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Abstract Explainable Artificial Intelligence (XAI) has received a lot of attention
over the past decade, with the proposal of many methods explaining black box
classifiers such as neural networks. Despite the ubiquity of recommender systems in
the digital world, only few researchers have attempted to explain their functioning,
whereas one major obstacle to their use is the problem of societal acceptability
and trustworthiness. Indeed, recommender systems direct user choices to a large
extent and their impact is important as they give access to only a small part
of the range of items (e. g., products and/or services), as the submerged part of
the iceberg. Consequently, they limit access to other resources. The potentially
negative effects of these systems have been pointed out as phenomena like echo
chambers and winner-take-all effects, because the internal logic of these systems
is to likely enclose the consumer in a “déjà vu” loop. Therefore, it is crucial to
provide explanations of such recommender systems and to identify the user data
that led the respective system to make the individual recommendations. This
then makes it possible to evaluate recommender systems not only regarding their
effectiveness (i. e., their capability to recommend an item that was actually chosen
by the user), but also with respect to the diversity, relevance and timeliness of the
active data used for the recommendation. In this paper, we propose a deep analysis
of two state-of-the-art models learnt on four datasets based on the identification
of the items or the sequences of items actively used by the models. Our proposed
methods are based on subgroup discovery with different pattern languages (i. e.,
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itemsets and sequences). Specifically, we provide interpretable explanations of the
recommendations of the Top-N items, which are useful to compare different models.
Ultimately, these can then be used to present simple and understandable patterns
to explain the reasons behind a generated recommendation to the user.

1 Introduction

A recommender system offers personalized recommendations that are based on the
history of users in the system and their respective resemblance to the histories
of other users. Personalizing a suggestion then consists of filtering the content in
order to only keep the most relevant items for a given user. Since such processes are
typically opaque, being able to explain a recommendation should increase the user’s
confidence and trust in the system [Pu and Chen, 2006]. This question has already
been considered, for classification problems (e. g., [Ribeiro et al., 2016]), but also in
the scope of recommender systems (e. g., [Tintarev and Masthoff, 2011]) to some
extent. However, these approaches did not extend to a deep analysis of complex
recommendation models nor to methods providing model-agnostic explanations.
This is the task that we tackle in this paper, restricting our analysis to recommender
systems that only use the user’s history in the system (i. e., the users’ sequences),
without taking into account external information, e. g., profile data or item content
of a user. Furthermore, we focus on Top-N recommendations instead of considering
the best (Top-1) recommendation only.

Recommender systems are used to retrieve information and products that are
most relevant to a user. Existing techniques and methods are numerous and – even
if we can understand them from a theoretical point of view – it is usually difficult
to understand a particular recommendation. However, being able to identify the
“foundations” of a recommendation – i. e., answering the “why” question using an
explanation – would help to increase the confidence that one can have in it [Tintarev
and Masthoff, 2011], and also to assess and compare different methods that may
only differ slightly. It is generally accepted that a recommendation can be based
on a “global” characterization of the user, which generally relates to their “user
preference” in the literature. It can also depend on recent user activity, and/or
sequential relations between a set of items (like watching episodes of a series in
order). In our context, we call this “sequential dynamics”.

Thus, we propose a method for explaining recommender systems with the
objective to answer the following questions, which we address in this paper:

1. Which actions in the past are behind the recommendation?
2. Is the (sequential) order of the actions important for the recommendation?
3. In the case that the order of actions is important, which sequences of actions

do support the recommendation?
4. Furthermore, can we interpret a model globally by identifying a typology of

possible recommendations? That is to say, can we identify a small number of
explanations that represent the whole model?

5. Finally, how can we compare the “explanations” of several models?

In preliminary work [Lonjarret et al., 2020], we proposed two methods to
explain the first item recommended by a recommender system. In this paper, we
present a non-trivial extension of this work towards the explanation of the Top-N
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recommendations. Indeed, recommender systems generally offer an ordered list
of items to the user who does not only consider the first item, but a set of items
classified at the top by the system. In particular, compared to [Lonjarret et al.,
2020], we significantly extended the method to take into account and explain the
Top-N recommendations. This necessitated studying a new pattern language to
support the explanations and led us to extend the experiments accordingly.

