
APMC 3.0: Approximate Verification of Discrete
and Continuous Time Markov Chains

Thomas H́erault
LRI - U. Paris XI

Richard Lassaigne
Equipe de Logique - U. Paris VII

Sylvain Peyronnet
LRDE/EPITA

Abstract— In this paper, we give a brief overview of APMC
(Approximate Probabilistic Model Checker). APMC is a model
checker that implements approximate probabilistic verification
of probabilistic systems. It is based on Monte-Carlo method and
the theory of randomized approximation schemes and allows
to verify extremly large models without explicitely representing
the global transition system. To avoid the state-space explosion
phenomenon, APMC gives an accurate approximation of the
satisfaction probability of the property instead of the exact value,
but using only a very small amount of memory. The version of
APMC we present in this paper can now handle efficiently both
discrete and continuous time probabilistic systems.

I. I NTRODUCTION

In the last years, general methods have been presented for
the model checking of fully probabilistic systems. Most of
these methods reduced a probabilistic statement to the resolu-
tion of a linear system on the state space. However, due to the
state space explosion phenomenon, the representation of the
transition matrix can be so large that the verification becomes
intractable. To overcome this, symbolic and numerical meth-
ods have been introduced in tools such as PRISM [2]. In this
paper, we present a tool that implements a completely different
solution. Our tool APMC (Approximate Probabilistic Model
Checker) uses a randomized algorithm [4] to approximate the
probability that a temporal formula is true, by using sampling
of execution paths of the system [3]. APMC uses a distributed
computation model to distribute path generation and formula
verification on a cluster of workstations. The implementation
of the tool started in 2003 and was originally done using C
programming language together with lex and yacc. APMC was
rewritten recently in Java for its version 3.0.

II. A PPROXIMATE VERIFICATION

In this section we introduce our verification framework.
Model and property

From the theoretical point of view, the method of APMC can
handle any probabilistic systems that support execution path
generation. However, we made the choice for APMC to use
the same input language as PRISM [6] which is a variant of
the Reactive Modules language. Its means that APMC handles
modular description of either DTMCs and CTMCs (Discrete
and Continuous Markov Chains).

The specification language that can be used are probabilistic
LTL and PCTL. Using APMC we can compute, approximately,
the probability of a temporal property over the probabilistic
system. In the following, for the sake of clarity, we consider

only bounded temporal properties. For more informations
about the algorithm for general temporal properties, one can
read [5].
Verification

In order to estimate the probabilityp of a bounded property
ψ with a simple randomized algorithm, we generate random
paths in the probabilistic space underlying the system structure
of depthk and compute a random variableA/N which esti-
matesProbk[ψ]. Our approximation isε-good with confidence
(1− δ) after a number of samples polynomial in1ε and log 1

δ .
It means that the output value of our algorithm is in the
interval [p − ε, p + ε]. The main advantage is that, in order
to design a path generator, we only need to simulate the
behavior of the system and store the values of all variable at
each computation step. For that purpose, we use thediagram,
which is a succinct representation such as the description of
the system in the PRISM input language.

Our algorithm is the following:

Generic approximation algorithm GAA
Input: diagram, k, ψ, ε, δ
Output: approximation ofProbk[ψ]
N := ln(2

δ)/2ε2

A := 0
For i = 1 to N do

A := A+ Random Path(diagram, k, ψ)
ReturnA/N

whereRandom Path is:

Random Path
Input: diagram, k, ψ
Output: samples a pathπ of length k and check
formulaψ on π

1) Generate a random pathπ of length k (with the
diagram)

2) If ψ is true onπ then return1 else0

The approximation algorithm we use consists in generating
O(1

ε2 . log 1
δ) execution paths, verifying the formulaψ on each

path and computing the fraction of satisfying paths, that is an
ε-approximation ofProbk[ψ].

III. A RCHITECTURE AND IMPLEMENTATION

APMC includes two independent components: 1) the com-
piler, 2) the deployer (see figure 1). The APMC compiler takes
the model description written with the PRISM language (a

Distributed Deployer

Sequential Deployer

Temporal

Properties

C compiler

C compiler

Sequential
worker

PCTL

RM

C

MODEL

Verifier

Ad−HOC
APMC

Compiler

worker
distributed

C

Seq.
APMC
engine

C

APMC
engine

Dist.

apmcc

apmcd

Fig. 1. APMC compilation cycle

variant of Reactive Modules), and a list of temporal properties
to check on this model. It produces an ad-hoc verifier for
this set of properties over the given model. The output of the
compiler is in fact a set of functions in ANSI C suitable for
verifying the properties on the model. This file lacks a main
function and an engine to produce the verification.

Providing the engine and the missing functions for the ad-
hoc verifier is the goal of the deployer. There exists many
versions of the deployer and we introduce two of them
here. The first one is a simple, sequential one. It produces
a stand-alone binary which takes only three parameters: the
approximation parameter, the confidence and the paths length.
It then runs the simulation and outputs the approximated
probabilities for each of the temporal formulas.

The other deployer provides the working program suitable
for a distributed verification inside a LAN. This distributed
deployment strategy runs in parallel these components on all
the participating nodes and provides the same result with a
linear acceleration.

APMC-3.0 has been completely rewritten to include all
the features of the PRISM language. The compiler uses the
JAVA parser of PRISM and is itself written in JAVA. Reactive
modules structures are translated in a set of independent
guarded rules (if the compiler is configured to compute the
synchronizations before generating the ad-hoc verifier), or
synchronized guarded rules (if the compiler is configured to
use less memory). These guarded rules are translated in a set of
ANSI C functions and appended to the output file. An engine
designed to produce an execution path of bounded length is
then added to the output. Then, the properties are translated
in ANSI C functions and a higher level engine to compute the
truth value of each of the property on a given path finishes
the output of the compiler.

