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Abstract—Software application development is a complex ac-
tivity which involves various actors and organizations in what is
called the software supply chain. The evolution of the software
supply chain led to numerous benefits such as profit maximiza-
tion, code mutualization, and the optimization of lead times.
However, the complexity of the software supply chain results
in multiple security issues and attacks because compromises are
highly prevalent. An attacker that compromises a single link (e.g.,
by maliciously modifying the software) in the software supply
chain, can harm users of this software and this attack technique
is frequently being exploited to attack high profile companies.
We can provide a holistic and effective security solution to the
software supply chain only if its security state and features are
well understood. We discuss how we can achieve strong resilience
of the software supply chain to cyberthreats. Next, we propose
a holistic end-to-end security approach for the software supply
chain.

[. INTRODUCTION

A supply chain is a global network which delivers raw
materials, products, and services to end customers through
an engineered flow of information, physical distribution, and
money. Figure 1 illustrates a basic supply chain with three
entities: a supplier, one producer, and one customer. Four
basic flows connect these entities together: (1) a flow of phys-
ical materials and services (materials, components, supplies,
services and finished products), from the supplier to the end
customer, (2) a flow of cash, from the end customer to the
raw material supplier, (3) a flow of information (invoices,
sales literature, specifications, receipts, orders and rules and
regulations), back and forth along the chain, and (4) a reverse
flow of products returned (returns for repair, replacements,
recycling and disposals).

The rapid growth of Information Communication Technolo-
gies (ICT) has impacted many fields. In this context, the supply
chain has also quickly evolved toward the Digital Supply
Chain (DSC) where digital and electronic technologies have
been integrated into every aspect of the end-to-end supply
chain. These technologies are radically transforming supply
chain structures in different sectors, which have resulted in
multiple benefits such as increased profit and reduced loss,
the optimization of supply chain lead times, the reduction
of markdowns and stock-outs, and improved collaborations
among different stakeholders [1]. However, DSC is vulnerable
to a wide range of cyberattacks that can range from simple
information theft to complete stoppage of a factory’s activities.
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Fig. 1: A basic supply chain

Indeed, DSC does not rely on a single technology, but on the
integration of different technologies such as the Internet of
Things (I0T), cloud computing, networks and telecommunica-
tions, and many others. Thus, DSC is vulnerable to the various
cyber risks associated with the underlying technologies [1].
The discipline which addresses cybersecurity risks that are
related to extended supply chains and supply ecosystems is
known as Cyber Supply Chain Risk Management (C-SCRM)
[2]. C-SCRM broadly comprises concepts such as third-party
risk management and external dependency management [2].
According to Boyson et al. [3], C-SCRM is an overarch-
ing discipline which combines cybersecurity, enterprise risk
management and supply chain management into a new and
powerful concept that provides strategic control over the end-
to-end processes of an organization and its extended partners.
Therefore, currently, more than ever before, supply chain
management and C-SCRM must be an integral part of a
business and are vital to any company’s success [4].

For any physical product, Figure 1 shows the typical supply
chain model followed. However, for software supply chain in
particular, the model is slightly different. As Figure 2 depicts,
all the steps (also called links) of the software supply chain
are like the steps of the traditional supply chain.

In the highly connected world today, most organizations
depend on other organizations for their products and services.
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Fig. 2: Comparison of a traditional supply chain and a software supply chain

Software producers are not an exception, and a software supply
chain involves multiple, different actors throughout different
organizations. Indeed, developers use source code available
in version control systems (like raw materials). This source
code is then compiled into binaries. The resulting software is
packaged and published for distribution in the form of a final
product that can be used by end users [5].