The proposed method (see Figure 1 for an overview) exploits the neighborhood
of the user’s sequence to study the variability of the Top-N recommendation made
by the model:

1. Given a user sequence u, it generates sequences of items close to u. Two different
neighborhoods US1(u) and US2(u) are considered:
(a) US1(u) consists of all subsets of the items contained in the user sequence,

where the items are ordered as in the user sequence. With this neighborhood,
the goal is to identify items that strongly impact the recommendation.

(b) US2(u) focuses on the impact of the item order on the recommendation.
Thus, US2(u) consists of perturbed sequences, resulting from the permuta-
tion of two consecutive items in the user sequence – a random number of
times (i. e., given u, an arbitrary number of permutations is applied).

2. These sequences, close to the original one, are used to identify the key items on
which the recommendation is based. First, the recommender model R is used
to compute the recommendations scores obtained on the new sequences. For
analysis and for uncovering relevant patterns explaining the recommendation,
we apply subgroup discovery [Wrobel, 1997,Atzmueller, 2015] to identify the
past actions that play an important role in the recommendation of the Top-N
items TN u . Subgroup discovery is part of the family of rule-based models which
are widely accepted as the most interpretable ones [Fürnkranz et al., 2020]. As
subgroup discovery is defined to characterize a single target variable, we extend
this method for the explanation of TN u items by constructing an aggregate
value of their associated scores provided by the recommender system that is
in turn used to guide the discovery of subgroups having an exceptionally high
score on this target. We then have two options:
(a) On the sequences of US1, our proposed subgroup discovery approach identi-

fies user actions that lead the model to rank the Top-N items obtained when
considering the sequence u also in first positions of the recommendation. To
that end, we use an itemset description language and apply the SD-Map
algorithm [Atzmueller and Puppe, 2006,Lemmerich et al., 2016].

(b) For the sequences US2, we first check whether the order between past
actions matters via a simple distributional test. We use sequences as the
description language and the algorithm SEPP [Mollenhauer and Atzmueller,
2020] for sequential analysis in order to identify the sequential patterns that
lead to the Top-N recommendations in high positions.

3. For both, the best subgroup allows us to identify conditions on the user’s actions
maximizing a target variable aggregating the positions of the items TN u in the
recommended sequences.

Our contributions are summarized as follows: (1) We present an approach for
explaining recommendations of a determined model, but which can be based on
any type of recommender systems (what is called model-agnostic), exploiting the
recommendation history. The proposed methodological approach for generating
specific sets of recommendation histories is independent of the model type and
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Fig. 1: Overview of how the explanation of Top-N recommendations is created
given a user sequence and the corresponding recommended items TN u .

thus broadly applicable. (2) Instantiating this approach, we present an explanation
method utilizing subgroup discovery [Wrobel, 1997,Atzmueller, 2015] for identi-
fying active data used for recommendation. (3) Finally, we present experiments
performing a deep analysis of two state-of-the-art models – known to perform well
on Top-N sequential recommendation – learned on four datasets. We provide an
extensive discussion of our results in context.

The rest of the paper is structured as follows: Section 2 discusses related work.
After that, Section 3 presents the proposed method. Next, Section 4 describes
our experiments and discusses their results. Finally, Section 5 concludes with a
summary and interesting directions for future work.
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2 Related Work and Background

Below, we first discuss general related work on model explanation and interpretation,
particularly including model-agnostic and post-hoc explanation methods. Next, we
move on to explanations on recommender systems.

2.1 Model Explanation

Recently, the concept of transparent and explainable models has gained a strong
focus and momentum in the data mining and machine learning community. While
the methods sketched above focus on a specific machine learning model type,
there are several approaches for model-agnostic explanation methods (i.e., methods
independent of the model type), e. g., [Ribeiro et al., 2016,Ribeiro et al., 2018]. A first
family of such methods is based on the production of counterfactual explanations,
e. g., [Mandel, 2007], seeking to identify a part of an instance at the origin of the
prediction. A second family includes techniques based on data perturbation and
randomization for the study of black box models, e. g., [Henelius et al., 2014]. The
approach we propose in the following also considers perturbation techniques, but
we specialize them in the particular case of recommender systems. Specifically, we
apply subgroup discovery methods to provide post-hoc explanations that provide
the following advantages: (1) The approach can be applied to any black box
recommendation model – making it model-agnostic; (2) subgroup discovery is an
important method for obtaining descriptive patterns (rules) which are rated as one
of the most interpretable types of patterns [Fürnkranz et al., 2020].

