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Abstract

Classical hierarchical image representations and connected filters work on sets of connected components (CC). These
approaches can be defective to describe the relations between disjoint objects or partitions of images. In practice,
objects can be made of several connected components in images (due to occlusions for example), therefore it can be
interesting to be able to take into account the relationship between these components to be able to detect the whole
object. In Mathematical Morphology, second-generation connectivity (SGC) and tree-based shape-spaces study this
relation between the connected components of an image. However, they have limitations. For this reason, we propose
in this paper an extension of the usual shape-space paradigm into what we call a Generalized Shape-Space (GSS).
This new paradigm allows us to analyze any graph of connected components hierarchically and to filter them thanks
to connected operators.

Keywords: Mathematical Morphology; connected operators; tree-based representations; tree of shapes; alpha-tree;
hyper-connectivity.

1. Introduction

The notions of connectivity and of connected compo-
nents (CCs) are essential in mathematical morphology for
image processing and image analysis (Serra (1988)). In
the case of 2D images, the classical 4- or 8-connectivities
are usually used.

Using these notions, a family of morphological oper-
ators that focuses on attributes of CC’s rather than indi-
vidual elements has been developed. These operators are
known as attribute filters (Breen and Jones (1996); West-
enberg et al. (2007); Ouzounis and Wilkinson (2011)),
connected filters (Jones (1999)) or connected opera-
tors (Serra and Salembier (1993); Salembier and Serra
(1995); Salembier and Wilkinson (2009)). They remove

∗Corresponding author: Phone: +33 1 53 14 59 47;
Email address: nicolas.boutry@lrde.epita.fr (Nicolas

Boutry)

connected components of the image, so they cannot cre-
ate new extrema nor shift contours. Their edge-preserving
property is desirable in many applications.

Whereas the first connected operators in the literature
relied on classical morphological filtering followed by a
reconstruction procedure, many connected operators now
compute from the input image a tree-based representation
of this image. With this new representation, connected
operators can be defined by removing unwanted nodes in
the tree, the filtered image being reconstructed from the
simplified tree.

Classical connectivities have a limitation. Because an
image is a partial representation of the real world, an ob-
ject can be represented by several CCs in the image (due
to occlusions for example). Thus, a set of CCs can mistak-
enly be treated as distinct objects, instead of parts of the
same object. To handle this problem, a well-established
approach known as second-generation connectivity (Serra
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Figure 1: Generalized shape-space filtering scheme.

(1996); Braga-Neto and Goutsias (2002)) (called SGC
for short) uses morphological operators to define a sec-
ond connectivity class. The first SGC approaches use
structuring elements (SE), which limit how the image do-
main can be connected. The mask-based SGC, introduced
in Ouzounis and Wilkinson (2007), cancels this depen-
dency by using a mask. In these two approaches, it is
sometimes difficult to define a sequence of morphologi-
cal operators or a specific mask that allows us to extract
all object clusters. Furthermore, we cannot represent the
fact that there exist different levels of hierarchies in im-
ages: we can have different letters, each made of several
connected components when words are made of several
letters (different levels of abstraction).

For this reason, we introduce in this paper a new ap-
proach which is able to group in a hierarchical way CC’s
that are distant from each other. This approach is in-
spired by the tree-based shape-space (Xu et al. (2016)).
The main contributions of our approach are: (1) an ex-
tension of the shape-space paradigm, namely the Gener-
alized Shape-Space (GSS), that encodes the relationship
between nodes of a tree-based image representation (this
GSS will be analyzed hierarchically thanks to a second
tree-based representation), (2) a new procedure capable
of reconstructing the GSS, and consequently, reconstruct-
ing the image from the filtered second tree (this recon-
struction procedure is more flexible than the one proposed
in Xu et al. (2016) because we can apply any tree-filtering
strategies available to the framework of tree-based con-
nected operators), (3) some results showing that the GSS
can be used to retrieve sets of CC’s that represent (bro-
ken) objects in images; note that our approach can easily
be used for object extraction or image simplification (see
Fig. 1).