Unfortunately, like their physical counterparts, security is-
sues are very common in the software supply chain. According
to Symantec [6], software supply chain security issues rose
by 438% from 2017 to 2019 and by over than 300% in 2021.
Gartner! predicts that by 2025, 45% of organizations would
have experienced a software supply chain attack. Currently,
software supply chain security issues are the fastest growing
threats to Internet users. Such security issues affect all types
of actors from simple end users to big companies such as
Microsoft, Google, and Redhat [5]. Despite the continuous rise
in security issues and attacks, the software supply chain and its
protection mechanisms have not really received commensurate
attention as the physical supply chain [5].

Research contributions of this work The central research
question we aim to address in this work is: how can software
supply chain be resilient to cyberthreats? To answer this
question, we need a good understanding of the current state
of security in the software supply chain. In this context, our
work focuses on the following aspects:

« We describe the models currently used by the software
supply chain.

o We discuss the security issues and attacks that threaten
the software supply chain.

o We present current protection mechanisms that can im-
prove the security of the software supply chain.

« We propose a holistic approach and model for end-to-end
security of the software supply chain.

II. SOFTWARE SUPPLY CHAIN MODELS

Figure 2 shows a macroscopic overview of a software supply
chain. However, a microscopic view shows that a software
supply chain is not always completely linear, especially for
complex systems such as operating systems. Understanding
all the details related to a supply chain is key to secure the
product software and the supply chain itself. In fact, there are
multiple software supply chain models that have emerged in
recent years. For example, Figure 3 describes three different
software supply chain models, mainly related to operating

"https://www.gartner.com/en/documents/4003625

systems®. However, there are many others [5]:

(1) A software supply chain often relies on distribution pack-
aging which is a very common technique. Multiple Linux op-
erating systems such as Debian or Fedora distributions based
systems supply a pre-installed package manager that enables
users to install packages that are selected and maintained by
the operating system distribution development team?. A similar
technique is used by Microsoft and Apple through application
and software stores*. For example, Figure 3.a describes the
steps to create a distribution package for a Debian based
software. It comprises three steps: (a) retrieving upstream
sources which look at application code from their source (e.g.,
the use of a well-known protocol code from its source); (b)
application of the changes specific to the platform; (c) the
production of a platform-specific installable package (e.g.,
.pkg or .deb) using both, the upstream release and the patched
and modified code.

(2) A software supply chain for live media. Generally, a live
medium comprises various software components that are from
different producers. All the software components are packaged
into a bootable disk image. With such a configuration, the
bootable media tooling fetches artifacts and executes platform-
specific configuration scripts on them [5]. Figure 3.b describes
such a model.

(3) A software supply chain for application-oriented operating
systems. There exist multiple application specific operating
systems (e.g., Kali linux or Parrot for security, Tails for
privacy and so on). Such products rely on a complex supply
chain where the software provider only manages and modifies
the configuration files while the packages that compose the
operating systems are all from different providers (each of
these packages followed a different supply chain). Figure 3.c
presents this model.

III. SOFTWARE SUPPLY CHAIN SECURITY ISSUES AND
ATTACKS

Cybercrime costs organizations $2.9 million every minute
according to RiskIQ research’. In [7], the authors predicted
that cybercrime will cost companies worldwide an estimated
$10.5 trillion annually by 2025. In this context, software sup-
ply chain attacks are on the rise because attackers can attack
or infiltrate large organizations and their software through

2We choose operating systems as an example because they are among the
most complex software systems.

3https://wiki.debian.org/Apt

“https://www.apple.com/app-store/

Shttps://www.fortinet.com/resources/cyberglossary/cybersecurity-statistics
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Fig. 3: Non-linear software supply chain models for (a) distribution packaging; (b) live media (.iso); (c) live-build toolbox [5]

a single, third-party software product. There are two entry
points for attackers: (1) through intended taints which an
attacker embeds into the source code mainly through updates
(e.g., solar wind attack [8]) and (2) through software and
protocol breaches and flaws discovered by the community
(e.g., Log4Shell CVE-2021-44228).