2.2 On Explanation in Recommender Systems

Explanation and explanation-aware approaches have been widely investigated in
different disciplines, e. g., in artificial intelligence, data science, etc. e. g., [Schank,
1986,Wick and Thompson, 1992,Roth-Berghofer et al., 2007]. In [Roth-Berghofer
and Cassens, 2005], Roth-Berghofer and Cassens outline the combination of goals
and kinds of explanations, in the context of case-based reasoning. Sørmo et
al. [Sørmo et al., 2005] suggest a set of explanation goals addressing transparency,
justification, relevance, conceptualisation, and learning. Explanation goals specif-
ically help to focus on user needs and expectations towards explanations. They
aim at addressing to understand what and when the system has to be able to
explain (something). For recommender systems, different approaches for providing
explanations have been studied, e. g., [McSherry, 2005, Tintarev and Masthoff,
2011] targeting mainly content-based, collaborative filtering, and case-based ap-
proaches since explanation-awareness is an important factor for supporting the
user, e. g., [Tintarev and Masthoff, 2011]. Here, explanation is mainly integrated
into the respective method. In contrast, for (black box) machine learning methods
to be used for recommendation, explanations have been largely neglected. Our
paper investigates and tackles this problem, proposing a framework and method
for model-agnostic explanations only utilizing the recommendation history.
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2.3 Subgroup Discovery

Subgroup discovery [Klösgen, 1996,Wrobel, 1997,Atzmueller, 2015] has been estab-
lished as a general and broadly applicable technique for descriptive and exploratory
data mining. In general, it aims at identifying subgroups, i. e., of individuals that are
interesting with respect to a given quality function, e. g., estimating the difference
in shares of a binary target concept in the subgroup vs. the overall dataset. For a
binary target concept, for example, we are then interested in large subgroups with
a high share of individuals for which the target concept is true.

In general, a database D = (R,A) is given by a set of data records R, also called
instances, and a set of attributes A. For nominal attributes, a basic pattern (ai = vj )
is a Boolean function R → {0, 1} that is true if the value of attribute ai ∈ A is equal
to vj for the respective data record. The set of all basic patterns is denoted by Σ.
A subgroup description or (complex) pattern P is given by a set of basic patterns
P = {p1, . . . , pl}, pi ∈ Σ, i = 1, . . . , l, interpreted as a conjunction p1 ∧ . . . ∧ pl, with
length(P) = l. A pattern can thus also be interpreted as the body of a rule. The rule
head then depends on the property of interest, e. g., for a binary target concept T

on a basic pattern selT = true. A subgroup SP := ext(P) := {r ∈ R|P(r) = true} , is
the set of all data records that are covered by the subgroup description P .

In the case of a database containing items/itemsets, we can directly map
our (general) database D to an item database I, where each data record r ∈ R

contains a set of items Ir ⊆ 2I . That is, the attribute–value pairs discussed above
are represented as binary variables Ai, i = 1 . . .m,m = |I| which represent the
respective items contained in I.

Subgroups are computed using a specifiable interestingness measure q : 2Σ → R ,

that makes it possible to retrieve the k best subgroups [Atzmueller, 2015]. For
a binary target concept, let n be the size of ext(P), the subgroup described by
the pattern P (i. e., its support) and the share tP of the target concept in the
subgroup, i. e., its confidence, are combined by the interestingess measures qS as
follows: qS(P) = n · (tP − t0), where t0 denotes the (default) share of the target
concept in the database D , or by the Lift quality function qL(P) = tP

t0
.

2.4 Sequential Pattern Mining

Sequential pattern mining, e. g., [Fournier-Viger et al., 2017, Pei et al., 2004,
Mabroukeh and Ezeife, 2010] aims to identify frequent subsequences in sequential
databases, taking into account the order of the respective items. In general, the
problem of sequential pattern mining is then defined as follows: Given a sequence
database S and a minimal support threshold ξ, find all sequential patterns in
the given database [Pei et al., 2004]. There are various algorithms for sequential
pattern mining, e. g., [Zaki, 2001,Pei et al., 2001,Pei et al., 2004,Mathonat et al.,
2019] while the extension to subgroup discovery has been proposed in [Mollenhauer
and Atzmueller, 2020] in the form of the SEPP algorithm. For our approach, we
apply SEPP for mining exceptional sequential patterns in the form of subgroups.
As discussed in Section 3, we consider an itemset database, taking the subgroup
description language S made of all sequences of items of I without repetition:

S = Π
|I|
k=02

|I|−k.
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We propose a new perturbation-based technique for recommender system
explanation that borrows from subgroup discovery on itemset and sequential
databases. As we seek to explain the first N items recommended by a system, we
need to extend subgroup methods to explain multiple target values for sequential
patterns and itemsets. We detail how we do this below.

