Color Image Segmentation based on Automatic Morphological Clustering

T. Géraud, P.-Y. Strub, J. Darbon

thierry.geraud@lrde.epita.fr

Outline

Introduction

- about statistical classification
- about watershed algorithm
- problem statement

Morphological classification

- state of the art
- description of proposed approach
- commented results

Conclusion

A classical statistical and non-contextual classification scheme

Transform observations into feature vectors

- for a pixel, a feature can be a color component, a local variance...
- difficulty: find a relevant feature space

In feature space

- assign / learn a parametric model for each class
- then run a classifier

Remark:

the *probability density function* of a class in the feature space can be estimated from few samples; e.g., convolve the samples with a Gaussian kernel

About watershed algorithm

Key features

- \rightarrow it applies on n-D images
- \rightarrow the algorithm divides the input image into regions (*basins*)
- → one local minimum leads to one surrounding basin
- → a 1-pixel thick component (*watershed*) separates every basins
- → basin boundaries are located on image crest values

Connected version of the algorithm

- → the watershed itself is suppressed
- → other properties are maintained
- \rightarrow as output image we get a partition

A reliable segmentation tool

→ "Scale-Space Segmentation of Color Images Using Watersheds and Fuzzy Region Merging," by Makrogiannis et al., ICIP 2001

A classical morphological segmentation method

morphological watershed algorithm (the watershed is located on object contours)

Problem statement

Color images

- feature space is (at least) 3-dimensional
- in such a space, clusters have low-density
- cluster cardinalities are very heterogeneous
- many artifacts appear due to:
 - storage compression
 - color gradations
 - specular surface of objects

Statistical models

are they relevant?

green

Morphological classification of color images (state of the art)

• Basic idea:

- RGB image \rightarrow compute histogram = 3D image
 - → morphological cluster identification
- Postaire *et al.*, "Cluster Analysis by Binary Morphology", PAMI 15(2).
- ◆ Zang *et al.*, "Convexity Dependent Morphological transformations for Mode Detection in Cluster Analysis," Pattern Recognition 27(1).
- Park *et al.*, "Color Image Segmentation Based on 3D Clustering: Morphological Approach," Pattern Recognition 31(8).

• Drawbacks:

- → clusters should be prominent and well-contrasted
- → only cluster cores are segmented; so, how to handle color *outliers*?

Morphological classification

presented here

- From a color image:
 - → express data in feature space

for instance, a 3-D RGB histogram

- \rightarrow consider data as a n-D image
- → regularize data
- → run a morphological partitioning
- Originality: use of the watershed algorithm as a classifier

Method details

Step	Description	Rationale
1	data computation in feature space, log transform, and inversion	get a grey-level image H where clusters have dark values
2	Gaussian filtering	regularize (while suppressing many local minima)
3	closing plus cutting low values	suppress extra local minima
4	connected watershed algorithm	get a partition W of
5	apply a segmentation process	feature space

Method properties

• Applying an increasing function f to feature space values (densities):

$$H_{bis}(c) = f(H(c)) \implies W_{bis}(c) = W(c)$$

• Applying a rigid transform *T* to features:

$$H_{bis}(c') = H(T(c)) \Rightarrow W_{bis}(c') = W(T(c))$$

• Applying a scaling factor α to a given feature:

$$H_{bis}(c_1, c_2) = H(c_1, \mathbf{a} c_2) \implies W_{bis}(c_1, c_2) = W(c_1, \mathbf{a} c_2)$$

Some segmentation approaches (step 5)

- Using directly feature space partitioning:
 - \rightarrow segmentation = non contextual labeling
 - → but a feature can be contextual (e.g., a local variance)
- Considering that we can learn from feature space classes...

for example, perform a Bayesian labeling:

- → estimate Mahalanobis distances from basins
- → run a Markovian relaxation in image domain

Segmentation results

(on peppers image)

Projections on the RG plane of 3D data:

= input of the watershed algorithm

result of step 3

 $\log(P_{RG}(H))$

classes

Non-contextual labeling

Markovian labeling

Other results

EPITA Research and Development Laboratory, France / ICIP, Thessaloniki, October 2001

What about results from extreme data?

(oops... so many clusters! It should be a...)

...Kandinsky

EPITA Research and Development Laboratory, France / ICIP, Thessaloniki, October 2001

part of original image

noncontextual labeling

Conclusion

- Original use of the connected watershed algorithm:
 - → leads to an automatic classification method
 - → is applied to color image segmentation
 - → provides rather good and robust results

http://www.lrde.epita.fr/download

• *But*:

- → needs to be refined by merging (to improve the segmentation) and/or splitting classes (to serve as an halftoning method)
- → cannot separate two clusters when they closely mix
- \rightarrow is memory consuming (<u>3D</u> feature space)