The sequential deployer is written in ANSI C and simply
computes the number of paths to generate for a given con-
fidence and approximation ratio, then iteratively generates a
path of the given length, verifies it against all the formulas
and updates the corresponding probabilities.

The distributed deployer is written in ANSI C and SUN

apmcc

apmcd

apmcd

apmcd

apmcd

dist. worker

dist. worker

dist. worker

dist. worker

Remote
Procedure

call

Fig. 2. Distributed Deployer Architecture

RPCs. It includes the main worker engine and two more
components (see figure 2).apmcdis the APMC daemon and
runs on all the participating nodes (it is generic for any
verification, asapmcc, the client). It is the server of the
set of Remote Procedure Calls used by the ad-hoc worker
engine to communicate the computations from each of the
ad-hoc verifiers.apmcd is also client and server for others
apmcd. They are registered one with the others in order to
build a spanning tree of the local area network. Then,apmcc,
the client for theapmcd is used to let theapmcd launch
a worker (or more) on each of the nodes runningapmcd.
The workers issue Remote Procedure Calls to theirapmcd
in order to register their computations. Regularly, eachapmcd
calls remote procedures of their parentapmcdto communicate
the sum of their worker and their children. The rootapmcd
computes the sum of all works done and regularly,apmcccalls
a procedure on thisapmcdto update the probabilities counts.

Measurements demonstrated that this distribution scheme is
scalable and provides a linear acceleration.

REFERENCES

[1] APMC homepage. http://apmc.berbiqui.org
[2] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala.

Symbolic model checking of concurrent probabilistic processes using
MTBDDs and the Kronecker representation. InProc. of TACAS, LNCS,
1785, 2000.

[3] T. Herault, R. Lassaigne, F. Magniette and S. Peyronnet. Approximate
Probabilistic Model Checking. Inproc. of the 5th Verification, Model
Checking and Abstract Int erpretation (VMCAI 2004), Venice, Italy,
LNCS 2937, pages 73-84. 2004.

[4] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and
reliability problems.In Proceedings of the 24th FOCS, 56–64, 1983.

[5] R. Lassaigne and S. Peyronnet. Probabilistic verification and approxi-
mation. In Proc. of Wollic 05. Electr. Notes Theor. Comput. Sci. 143:
101-114 (2006).

[6] PRISM homepage. http://cs.bham.ac.uk/ dxp/prism

IV. M ORE INFORMATION FOR REVIEWERS

A. Basic facts about APMC

APMC is still under development and is freely available
under GPL license. The team is composed (May 2006) of :

• Thomas H́erault - LRI - University Paris-Sud
• Richard Lassaigne - Equipe de Logique - University Paris

7
• Sylvain Peyronnet - LRDE/EPITA
• 7 students (ranging from PhD to last year of Bachelor in

CS)
APMC is in use in several universities/compagny (20+),

including :
• Universities Paris 7, Paris-Sud, Paris XII
• EPITA
• State University of NY at Stony Brook
• University of Birmingham
• France Telecom
• CRIL technology
APMC was downloaded from other places (40+), mainly by

individuals.

B. Paper about/using APMC

All papers by the APMC team are available on APMC
website. Here is a list of this papers:

• Probabilistic verification of sensor networks. Akim De-
maille, Thomas Herault and Sylvain Peyronnet. RIVF
2006.

• Distribution, approximation and probabilistic model
checking. G. Guirado, T. Hrault, R. Lassaigne and S.
Peyronnet. In Proc. of the 4th Parallel and Distributed
Methods in Verification (PDMC 05), Lisboa, Portugal.,
Electronic Notes in Theor. Comp. Sci., 2005. To appear.

• Probabilistic verification and approximation. R. Lassaigne
and S. Peyronnet. In Proc. of the 12th Workshop on
Logic, Language, Information and Computation (Wollic
05). Florianapolis, Brazil, July 2005, Electronic Notes in
Theor. Comp. Sci., 2005. To appear.

• Verification of the CSMA/CD protocol using PRISM and
APMC. M. Duflot, L. Fribourg, Th. Hrault, R. Lassaigne,
F. Magniette, S. Messika, S. Peyronnet, and C. Picaronny.
In Proc. 4th Int. Workshop on Automated Verification of
Critical Systems (AVoCS 2004), London, UK, Sep. 2004,
Electronic Notes in Theor. Comp. Sci., 2004. To appear.

• Approximate Probabilistic Model Checking. T. Hrault, R.
Lassaigne, F. Magniette and S. Peyronnet. In proceedings
of the 5th Verification, Model Checking and Abstract
Interpretation (VMCAI 2004), Venice, Italy, LNCS 2937,
pages 73-84. 2004.

• Model checking et vrification probabiliste. S. Peyronnet.
PhD Thesis, University of Paris XI, 2003.

• Approximate verification of probabilistic systems. R.
Lassaigne and S. Peyronnet. In proceedings of 2nd
joint Process Algebra and Performance Modelling and
Probabilistic Methods in Verification (PAPM-PROBMIV
2002), LNCS 2399, pages 213-214. 2002.

C. Case studies

Case studies have been done and published by the team
(see papers), but also by students (verification of an atomic
broadcast protocol, verification of biological processes) and by
externals (mainly communication protocols). The total number
of case studies is around 15.