The concept of software supply chain is new. Previously,
the software lifecycle was considered as a set of disjoint
operations. This misconception is the cause of various security
issues and compromises. These compromises stem mainly
from two misconceptions [5]: (1) the lack of understanding
of a global view of the software lifecycle because of which
security resources may not be allocated appropriately. (2)
the assumption that securing each individual phase of the
software development lifecycle will provide a secure software.
However, the latter results in a lack of effort in securing the
transitions between these steps. More precisely, even if the
security of each link and step is crucial, the end-to-end security
can be compromised if attackers can tamper with the output
of a step or a link before it is provided to the next one in the
chain.

Software defect is often quantified according to the number
of taints per one thousand lines of code [9]. Systems have gen-
erally tens of millions of code lines (e.g., Microsoft Windows
operating systems have 50 million lines of code). Therefore,
they represent thousands of possible vulnerabilities.

Accidental (non-deliberate) software vulnerabilities embed-
ded into products during their design or implementation are
called unintended taints. Such vulnerabilities are continually
discovered, made public, and remediated using different types
of patches. However, some systems are not updated/patched
quickly or not patched at all which make them vulnerable to

various types of attacks. According to Executive Order 13800°,
known but unmitigated vulnerabilities are among the highest
cybersecurity risks. One of the well-known incidents related to
such security issues is the Heartbleed vulnerability [10] CVE-
2014-0160 which was a security vulnerability in the OpenSSL
cryptography library that allowed attackers to get access to
confidential data such as unencrypted exchanges between
Transport Layer Security (TLS) parties, authentication secrets
such as session credentials, private keys, cookies, and so on,
which enable attackers to decrypt communications of com-
promised parties. After an attacker has gained authentication
credentials, the attacker can impersonate the victim even after
a security patch of Heartbleed has been applied. In other
words, the attacker can impersonate the victim if the victim’s
credentials are still valid (e.g., before changing credentials
or the revocation of the private key). When the Heartbleed
Secure Socket Layer (SSL)/TLS vulnerability was announced,
more than 80,000 SSL certificates were revoked in the week
following the publication [11]. The unintended taint was
embedded into the OpenSSL library in 2012 and was publicly
revealed in April 2014. However, system administrators are
known to be generally slow in patching their systems. For
example, in May 20" 2014, 1.5% of the 800,000 most popular
websites that use TLS were still vulnerable to Heartbleed' .
In January 2374 2017, according to Shodan®, nearly 199,594
devices connected to the Internet were still vulnerable. Another
vulnerability with the same potential is Shellshock CVE-2014-
6271 which is a security vulnerability in the Unix Bash shell

Shttps://www.cisa.gov/executive-order-strengthening-cybersecurity-federal-
networks-and-critical-infrastructure

https://www.theregister.com/2014/05/20/heartbleed_still_prevalent/

Shttps://www.shodan.io/report/DCPO7BkV



that enables an attacker to cause Bash to execute arbitrary
commands and gain unauthorized access to Internet-facing
services (e.g., web servers) that use Bash to process requests
[12]. A few days after the publication of Shellshock, various
related vulnerabilities were discovered (CVE-2014-6277, CVE-
2014-6278, CVE-2014-7169, CVE-2014-7186 and CVE-2014-
7187). A few hours after the initial disclosure of Shellshock,
adversaries exploited it to create botnets to perform DDoS
attacks and vulnerability scanning®. Also, in the few days
after the initial disclosure, there were millions of scans and
cyberattacks related to Shellshock '°. The last wide scale
vulnerability of this type is Log4Shell'!. Log4Shell is the
name given to the vulnerability discovered in the library
Log4j which Apache provides. It allows developers to insert
log statements in JavaServer Pages (JSP) without using Java
scripting. According to Checkpoint'?, Log4j is clearly one
of the most serious vulnerabilities on the Internet in recent
years with a strong potential for a huge impact. The main
vulnerability described in CVE-2021-44228 is of critical sever-
ity because it allows an attacker to execute a reverse shell
on the vulnerable machine with high privileges. The attacker
therefore can do whatever he/she wants (e.g., uploading a
ransomware). Moreover, since its discovery, multiple variants
have been discovered. Checkpoint researchers discovered 60
variants of this vulnerability only 24 hours after the vul-
nerability was disclosed, each with a different severity level
(e.g., the vulnerability described in CVE-2021-45046 enables
a denial of service on the vulnerable machine). Log4j is
a brick (one of the components) in the supply chain of
numerous software and a vulnerability at its level can affect
a wide range of software products, some of which are used
in critical systems such as Splunk!3, various Amazon services
(e.g., AWS CloudHSM, Kafka, AWS Glue and many other),
Fortiguard'4, MongoDB, Okta!®> and many others. According
to Checkpoint, 72 hours after the initial outbreak of log4j,
the number of attack attempts reached 800000. A few days
later, they reported 4,300,000 attack attempts because of this
vulnerability, with more than 46% of those attempts launched
by well-known malicious groups.