The paper is organized as follows: in Section 2, we
recall the definitions of connected operators and second
generation connectivities. We will also expose some
drawbacks and limitations of SGC and tree-based shape-
spaces. Then, Section 3 introduces our generalized shape-
space (GSS) and shows how we can use connected filters
on it. In Section 4, we present how to apply GSS to repre-
sent hierarchically object clusters in images, and in Sec-
tion 5, we show some applications of our new paradigm.
Finally, we conclude in Section 6.

2. Background

In this section, we briefly recall related concepts, no-
tably the tree-based shape-space and second generation
connectivity, and discuss their limitations. For more de-
tail, we recommend Xu et al. (2016) and Salembier and
Wilkinson (2009).

A graph (V,E) is a pair defined as a set of vertices V
(defined in some space) and a set of edges E ⊆ V × V .
Two vertices v1, v2 such that (v1, v2) belongs to E are said
to be neighbors. A graph G = (V,E) is said to be con-
nected if ∀x, y ∈ V , there exists a path π(x, y) = (p1 =
x, . . . , pi, . . . , pN = y) which verifies that every pi belongs
to V and any pair (pi, pi+1) belongs to E. A set of vertices
X ⊆ V is said to be connected (in G) if the induced sub-
graph GX = (X,EX) with EX = X × X ∩ E is connected.
A connected component of X is a connected subset of V
which is maximal in the inclusion sense.

An image I is a triplet (V,EI , fI) corresponding to a
graph (V,EI) supplied with a color function fI ∶ V → V.
In practice, V is equal to Zn, (V,EI) is connected as a
graph and the value space V is equal to RN with N ∈ {1,3}
depending on whether we work with grayscale or color
images.

2.1. Connected operators

Connected operators were first defined for binary im-
ages with the introduction of opening by reconstruc-
tion (Klein (1976)) of the foreground. Their extension
to grayscale images is based on flat zones (Serra and
Salembier (1993)). Connected operators work with CC’s:
they remove these components and change their associ-
ated value in such a way that they do not create extrema
nor shift the contours. Consequently, they do not create

2



new structures in the image. From a higher level stand-
point, such operators could be implemented by construct-
ing and filtering a tree-based image representation.

2.1.1. Tree-based image representations
A tree-based image representation T = (R,⊆) of an im-

age I = (V,EI , fI) is a connected poset of non-empty dis-
joint or nestesd CC’s of V supplied with the inclusion re-
lationship ⊆.

The first family of tree-based image representation is
made of hierarchies of segmentations (see the Binary Par-
tition Tree in Salembier and Garrido (2000)), and of hi-
erarchies of quasi-flat zones (see Meyer and Maragos
(2000)) or α-trees (see Ouzounis and Soille (2011, 2012)).
These representations are usually computed in a bottom-
up fashion: starting from a partition of the image, some
neighbors are iteratively connected until we have only one
CC covering the whole domain of the image.

The second family of tree-based representation are
threshold decompositions. When the value space X of
the image is supplied with a total order <, the lower and
upper level sets at level λ are defined respectively by:
[ fI < λ ] = { v ∈ V ∣ fI(v) < λ} and [ fI ≥ λ ] =
{ v ∈ V ∣ fI(v) ≥ λ}. The min-tree (resp. max-tree)
(Hanusse and Guillataud (1992); Jones (1997); Salem-
bier et al. (1998); Carlinet and Géraud (2014)) codes
the inclusion relationship between the connected compo-
nents of all possible lower (resp. upper) threshold sets:
R< = ⋃λ CC([ fI < λ ]) and R≥ = ⋃λ CC([ fI ≥ λ ]).
The tree of shapes (ToS) (Caselles and Monasse (2010);
Géraud et al. (2013)) is a fusion of the min-tree and the
max-tree. It is the hierarchy induced by the saturated con-
nected components of the lower and upper threshold sets
R = { Sat(Γ); Γ ∈ R< ∪ R≥ }.

A tree-based image representation T is usually supplied
with a function F ∶ R → V so that T is an equivalent
representation of I; that is, I can be reconstructed from
the triplet (T,⊆,F).