3 Explanations for Top-N recommendation

We propose a model-agnostic approach for local explanation in the context of
recommender systems. We consider a specific user and analyze the recommendations
made according to their user history (i. e., the previous interactions within the
system on which the recommendation is based). Similar to [Ribeiro et al., 2016], we
explore the neighborhood of these recommendations. Specifically, our objective is to
isolate the items from the user’s history which lead to the recommendations. In our
previous work [Lonjarret et al., 2020], we used subgroup discovery to identify the
active data related to the Top-1 recommendation (the first item recommended to
the user). Indeed, subgroup discovery makes it possible to identify the relationships
between such a target variable (or target attribute) and some explaining variables.
The proposed method consists of first generating profiles close to that of the studied
user and calculating the recommendations for these profiles using the recommender
system. Second, the set of Top-1 recommendations is analyzed in order to isolate
the groups or sequences of items for which the item initially recommended exhibits
a high rank using subgroup discovery.

However, the quality of a recommendation is generally not evaluated solely on
the basis of the Top-1 item, but on a larger set, generally ordered, whose size is
sufficiently reduced to be considered by the user. We call this ordered set the Top-N
recommendation. Hence, we propose to extend the Top-1 explanation method based
on subgroup discovery to the Top-N explanations. The challenge here is to make
subgroup discovery work when there are several target values and also to consider
sequential pattern languages for which very recent methods were proposed. The
overview of the method is presented below.

3.1 Overview of the method

Considering a user sequence u and its associated Top-N recommendation TN u ,
we propose to apply subgroup discovery [Wrobel, 1997] to identify the active data

used for the recommendation – essentially, to identify the relationships between
the Top-N recommendation and the items of the user history that lead to the
recommendation, i. e., a subset of u in our context. We are interested in two types
of explanations Eu: the items that ”trigger” the recommendations of the Top-N
items, and the order of those items that impact the recommendation. Therefore,
we consider two different subgroup description languages to identify the items
and their order that are related to the recommendation. The subgroup discovery
process consists of generating a set US of neighboring sequences of u, to apply the
recommendation model on these sequences (R(s) = ts, s ∈ US), and then to find
subgroups of sequences associated to a description d of the considered language
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R The recommender system to be studied.
U The set of user sequences.
I The items to be recommended.
N The number of items to be explained.
u The user sequence used by the recommender system

to generate the sequence TN u (R(u) = TN u ).
TN u = ⟨i⋆1, . . . i⋆N ⟩ The Top-N items recommended by the recom-

mender system. They are to be explained.
GTu = ⟨i1, . . . im⟩ The ground truth items for the user u, last 20% of

the user’s history.
s Any sequence.
Is The set of items that appear in s.
rsi⋆ The score obtained by item i⋆ when a sequence s

is given to the recommender system.
ts the Top-N items returned by the model when con-

sidering the sequence s
Eu An explanation found for the sequence u.

tu\Eu The Top-N recommended items when considering
the sequence u from which the items of the expla-
nation Eu (defined for the sequence u) have been
removed.

US1(u) Neighborhood sequences of u made of sequences
by removing one or several items from u.

US2(u) Neighborhood sequences of u made of sequences
where only the items order of u changes.

I Subgroup description language for SD-Map defined
as all possible sets of items from I.

S Subgroup description language for SEPP made of
all sequences of items of I without repetition.

Table 1: Summary of notations used throughout the paper.

such that the Top-N recommendations on these sequences are as close as possible
to the one of sequence u (see the toy example in Table 2).

u = ⟨1, 2, 3, 4, 5, 6⟩ R(u) = ⟨7, 8⟩ = TN u

US

s1 = ⟨1, 2, 3, 4, 5⟩ R(s1) = ⟨7, 10⟩
s2 = ⟨1, 2, 3, 5, 6⟩ R(s2) = ⟨7, 8⟩
s3 = ⟨1, 4, 5⟩ R(s3) = ⟨6, 5⟩
s4 = ⟨1, 2, 4, 5⟩ R(s4) = ⟨10, 8⟩
s5 = ⟨2, 3, 4, 5, 6⟩ R(s5) = ⟨7, 8⟩

Table 2: Example of the method: we are looking for a description d which, when
present in the data, leads to a recommendation similar to that of u. For example,
the sequential description d = ⟨2, 3, 5, 6⟩ covers sequences s2 and s5 whose lead to
the same recommendation as u.