Another type of taint is the malicious taint, which oc-
curs when authentic components which have been previously
validated have some functionality intentionally inserted into
them by some adversary which affects their safety, reliability,
and security [9]. The best example to illustrate the danger
behind malicious taint is the SolarWinds supply chain attack
[81[13][4]. In the SolarWinds attack, hackers gained access
through trojanized updates to SolarWinds’ Orion computer

https://www.wired.com/2014/09/hackers-already-using-shellshock-bug-
create-botnets-ddos-attacks/

Ohttps://bits.blogs.nytimes.com/2014/09/26/companies-rush-to-fix-
shellshock-software-bug-as-hackers-launch-thousands-of-attacks/

https://logging.apache.org/log4j/2 x/security.html

2https://blog.checkpoint.com/2021/12/13/the-numbers-behind-a-cyber-
pandemic-detailed-dive/

Bhttps://www.splunk.com

Yhttps://www.fortiguard.com/

Bhttps://www.okta.com/

monitoring and management software. Basically, a software
update was exploited to install Sunburst malware in Orion,
which was then installed by almost 18,000 customers. Once
installed, the malware provided hackers with a backdoor to
SolarWinds customers’ systems and networks. This attack
illustrates a good example of software supply chain vulnerabil-
ities and consequences, because instead of directly attacking
the federal government or a private organization’s network,
hackers targeted a third-party vendor, which provides them
with software. In this case, the target was the computer
management software Orion, supplied by the Texas company
SolarWinds. More than 33,000 companies use Orion. Solar-
Winds reported that 18,000 of its customers have been affected,
including 425 companies of the Fortune 500'°. The very first
attack targeted FireEye systems. FireEye is a company that
assists in the security management of several large private
companies and federal government agencies.

Figure 4 presents a taxonomy of security issues and attacks
in the software supply chain and describes multiple malicious
compromises. Based on this taxonomy, we found that software
supply chain’s issues are mainly due to intended taint or
unintended taint. Both classes can be divided into multiple
sub-classes.

o Source code taint: it is one of the most common compro-
mises!”!® in the software supply chain and occurs when
an attacker deliberately inserts malicious code that can
be exploited on target users. Such a taint is possible in
two ways: (1) through software or via its updates, or (2)
via an online compromise of the developers’ source code
(e.g., an attacker who obtains the Github credentials of
a developer). The SolarWinds attack we have described
above is such an example.

o Publishing infrastructure compromise: according to [5],
this is the most prevalent compromise for the software
supply chain'®?02122 Tt represents the case where the
publishing infrastructure of source code or software ap-
plications (e.g., software package repository for a distri-
bution, a community repository (like PyPI), or a project’s
website) gets compromised. A recent example is the
case of a hacker who duped hundreds of users into
downloading a version of Linux Mint with a backdoor.
The attacker was able to build a botnet of hundreds of
hosts in less than 24 hours?3.

o Insider threat: according to the Cybersecurity and In-
frastructure Security Agency (CISA) [14] insider threat