2.1.2. Tree-based implementation of connected operators
When implementing connected operators using trees,

the image contents are first mapped into a tree-based
representation. The choice of the tree is often driven
by the application and the input image contents (for in-
stance, when dealing with a text document image with

dark text over a bright background, the min-tree contains
the components of the characters). The nodes of the tree
T = (R,⊆) will then be weighted using an attribute func-
tion A ∶ R → R. The attribute A(R) of a region R can
be the value of the pixels corresponding to R in the initial
image, or the area of R, or more complex measures such
as the compactness (Montero and Bribiesca (2009)), the
elongation (Westenberg et al. (2007)) of R, and so on.

Image filtering is a process of selected tree node re-
moval depending on the associated A. In the case of
trees encoding the image decomposition with connectiv-
ity criteria as in Serra (1988), tree filtering can be divided
into two classes: pruning and non-pruning (Urbach et al.
(2007)). We call a method a “tree pruning” strategy if it
removes the whole sub-trees associated to some nodes in
the tree, and we call it a “non-pruning” strategy otherwise.
In the latter case, some descendants of a filtered node can
be preserved. Please note that the differentiation between
“pruning” and “non-pruning” does not apply to α-trees;
it only makes sense for threshold-based trees (min-tree,
max-tree, and tree of shapes).

When the attribute function A is increasing (which
means that ∀Ci,C j ∈ R , Ci ⊆ C j ⇒ A(Ci) ≤ A(C j)),
the tree filtering is easy to implement: when a node is
removed, it means that its attribute fails to satisfy some
criteria, and all its descendants fail in the same manner. It
always leads to a pruning strategy. WhenA is not increas-
ing, several tree-filtering strategies exist. Three tree prun-
ing strategies (Min, Max, and Viterbi) and a non-pruning
(direct rule) one were proposed in Salembier et al. (1998).
Some other non-pruning strategies were introduced in Ur-
bach et al. (2007) (subtractive rule), and in Ouzounis and
Wilkinson (2011) (k-subtractive and absorption rules).

2.1.3. Connected filtering on tree-based shape-space
When using tree-based connected operators, three main

approaches are possible:

1. The local non-pruning approaches (see Salembier
et al. (1998)) (by “locality” we mean that the deci-
sion to preserve or not a node depends only on the
attribute of this node).

2. The pruning approaches, which are by definition
based on a non-local criterion: the decision whether
to filter a node or not depends on whether its an-
cestors and descendants satisfy some criterion. This
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way, we cannot preserve two nodes in the same
branch when we remove all the nodes between them
(the merge of monotonic branches usual in tree sim-
plification is then incompatible with this scheme).

3. The non-local non-pruning approaches (see the shap-
ings detailed in Xu et al. (2016)): from some tree
T = (R,⊆) computed on a given image I seen as a
graph, we compute a new graph G = (R,EG) with
the same structure/topology as T , that is, the directed
edges of T (representing the parenthood relation-
ship) become undirected edges (representing then a
neighborhood relationship). From G, a second tree
T = (R,⊆) is computed. In practice, this tree is
a max- or min-tree. Then, T is weighted by some
attributes, and then filtered by a pruning approach.
From the remaining tree T ′ = (R′,⊆), we construct
the graph G′ = (R′,EG′) that T ′ represents, from
which we deduce the tree T ′ = (R′,⊆) (thanks to
the inclusion relationship of the elements of R′), and
then we finally obtain I′, the filtered version of I. The
set of regions R′ is obtained thanks to the following
equation (Xu et al. (2016)):

R′ = R ∖ ⋃
C ∈ R∖R′

C. (1)

Notice that in the last approach, we compute a tree-
based representation on (the graph induced by) another
tree-based representation, which corresponds to an ab-
straction of order two. However, imagine now that we
select a node in the filtered tree T ′; the region in the image
corresponding to this node will be connected, which is a
strong limitation. Moreover, Eq. 1 implies that a pruning
strategy has been used on T . To overcome these limita-
tions, we will see next how we can extend the paradigm
of tree-based shape-spaces to graph-based shape-spaces
(GSS) by changing the connections between nodes in G,
how we can proceed to non-pruning strategies in the new
shape-space T computed from the modified G, and this
way how we can extract (sets of) disconnected objects
from images.