Our subgroup discovery approach is used for identifying the explaining variables

d associated to a large value on a target variable, which we model using a function
Agg that summarizes the position of the TN u items in the recommendation made
for a sequence s. It looks for the description d that has a large value regarding the
qmean measure (inspired by the simple binomial quality function for numerical
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target attributes, c. f., [Lemmerich et al., 2016]), defined as

qmean(d,TN u ,US) =
√

|SG(d)|


∑

s∈SG(d)

Agg(R(s),TN u)

|SG(d)|
−

∑
s∈US

Agg(R(s),TN u)

|US |

(1)
where SG(d) is the subset of sequences of US that satisfy the description d. Large
qmean values indicate that the function Agg is larger on average on the subgroup
than on the whole set of sequences.

In the following sections, we detail (1) the way neighboring sequences are
generated, (2) the function Agg which we use, (3) the description languages which
we consider, and finally (4) the algorithms for computing the subgroups.

3.2 Neighborhood generation

To identify active items used for recommendation we explore two neighborhoods
given a user sequence u:

1. To focus on the impact of a group of items on the recommendation, we generate
neighboring sequences US1(u) by removing one or several items from u. The
possible number of such sequences is equal to 2|u|. If the recommendation is
mainly based on a group of items, then removing these items from the sequences
would have a great impact on the recommendation.

2. To assess the importance of the item order on the user sequence u, we consider
another set of neighboring sequences US2(u) consisting of sequences where
only the order changes. Starting with the observed sequence u, we shuffle it
by randomly picking an item of the sequence and swapping it with one of its
neighbors. This process is repeated n times where n is chosen randomly in
the interval [5, 25]. Thus, the parameter n is used to control the amount of
disturbance incurred by the sequence. At the end of this process, the perturbed
sequence is added to the neighborhood. We produce K such perturbed sequences
to form the neighborhood1.

Depending on the applied description language (as discussed below) we use one or
the other neighborhood.

3.3 Target modeling: Agg functions used to summarize the set of the Top-N items

Let us consider a Top-N recommendation made of N items, TN u = {i⋆1, . . . i⋆N}
based on a user sequence u. Let rsi⋆ be the score obtained by item i⋆ when a
sequence s is given to the recommender system. In the following, we consider four
functions that can be used as function Agg in Equation (1).

1 NB: we removed duplicated perturbed sequences in a post-processing step.
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3.3.1 SumScore: Maximizing the sum of the scores

This function considers the sum of the scores returned by the recommender system
for each item:

SumScore(s,TN u) =
∑

i⋆∈TN u

rsi⋆ (2)

These values are highly dependent on the recommender system used and can not
be used to compare results from different models.

3.3.2 Kendall : Kendall τ score

To measure how the order of the items is conserved between the two sequences
and also to check if the items of TN u are not too far apart from each other in the
recommendation, we use the Kendall τ measure [Kendall, 1938] to count how many
pairs of items are concordant or discordant between the recommendations based
on sequence u and the one resulting from sequence s:

P (s,TN u) = |{(k, ℓ) | i⋆k, i
⋆
ℓ ∈ TN u and rui⋆k > rui⋆ℓ and rsi⋆k > rsi⋆ℓ }|

Q(s,TN u) = |{(k, ℓ) | i⋆k, i
⋆
ℓ ∈ TN u and rui⋆k > rui⋆ℓ and rsi⋆k < rsi⋆ℓ }|

where P (s,TN u) is the number of concordant pairs of items of TN u between
sequences u and s and Q(s,TN u) is the number of discordant pairs. The Kendall
measure is thus obtained by:

Kendall(s,TN u) =
P (s,TN u)−Q(s,TN u)

[TN u |(|TN u |−1)
2

(3)

where the denominator is given by the total number of possible pairs, so the values
of τ range between -1 and 1.