Iohttps://fortune.com/fortune500/
https://github.com/advisories/GHS A-jxf5-7x3j-8j9m
https://wiki.gentoo.org/wiki/Project:Infrastructure/
Incident_Reports/2018-06-28_Github
1https://securelist.com/operation-shadowhammer/89992/
2https://bitcoingold.org/vulnerable-wallets/
2l https://blogs.windows.com/windows-insider/2017/06/01/note-
unintentional-release-builds-today/
2https://paper.seebug.org/papers/ APT/APT_CyberCriminal_
gin/2014/The_Monju_Incident.pdf
2https://www.zdnet.com/article/hacker-hundreds-were-tricked-into-
installing-linux-mint-backdoor/
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is the potential for an insider (an insider is any person
who has or had authorized access to or knowledge of
an organization’s resources such as personnel, networks,
systems, and so on) to use his/her authorized access or
understanding of an organization to cause harm to that
organization. Insider threat can also affect the software
supply chain. Misconfigurations and/or unintended taint
executed by insiders are also considered as insider threats
[15][14].

o Developer, compiler/building tool compromises: They
represent attacks that are achieved through the backdoor-
ing of compilers** as well as developer key/account com-
promise. Even if they are not among the most common
compromises> 2%, they have substantial consequences [5].

o Combined multi-step compromise: here an attacker can
perform a combination of the compromises discussed
above.

IV. SECURITY SOLUTIONS FOR SOFTWARE SUPPLY CHAIN

There are numerous proposals that aim to increase the
security of different aspects within the supply chain, and these
include: (1) the protection of source code repository®’?8%°,
(2) the verification of compilers, applications and kernels
[16], and (3) package management and software distribution
mechanisms [17]. However, there are very few approaches that
offer a holistic, end-to-end security solution for the software
supply chain [5].

Microsoft proposed a framework that incorporates best prac-
tices of software integrity risk-management into: (1) the pro-
cess of software product development, and (2) the operations
of online services [18]. The framework aims to enhance the

2https://www.win.tue.nl/aeb/linux/hh/thompson/trust.html

ZShttps://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-
packed-malware-google-play-will-hit-wallet/

26https://www.zdnet.com/article/red-hats-ceph-and-inktank-code-
repositories-were-cracked/

2Thttps://dwheeler.com/

28 https://mikegerwitz.com/2012/05/a-git-horror-story-repository-integrity-
with-signed-commits

https://git-scm.com/book/en/v2/Git-Tools-Signing- Your-Work

security and trustworthiness of software among the different
parties (people, processes, and technologies) involved that
make up a modern ICT supply chain. It follows six phases:
planning, discovery, assessment, development, validation, and
implementation.

Alberts et al. [19] described the Carnegie Mellon Software
Engineering Institute (SEI) risk assessment approach for soft-
ware supply chain. The approach relies on a few factors called
drivers which have a strong influence on the eventual output or
result. The experimental evaluation conducted to validate the
approach showed that the development of a comprehensive
profile of systemic risks to mission success requires around
15-25 drivers. Each driver is represented as a yes-no question,
where an answer of “yes” means that the driver is in its success
state. In other words, it contributes a minimal risk to the
software supply chain mission. An answer of “no” means that
the driver is in its failure state. That is, it represents a severe
degree of risk to the software supply chain mission [19].

In the same context, the authors of SAFECode [20] de-
veloped sound assurance practices during each phase of the
software development process, which can reduce the risks
related to the supply chain. This approach does not design a
framework or an approach as the ones (i.e., [18][19]) proposed
earlier in this section. But it provides a set of best practices,
verifications and controls, mainly integrity controls during (1)
the software sourcing phase; (2) the software development and
testing phase; and (3) the software delivery and sustainment
phase.