Lastly, note that all these more or less sophisti-
cated filtering strategies are essentially relevant for non-
increasing criteria.

2.2. Second-generation connectivities (SGC’s)
Let us now recall what the clustering-based and mask-

based second generation connectivities are. In brief, they
permit the retrieval of groups of related CC’s in images
when their relative distance is small, which is a good ap-
proach when objects are made of several connected com-
ponents due, for example, to occlusions.

An important drawback of the usual 4- and 8-
connectivities is that when we try to segment objects in
images supplied with these connectivities, we often get a
large component made of several objects, when we would
like to obtain several connected components correspond-
ing to the same object instead.

The paradigm known as second-generation connectiv-
ity (SGC) (Serra (1996); Ronse (1997)) is an interesting
solution to this problem. In particular, the mask-based
SGC (Ouzounis and Wilkinson (2007)), coming from a
fusion of the clustering-based and the contraction-based
SGC, has fewer limitations compared to both these ap-
proaches when considered individually, and better serves
our goal. More details about these connectivities can be
found in Wilkinson and Ouzounis (2010).

The clustering-based SGC (Ouzounis and Wilkinson
(2006)) defines a child connectivity class based on a struc-
tural operator ψ: a set of CC’s in the image I is seen as
a single cluster if they are included in a same connected
component of ψ(I) and the size of some chosen struc-
turing elements controls the maximum distance separat-
ing two CC’s which belong to the same cluster. How-
ever, ψ must satisfy many constraints like those detailed
in Ouzounis and Wilkinson (2007).

Mask-based SGC allows us to get rid of this depen-
dency on a structural operator ψ: it encodes the (hyper-
)connectivity defined in the image thanks to a mask M,
computed from I like in Ouzounis and Wilkinson (2007).
This computation can be based on alternating-sequential
filters (ASF) (Heijmans (1997)) or on Minkowski addi-
tions. Furthermore, in Ouzounis and Wilkinson (2007)
and in Salembier and Wilkinson (2009), the authors sug-
gest that the mask could also be an image of the same
scene, obtained at different wavelengths or with different
modalities.

In both clustering-based and mask-based SGC’s, an op-
erator or a mask only corresponds to a class of cluster.
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Figure 2: An example of segmentation based on our method: here, the first tree is a ToS and the second tree is an α-tree.

However, sometimes object clusters should be considered
hierarchically, e.g., some CC’s that represent parts of ob-
jects form a “broken” object, some related “broken” ob-
jects form an object cluster. In such a case, a new mask
must be defined for each level of abstraction. Our ap-
proach is devoted to tackling this problem and to captur-
ing this hierarchical structure of sets of objects, each one
being a set of connected components in the image.

3. Generalized shape-space (GSS)

The initial tree-based shape-space approach of Xu et
al. (Xu et al. (2016)) only permits the retrieval of con-
nected regions in the image. To overcome this limitation,
we propose to adding/removing connections between the
nodes of the graph induced by T = (R,⊆) (cf. the proce-
dure described before) which satisfy some particular con-
straints (like alignment or neighborhood relationship be-
tween shapes) to obtain a new graph G = (R,EG) (see
Figure 2). We call this new representation the General-
ized Shape-Space (GSS); note that the tree-based shape-
space (Xu et al. (2016)) can be seen as a particular case of
our GSS.

When G is complete, its number of edges reaches the
value ∣R∣ (∣R∣ − 1) /2, which is hard to manage in prac-
tice. For this reason, we connect only nodes which satisfy
some meaningful relationship among the following ones:

Neighborhood relationship: We can assume that ele-
ments of a cluster are relatively close to each other. In this

case, we connect the nodes of G corresponding to compo-
nents in the image which are close to each others. Note
that the maximum distance parameter can be fixed rela-
tively to the size of the components.

Alignment relationship: We can also assume that the
parts of an object, or that the objects of the same cluster,
are aligned together (as in text detection, when we seek
the windows in a building, or in crosswalk marking).

