric knowledge (bottom
left) and a relative directional relationship (bottom right);
white and black correspond respectively to minimal and
maximal membership values to fuzzy sets.

In Figure 3 (top right), the binary set expresses that
the object caudate nucleus belongs to the brain (black)
but is distinct from both lateral ventricles (white com-
ponents inside the brain).

3.8. Radiometric knowledge

A radiometric information first leads to a fuzzy set
in the radiometry space L = [0, 255]:

uL—radio . l I L — ML_radio(l) € [07 1]

A representation in the image space is then constructed
by assigning to each image point the membership of
its grey-level in L. During the first steps, as the ra-
diometric characteristics of brain tissues in the image
are unknown, three fuzzy sets corresponding to dark,
medium and light radiometries are built . The expres-
sions “nuclei are made of grey matter”, “grey matter is
medium dark in MR acquisitions of type T1” and “our
image is a T3-MRI” can also be used to describe the
nuclei. For instance we have:

Hactens (V(1) ) = p"m ™ 2 (1(0(I) ) ),
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where [(v(I)) denotes the radiometry of (v(I)). The

result is illustrated in Figure 3 (bottom left).

Once a nucleus is recognized, the radiometric char-
acteristics of nuclei (mean [,,.... and variance o2 _ )
are estimated and a more precise fuzzy set which signi-
fies “has a radiometry of nuclei” is defined to be used
in the following recognition steps. For that, we use a

Gaussian law :

e (1) = exp ( — |1 = Ligeteus

2 /202 )

nucleus

3.4. Relative distance

Distance information between anatomical objects are
usually approximative. The distance between an object
and a reference object is less than, or about, or more
than z millimeters, or between x; and z2 millimeters.
When there is a spatial inclusion or exclusion, we can
say that an object is deep inside another or far out-
side. To translate these notions into the image space,
we define a fuzzy set in the distance space D = R™:

uD—distance . d € D = uD—distance (D) € [07 ]_].

Then in the image space, we calculate a distance map
M to the reference object by a chamfer transform algo-
rithm and we assign to each point in I the membership
of its distance map value as given by pP-distence:

/‘Ldistance( 'U(I) ) = HDidismnce( M( U(I) ) )
3.5. Relative directional relationship

The vagueness of a directional relationship such as
“the head of caudate nucleus is lateral to the head of the
lateral ventricle” is modeled as described in [5]. In this
technique, the resulting fuzzy set faiection COrresponds
to a morphological dilation of the reference object with
a structuring element which is representative of the di-
rection. This method gives natural results whatever the
shape of the reference object is.

Figure 3 (bottom right) shows the dilated of the lat-
eral ventricle which means “lateral to the lateral ven-
tricle”.

4. Selection of object radiometric mode

A major piece of information that permits to segment
a brain structure using classical methods is its radiomet-
ric mode in the image. In our method, we perform sev-
eral classifications with different numbers of classes in
the region of interest that corresponds to the structure
(sub-step 3). Then, the resulting classes are compared
to a rough description of the structure given by a first
information fusion, and the correct radiometric class is
selected (sub-step 5).

4.1. Empiric classifications and their fuzzication

We have shown in [14] that the k-means algorithm
gives more robust results when the number of classes is
low and that its empirical use (for a given number of
classes, we proceed to several classifications with ran-
dom centroid initialization and we keep the best result)
is required to guarantee the correctness of its results
when the number of classes increases.

Performing the classification in a region of interest
permits us to limit the number of classes and moreover
to ensure that the object class can be found even if the
radiometric law of the object is close to the ones of other
nearby objects.

At first, the radiometry histogram of the fuzzy region
of interest is calculated so that the contribution of each
image point is weighted by its membership to the region.
For each radiometry [/, we have:

St (v(D)

v(1), i(v(D)=l

h(l) =

With this histogram, automatic classifications are pro-
duced by an empiric use of the k-means algorithm with
different numbers n = 2..5 of classes. Let us denote
by w;, the ith class with n classes; its centroid and
variance are:

o= Eleui,n h(l)l and o: . — Zlei,n h(l) l2 _02
T Ve, MO D D () R

Each resulting class is then translated into a fuzzy set
in the image space to take into account the noise and
imprecision of MR images:

parusein(V(I)) = exp (= [1(v(1)) = cin|* / 207,,) -

Figure 4 shows the resulting fuzzy sets. Each fuzzy
set is a candidate for the object radiometric mode.