Torres-Arias et al. [S] proposed a framework that ensures
the integrity of the supply chain as a whole by allowing actors
within the software supply chain to create certifications of the
actions they performed on the chain. These certifications are
applied to every step in the chain and provide enough semantic
information to enforce strong software supply chain integrity
and authentication checks.
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V. SOFTWARE SUPPLY CHAIN MODEL FOR HOLISTIC
END-TO-END SECURITY

The security of the software supply chain is fundamental to
the security of the final product. A taint in any link of this
supply chain can lead to different types of compromise in the
final software product, ranging from backdoors to vulnerable
libraries. Current security approaches focus on securing each
link individually. These traditional approaches cannot provide
a holistic end-to-end supply chain security approach as we

have highlighted before. In this context we propose a model
that can provide holistic end-to-end security of the software
supply chain.

Our proposed model uses six main entities: Public
Key Infrastructures (PKI), a blockchain, developers, service
providers, link agents, and final users (i.e., consumers). Figure
5.a describes an abstraction of the software supply chain
highlighting the roles and interactions among the entities.

« A PKI is responsible for the distribution of certificates

to the developers and service providers to ensure their



authentication. Each contributor in the supply chain must
be authenticated.

o A developer provides source code for a given supply
chain link. Like in Git, when a developer produces some
code, it must sign the commit and, when a developer
wants to use a code, the signature of the latter must be
verified.

« A service provider offers remote software services after
receiving a call with the execution parameters.

o A blockchain serves as a distributed ledger to store
different types of information related to the outputs of
the different phases and links in the supply chain.

« A link agent is a person or a process that ensures the
integrity and authentication of each code used as input
(received from the previous link) for a given link.

o A final user is a consumer of the software product.

Figure 5.b describes an abstraction of the supply chain
model proposed. For each link, we provide an input (source
code) and we produce an output noted link product (library,
package, and so on). We use the following notations for our
model:

e L: a given link in the blockchain.

o H(): hash function (Merkle hash).

o Sign(): signature algorithm (using the private key asso-
ciated with the certificate).

o C7: the nt" code provided by the link L.

o S™: the m!"™ service provided by a service provider at
the link L.

o Op: the output of a link L (Equation 1).

o Pp: the final product of a link L (Equation 2).

« r: nonce that a decentralized authority sends to a devel-
oper who uses the nonce in multi-factor authentication.

When a developer produces some source code (product), it
stores the Merkle root computed on the code in the blockchain
and the transaction is signed using the developer’s private key.
Figure 5.c describes how the Merkle root is computed. In the
figure’s example, the code noted [ is produced at the link L.
The code I uses (1) the codes D and E from the link L—1 and
(2) the codes F' and G are produced at the link L (added by
the developer). To compute the Merkle root H (1), the previous
hashes (also Merkle roots) H(D) and H(FE) are considered
as nodes in the Merkle tree relative to H([/), and F' and G are
added as new leaves as Figure 5.c shows. Computing such a
Merkle root ensures the integrity of all the source codes used
from the previous links. The Equation 1 describes the output
of a link.

Each service provider must be authenticated using its certifi-
cate. The output of a service for a given call must be returned
signed by the service provider, with the input call parameters.
In other words, the caller must verify that the results received
correspond to the data it provided.

Oy, := Py|H(Pyp)|Sign(Py|H(Py)) 1

Pp = Cp |- |CL 1 |H(CL )| H(CE )
|CLISL-|STIH(Sp)].-[H(ST")  (2)

From an input perspective, the link agent verifies the in-
tegrity and the authentication of each code used from the
previous link by: (1) verifying the signature on the commit
(for the authentication of the developer); then, (2) verifying
the integrity of the code by comparing the received Merkle
root with the one available on the blockchain. Through the
blockchain, the developer can also ensure the use of the last
version of the given code (freshness). Finally, (3) sandboxing
techniques can be used to verify and ensure all the calls and
executions that a given code makes. Moreover, the link agent
must ensure the use of libraries and packages with no high
severity CVEs risks.

VI. EVALUATION AND DISCUSSION
A. Security requirements

An end to end security model for software supply chain
must fulfill numerous security requirements for the sustain-
ability and resiliency of the ecosystem. Next, we describe the
main security goals and requirements.