No-parenthood relationship: When two nodes in T
are parents, either they belong to the same object at dif-
ferent scales, or they do not belong to the same object and
they correspond to structures in the image which are not
related. In other words, we possibly want to compute the
complement of G in R × R so that only the nodes which
are not parents in T will be connected in G. To limit the
complexity of this new graph, we will generally restrict
the connections to aligned or nearby components in the
image like described before.

3.1. GSS segmentation
We could proceed to the segmentation of G: we initial-

ize the nodes of G to 1 when they correspond to the parts
of the broken object (or the cluster of objects) we are look-
ing for; otherwise we initialize them to 0. Two approaches
are then possible. Either we use node-weighted graphs
and nodes are weighted by some attribute, or we use edge-
weighted graphs and we use some dissimilarity function
(based on color, size, or dimensions). In particular, we
could use graph cuts (Boykov and Funka-Lea (2006)) or
graph convolutional networks (Kipf and Welling (2017)).
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However, this approach has limitations because it is not
progressive. For this reason, it can be more flexible and
efficient to propose a hierarchical segmentation of G. In
order to achieve that, we will compute some tree on G
(like a min-tree, a max-tree, or a ToS), following the idea
presented in Xu et al. (2016).

3.2. GSS methodology

Our method is the following: first, from an image
I = (V,EI , fI), we compute some tree T = (R,⊆,F,A)
(where A is the attribute function defined on the nodes of
T), which we transform into the graph G = (R,EG,F,A)
by adding/removing some connections in the graph in-
duced by T . Second, we compute a new hierarchical rep-
resentation T = (R,⊆,F,AA, ) from G. Third, we filter
T in some way depending on the application to obtain a
simplified tree T ′ = (R′,⊆,F′). Then, the filtered graph
G′ = (R′,EG′ ,F′) is constructed from T ′ using the fol-
lowing formulas:

R′ = ⋃
n∈R′

n

EG′ = EG ⋂ R′ × R′

∀r ∈ R′, F′(r) = F′ (⋂{n ∈ R′ ∣ r ∈ n} ) .

(2)

Then, T ′ = (R′,⊆,F′) is easily deduced from G′: since
we have R′ ⊆ R, two components of R′ are either disjoint
or nested. Finally, I′ = (V ′,EI′ , fI′) is computed from T ′

using the formulas:

V ′ = ⋃
r∈R′

r

EI′ = EI ⋂ V ′ × V ′

∀p ∈ V ′, fI′(p) = F′ (⋂{r ∈ R′ ∣ p ∈ r} ) .

(3)

Assuming that an object in I is made of several nodes
of T , and that we succeeded in connecting/disconnecting
these nodes in G so that this same object will be repre-
sented by a CC (resp. an α-CC) of G (see Fig. 2), we will
be able to extract this object by constructing I′ from to the
filtered ToS (resp. α-tree) T ′.

Note that Equations 2 and 3 are new and allow us to
construct the filtered image from T ′. It complements the
strategy of Xu et al. where the condition to use Eq. 1 was
to use only pruning on T ′.

4. Object retrieval based on GSS

We propose now the following methodology to extract
disconnected/broken objects from a grayscale or color im-
age I:

• Depending on the value space V of the input image,
we compute either a ToS (Géraud et al. (2013)) or a
color ToS (Carlinet and Géraud (2015)) of I.

• We extract the more salient level lines by minimizing
the Mumford-Shah functional by methods described
in Xu et al. (2013) and in Carlinet and Géraud (2015)
(in practice we choose λ = 1000 for color images and
λ = 300 for grayscale ones).

• We apply a grain filter to remove nodes whose area
is under some given threshold (in practice we choose
the threshold value a = 3).

• We compute the graph G using the relationships de-
scribed before.

• We use some dissimilarity function to valuate the
edges of G (based for example on the difference of
intensity values).

• We compute the α-tree of G (see Najman et al.
(2013) for its implementation).