4.2. Radiometric mode selection

To find out the object radiometric mode, we perform
a two-stage selection.

e First, we select for each classification the most ap-
propriate candidate mode pi.o..i,,n- For that, we
calculate a fuzzy pattern similarity measure [4] in
the image space between two fuzzy sets fiopjee: i,n and
Haeseription1 - Lhe former is constructed from a class

mode:

/‘tobject i,n = min ( uclass i,n; /’Lapriori ) bl

and the latter is an object rough description which
is radiometrically discriminant (depicted in the top
left view in Figure 5):

l’l’descriptionl = min (/"’radiometry; /l‘a.priori ) -
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Figure 4. Radiometric classes of a region of interest.

The first line shows the results of an empiric use of the
k-means algorithm processed on a region of interest his-
togram with different number n of classes. The fuzzifica-
tion of the classes is depicted in column below the rough
classification. For the caudate nucleus, the best radiomet-
ric fuzzy set is obtained for n = 3 (second column) and
i = 3 (last raw of this column).

The similarity measure we use represents the fraction
of the pattern intersection by the pattern union:

Z”(I) mln( Hobject i,n( U(I) )7 Mdescriptionl ( 'U(I) ) )
Yoy M8 fawiecti;n (VD) )5 Pracncriprions (V(1) )

e Then, we select the best radiometric mode fi.),.. ingy M
over the remaining candidates. For this final selec-
tion, the similarity measure is applied between each
fuzzy set fopjeet i,,n and a second object description
which is built, for the caudate nucleus, by fusing the
a priori information, the binary constraint, and the
directional relationship. This second description, de-
picted in Figure 5 (top right), provides the expected
localisation and morphology of the object.

4.3. End of a recognition step

A final fusion process combines a priori information,
symbolic information and the selected radiometric infor-
mation, and gives the fuzzy object depicted in Figure 5
(bottom left). Fuzzy fusion operators used in each fu-
sion process vary from one step to another in order to
take into account both the specificity of each anatomical
object and the evolution of knowledge. A regularization

Figure 5. Radiometric mode selection, fusion and segmentation.

The information based on radiometry knowledge (top left)
is compared to each fuzzy class resulting of a classification
(for each column in figure 4, we get a candidate class).
The information which is representative of the object lo-
calization and morphology (top right) permits to find the
correct radiometric class among the different candidates.
A fusion process gives a fuzzy object (bottom left) and the
segmented object is deduced. Its boundary is depicted in
white, superimposed on the MRI (bottom right).

followed by a binarization leads to the object segmen-
tation (Figure 5, bottom right).

A discrete deformation to make the object defini-
tion provided by the atlas fit the segmented object is
calculated with an elastic registration algorithm based
on surfaces (sub-step 6). Then, a new global volume
correspondence is inferred from the set of object de-
formations (sub-step 7). For that, we have proposed
a discrete method which relies on a simple mathemat-
ical model (the Laplacian of the deformation field is
null) and which resolution is iterative and local to areas
bounded by object surfaces [14].

5. Results and conclusion

The recognition procedure is initialized by a segmen-
tation of the brain using mathematical morphology op-
erators [13]. Then, we perform the recognition of lat-
eral ventricles, caudate nuclei, putamen, and third and
fourth ventricles (that have only been segmented until
now with dedicated approaches). The recognition se-
quence reflects that we process in the first recognition
steps the objects that can be easily segmented and the
location and morphology of which are of prime impor-
tance for anatomy description. The objects which are



104 T. Géraud et al. / Using Fuzzy Structural Information for the Recognition of Cerebral Structures

difficult to obtain are processed in the following steps
and, with the help of pieces of information relative to
the former objects and of more precise pieces of knowl-
edge, their segmentation succeeds.

Figure 6 shows these objects as defined in the atlas
and as recognized in an MR image with our method.
They are correctly segmented although the size, the lo-
cation and the morphology of these objects in the image
significantly differ from their definitions in the atlas.

Figure 6. Recognition results.

The upper view represents six objects from the atlas: lat-
eral ventricles (medium grey), third and fourth ventricles
(light grey), caudate nucleus and putamen (dark grey).
The lower view represents the equivalent objects recog-
nizied from a MRI acquisition.

We have presented an original recognition method
which is atlas-guided and progressive, and which takes
into account structural information. A main feature of
our method is that anatomical knowledge is directly ex-
pressed in the image space by the mean of fuzzy sets
while taking advantage of objects that have already
been recognized.
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