Integrity: it involves maintaining the consistency and trust-
worthiness of the source code over its entire life cycle.
Authentication: only authenticated peers/developers can mod-
ify/update the source code.

Availability: the source code/services must be accessible to
legitimate users on demand.

Scalability: the ability to ensure that the system’s size has
no impact on its performances. For example, if the number of
users in the chain or the size of the source code used increases,
the time needed for other system’s functions (e.g., integrity
control) must not be affected.

Non-repudiation: the inability of a developer to deny having
created, modified, or updated source code.

B. Threat model

We consider a threat model similar to the model of Dolev
and Yao [21].

1) Network model: The goal of an end-to-end software
supply chain security scheme is to ensure secure software
development. We consider an ecosystem where numerous
developers, users, code/software suppliers, and vendors (the
software supply chain actors) mainly communicate over the
Internet. The network function only forwards packets and
does not provide any security guarantees such as integrity or
authentication.

2) Attacker model: We assume that an attacker or a ma-
licious user can modify/alter the network traffic arbitrarily
with negligible delay. Nonetheless, we do not make any
assumptions on the rate at which the traffic can be altered.
The attacker can:

« Taint/modify the source code at the output of a link.

« Taint/modify the source code at the input of a link.
« Taint/modify the source code stored.



o Create a new source code and stores it as a legitimate
source code ready for use.

e Spoofs a developer’s identity to alter/modify a source
code.

C. Security requirements’ evaluation

Our model meets several security needs and requirements.
At a given link level, (1) each contributor is authenticated via
his/her certificate, (2) the product of each contributor is also
authenticated through the signature, (3) the integrity of each
code and its components is verified via its hash, (4) relying
on the blockchain ensures the freshness of the code used (the
use of the latest version available), (5) the decentralization of
the blockchain ensures the availability of the data needed to
control the integrity and authentication of the source codes.
Finally, (6) to protect against developers’ keys’ compromise
and theft, we propose a multi-factor authentication. That is,
for each commit, the developer receives a nonce from a
decentralized authority. This nonce must be included in the
signature of the output Oy,. Equation 3 describes the output O,
if the multi-factor authentication is applied and replaces the
Equation 1 which only considers single-factor authentication.
This nonce is also stored in the blockchain with the Merkle
root of the code provided. When a developer uses this code,
the link agent must verify the signature using this nonce.

OL = PL|H(PL)|Sign(PL|H(PL)|T’) (3)

The security of each link is vital because if attackers can
tamper with the output of a step or a link before it is provided
to the next one in the chain, the end-to-end security of the
supply chain will be affected. Therefore, (7) our approach
ensures end-to-end security. The verification of the Merkle
hash at a given link ensures the integrity of all the codes
on all the previous supply chain links. The same problem
of tampering with the input/output between the chain’s steps
and links is present for the services that the software service
providers offer. Hence, (8) in our approach we propose to
link the input parameters and the output results through a
signature by the service provider which is authenticated via
its certificate.

To summarize, our approach is robust/resilient against the
different attacks presented in the previous section.

We are aware that there are multiple works that consider the
blockchain for integrity control in the supply chain. However,
in our model we rely on Merkle roots for the end-to-end
integrity. The blockchain (in our model) is just a decentralized
database which stores the data and ensures its freshness.