At the end, packs of (joint or disjoint) nearby homo-
geneous areas in G will be represented by a node in T ,
and then we will be able to reconstruct separately broken
objects in the image. Let us detail this procedure.

4.1. Advantages of the ToS

We choose the tree of shapes for our first tree due to
its interesting properties: it is self-dual (it describes the
dark and bright parts of the image in the same fashion)
and it is invariant relatively to the contrast variations. Fur-
thermore, the inclusion of the level-lines (encoded by this
tree) can help us to deduce the background/object rela-
tionship between image regions. Depending on the given
image (grayscale or color), we will use the ToS (Géraud
et al. (2013)) or the cToS (Carlinet and Géraud (2015)).

Possibly, we can apply a simplification procedure on
T using the methodology described in Xu et al. (2013)
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or Carlinet and Géraud (2015): this simplification aims to
reduce the graph complexity by removing the leaves that
are considered as being noise, removing nodes that rep-
resent less important level-lines thanks to the minimiza-
tion of the Mumford-Shah functional (i.e., we keep only
salient level-lines). Note that we take care not to oversim-
plify T , so that we preserve the structures of the “broken”
objects in the image: when we consider them indepen-
dently, they can be misclassified as noise.

4.2. The α-tree
When G is built, the next step is to hierarchically seg-

ment it thanks to the second tree T . Since the goal is to
group related CC’s as deeply as possible into T , we com-
pute an α-tree.

Concerning the dissimilarity function, we use absolute
difference for grayscale images and the CIELAB ∆E∗ op-
erator (Alman (1993)) for color images in the L∗a∗b∗

space (but we can also imagine to use height similarities
(Huỳnh et al. (2016)), a “learned” dissimilarity, or to ap-
ply some penalty based on the distance between CC’s)

5. Experiments and discussion

In this section, we present some comparisons between
our GSS approach and clustering/mask-based SGC ones.

5.1. Segmenting filamentous objects in images
Now, let us show the efficiency of our approach to ex-

tract filamentous objects (in the first case, a protein chain,
and in the second case, some Anabaena complexes). They
are disconnected components over a noisy background.
The input images and a part of the results are extracted
from Ouzounis and Wilkinson (2007) (we detail in the
caption which part of the figure is new).

According to Ouzounis et al. (see Ouzounis and
Wilkinson (2007)), clustering-based SGC is not adapted
to protein chain segmentation while mask-based SGC
gives good results (see first row of Fig. 3). To test our
method, we propose to compute a (grayscale) ToS T sim-
plified by a grain filter with a parameter a = 3 and using a
minimization of a Mumford-Shah functional to keep only
the most salient level-lines (we choose λ = 300). The
neighborhood relationship is then used to compute G: if
two components are closer than 1.4 times their bounding

box size, they are considered as neighbors. To weight the
edges of G (for the computation of T )), we use a dissim-
ilarity function based on the colors of the CC’s, and we
apply a penalization based on the distance between their
bounding boxes’ center. We see in Fig. 3(f) that the pro-
tein chain is correctly segmented.

In Fig.4, we have several Anabaena complexes. The
largest complex is made of two segments separated by a
heterocyst. A connected component approach using 4-
connectivity can only detect the larger segment, while the
clustering-based SGC is able to segment the whole com-
plex. However, in order to retrieve the two other com-
plexes in the image, we have to perform the whole oper-
ation again and with different criteria. With our method,
all Anabaena complexes are represented in the α-tree, and
each one can be extracted easily thanks to our hierarchi-
cal representation. Please note that in this result we only
use Fig. 3(b) and Fig. 3(c) to demonstrate the difference
between regular versus clustering-based connectivities.

5.2. Text detection in natural images

In Figure 5, we show the efficiency of our GSS to de-
tect text in natural color images. For the computation of
the cToS T and its simplification, we use the same proce-
dure as before. Since we can assume that characters are
horizontally aligned, the alignment relationship is used to
compute G. We also use a neighborhood criterion: we
assume that the maximal distance between two CC’s is
equal to the height of the CC’s multiplied by a factor of
2. In the first column of Fig.5, we expose the input im-
ages. In the second column, we can see that due to the
homogeneity of its background, the first image can be eas-
ily segmented using a cToS, when the second image is a
much more complicated case due to the heterogeneity of
the texture of its background; furthermore, the letters are
broken in several components. In the third column, we ob-
serve that our approach succeeds in segmenting the char-
acters correctly thanks to the computation of the α-tree of
G (we used the not-parenthood relationship in addition of
the neighborhood and the alignment relationships).