D. Formal validation

To verify the robustness and the safety of our protocol, we
performed a formal validation using Scyther®® a tool for the
automatic verification of security protocols. In Scyther formal
language, each protocol is defined through "roles". A sequence
of events (e.g., send, receive) defines a role. The following

3Ohttps://people.cispa.io/cas.cremers/scyther/

code shows the roles’ definition of the interaction between
two links in our protocol.

usertype SourceCode;

const sourceCode: SourceCode;
hashfunction merkleRoot;
hashfunction h;

protocol endToEndSupplyChainSec
role link {

macro hash = merkleRoot (sourceCode) ;

macro signedDataHash = h(sourceCode, hash);
send_1 (link,nextLink, (sourceCode, hash,
{signedDataHash}sk (1link)));

}

(link,

role nextLink {

recv_1 (link,nextLink, (sourceCode,hash,
{signedDataHash}sk (1link)));

macro signedDataHash2 = h(sourceCode, hash);
match (signedDataHash2, signedDataHash) ;
claim(nextLink,Alive);

claim(nextLink, Weakagree);
claim(nextLink,Niagree);

}

}

The claim event types are the goals of the formal validation.
We used three authentication claim types, namely "Alive",
"Weakagree", and "Niagree". The event "Match" is for the
code’s integrity check while it is fed into the input link.

Figure 6 shows the output of Scyther after the protocol’s
verification. The last two columns (status and comments) show
the result of the verification process (Fail or Ok), and a short
description. As we can see, the validation proves that our
protocol ensures the authentication of contributors and the end-
to end integrity of the code.

To summarize, through this formal validation and relying
on the discussion of the previous section, we show how
our approach is robust/resilient against the different attacks
presented in the attacker model.

Scyther results : verify x

Claim Status Commer

endToEndSupplyChainSec  nextLink endToEndSupplyChainSec,nextLink1  Alive Ok Verified No attacks.

endToEndSupplyChainSec,nextLink2 Weakagree Ok Verified No attacks.

endToEndSupplyChainSec,nextLink3  Niagree Ok Verified Noattacks.

Done.

Fig. 6: Formal validation results

VII. CONCLUSION

Today, most software products are the result of a software
supply chain. The rapid evolution of the latter has led to nu-
merous benefits such as higher profit, code mutualization, and
the optimization of lead times. Unfortunately, its complexity
makes it vulnerable to various attacks and compromises that
can have different consequences on the users (consumers).
We argue that, to achieve an effective security solution for
the software supply chain, we need a strong understanding
of its security state and features. Therefore, in this work we

nextLink) {



surveyed the different models used by the software supply
chain. Then, we identified the main security issues and attacks
that threaten the software supply chain. We also reviewed the
different approaches used to secure the software supply chain.
We found that there are multiple approaches which secure
the individual steps in the software supply chain. However,
very few approaches in the literature have been proposed for
achieving a holistic end-to-end security for the software supply
chain.

The protection of the software supply chain is becoming in-
creasingly challenging today mainly because of the complexity
of the software chain itself and the number of stakeholders
participating in the software ecosystem, wherein the taint of a
simple step often produces a complete subversion of the final
product [5]. We believe that the key to the development of a
holistic and effective, secure software supply chain ecosystem
lies in the understanding of compromises which can affect the
supply chain as a whole [5]. In this context, we proposed a
security approach that satisfies the main security needs and
requirements of the software supply chain. That is, it ensures
not only the security of each step and link in the supply
chain, but also the end-to-end integrity and authentication of
the software code. Our approach is effective against malicious
taints. However, as it is, it is ineffective against unintended
taint and code flaws which can be exploited by attackers
to execute their attacks. Therefore, to limit the unintended
taints and malicious insider threats, rigorous cross validations
are required where thorough integration testing [22] must be
conducted. Moreover, the development of a complete unit
testing [23] adapted to the development context is needed.
Unit Testing is a type of software testing in which a small
piece of code is tested to see if the code works as expected.
Integration testing is a key level of testing to find defects
where software components and system interface interact with
each other. Indeed, in software testing, a viable strategy is
to look for defects and failures where they are most likely
to occur. It is well known that software failures are much
more likely to arise where various types of interactions occur
[24]. Finally, the development of a security policy is required
to limit collaborations with third-party suppliers who do not
have the same level of rigor in testing and security analysis
as in-house code at an organization which increases the risk
of vulnerabilities. Additionally, we must always encourage
collaborations with rigorous/secure third-party suppliers.
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