Thanks to our new representation T , we can segment a
picture at different hierarchical levels: in Fig. 6, we first
label the different parts of the letters (α = 0), then we
can group them into letters (α = 0.06), and then we can
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group these letters into words (α = 0.12). This shows the
powerfulness of our new paradigm.

6. Conclusion

Connected operators are morphological filters which
preserve contours in images. The tree-based shape-space
filtering is an interesting framework to synthethize such
filters. However, connected operators usually rely on di-
rect connectivities, which are often too much rigid to ex-
tract object clusters. In this paper, we present an extension
of the framework of tree shape-spaces; we called it gen-
eralized shape-space (GSS) and this approach removes
strong limitations induced by the tree-based framework.
Indeed, the GSS is able to build any desired relationship
between components in images. Moreover, the usual fil-
ters used in the tree-based shape-space can also be applied
to the generalized one.

The other approaches based on second generation con-
nectivity (relating regions which are far away from each
others) like the cluster-based SGC or the mask-based SGC
have strong limitations due to their dependency to opera-
tors. On the contrary, our approach is able to consider the
hierarchical nature of object clusters in images thanks to
its abstraction order of two: we can segment sets of nested
connected components corresponding to objects and also
sets/clusters of objects. As depicted in the last figures, our
methodology is efficient in matter of filamentous objects
in natural images. Furthermore, the closer we are to the
leaves in the second-order hierarchical representation, the
more the nodes correspond to strongly related objects in
the image, which gives a progressive and flexible tool for
image processing and filtering.

As future work, we will study how much groups of ob-
jects of interest can be extracted from the second hierar-
chical representation using markers (Salembier and Gar-
rido (2000)), we will consider how we can use learned
attributes to weight the GSS G, we will test the super-
pixels frameworks instead of trees to compute G, and we
will try graph-segmentation algorithms like graph cuts or
graph convolutional networks (Duvenaud et al. (2015)).

Acknowledgments: The authors would like to warmly
thank Isabelle Bloch, Hugues Talbot, and Yongchao Xu
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(a) (b) (c)

(d) (e) (f)

Figure 3: Top row (from Ouzounis and Wilkinson (2007)): (a) The orig-
inal image I, Results of (b) clustering-based SGC using I ● ◻5x5, (c)
Mask-based SGC using ((I ●◻5x5) ○◻5x5) ●◻11x11 as the mask, where
● and ○ denote respectively the closing and opening operators and the
square ◻S xS of size S is the structuring element. An elongated filter
with threshold value equal to 3 has been applied to (b) and (c). Bot-
tom row: results of our GSS (d) labeling of the nodes of the grayscale
ToS, (e) the largest 0.4-CC in the neighborhood shape-space that does
not contain the root followed by a filter that removes CC’s whose area
is smaller than 5% of the largest one in this cluster. (f) extraction of the
protein chain.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Top row (from Ouzounis and Wilkinson (2007)): (a) the orig-
inal image, (b) the filtered image using an area criterion relying on the
4-neighborhood relationship and (c) clustering-based SGC. Bottom row:
results of our GSS (d) the labeling map of the grayscale ToS obtained by
reconstructing the image from T′ using random colors, (e) the 0.25-CC’s
of G′, (f) the simplified image I whose values are set at the mean of the
remaining region.

Figure 5: First column: the input image, Second column: the segmenta-
tion using a cToS, Third column: the extraction resulting from the α-tree
computation on G.

(a) (b)

(c) (d)

Figure 6: (a) the input image, (b), (c), (d) are the reconstructions of the
filtered tree T for respectively α = 0, α = 0.06, and α = 0.12 (F′ maps
one different color for each node of T ′).
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