3.3.3 KScore: Penalizing SumScore when s and TN are not correlated

SumScore is a measure that does not take into account the order of items returned
by the recommender system. To correct this aspect we can combine the two previous
measures into a single score:

KScore(s,TN u) = Kendall(s,TN u)× SumScore(s,TN u) (4)

Thus, the closer the order of s is to the order of the recommendation TN , the
greater KScore. If the two orders are not correlated, the score tends towards 0 and
if they are anti-correlated, then the score takes a negative value.
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3.3.4 KSBounded: normalizing SumScore and Kendall before combining them

To allow comparisons between recommender systems (and thus to overcome the
ranges of score values returned by each model), we normalize the SumScore and
Kendall values before their combination. For both measures, we use a min-max
normalization:

SumScoreMinMax(s,TN u) =
SumScore(s,TN u)− |TN u | ×mini⋆∈TN u (rsi⋆)

max i⋆ ∈ TN u(rsi⋆)−min i⋆ ∈ TN u(rsi⋆)

KendallMinMax(s,TN u) =
(Kendall(s,TN u) + 1)

2

The final KSBounded score is given by:

KSBounded(s,TN u) = KendallMinMax(s,TN u)× SumScoreMinMax(s,TN u) (5)

3.4 Description languages

Our subgroup discovery approach aims to characterize subsets of sequences associ-
ated with high target variable values (here: qmean values). We propose to use two
description languages to describe the subgroups: one where the description is a set
of items, the other where a subgroup is characterized by a sub-sequence of items.

3.4.1 Description language I

The subgroup description language I used for active item identification is defined
as all possible sets of items from I: I = 2I . A descriptive pattern d ∈ I covers a
user sequence s iff d is included in Is (d ⊆ Is) the set of items that appear in s.
Thus, considering a set of user sequences US , the subgroup of US described by d,
i. e., the pattern cover, is made of all the sequences of US that contain all the items
of d: SG(d) = {s ∈ US | d ⊆ Is}.

3.4.2 Description language S

To identify the potential order effect on the recommendations, we consider the
subgroup description language S made of all sequences of items of I without

repetition: S = Π
|I|
k=02

|I|−k. A pattern d ∈ S covers a sequence s, d ⊑ s, iff d

appears in s in the same order: Let d = ⟨i1, . . . , ik⟩ and s = ⟨s1, . . . , sℓ⟩, there exists
indices j1 < · · · < jk such that sjh = ih, ∀h = 1 . . . k. Considering a set of user
sequences US , the subgroup of US described by d is the set of sequences of US

selected by d: SG(d) = {s ∈ US | d ⊑ s}.
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3.5 Subgroup Discovery: Algorithms to compute subgroups of description language
I and S associated with large numerical values

In this section, we briefly summarize the used algorithms for subgroup discovery for
language I, i. e., the SD-Map/SD-Map∗ algorithm, and for language S, i. e., SEPP,
following their respective presentation in [Atzmueller and Puppe, 2006,Lemmerich
et al., 2012,Lemmerich et al., 2016,Mollenhauer and Atzmueller, 2020].

3.5.1 SD-Map/SD-Map∗

Prominent approaches for exhaustive subgroup discovery, e. g., the SD-Map [Atz-
mueller and Puppe, 2006]/SD-Map∗ [Lemmerich et al., 2016] algorithms, and
GP-Growth [Lemmerich et al., 2012] for subgroup discovery and exceptional model
mining, extend the FP-growth [Han et al., 2000] algorithm. It enables efficient access
for generating frequent patterns, while containing the complete condensed frequency
information for a database. The basic FP-tree focuses only on frequencies, for com-
puting the support. However, extended FP-trees for subgroup discovery [Atzmueller
and Puppe, 2006,Lemmerich et al., 2016] also contain additional information for
estimating the qualities of patterns given a specific quality function. This principle
is generalized in the GP-Growth algorithm [Lemmerich et al., 2012], which sub-
stitutes simple frequencies by a generic condensed representation that captures
all the necessary (local) information to enable the computation of the applied
quality function. For subgroup discovery, SD-Map applies the given quality function
in order to determine the top-k subgroups, i. e., those with the top-k qualities
according to the given function. In our case, we apply the qmean quality function
to find the best subgroup:

SD-Map(TN u , US) = max
d∈I

qmean(d,TN u ,US) = Eu

3.5.2 SEPP

The novel SEPP algorithm described in [Mollenhauer and Atzmueller, 2020] focuses
on exceptional sequential pattern mining. Below, we summarize the main concepts
of SEPP, following the presentation and notation of [Mollenhauer and Atzmueller,
2020]. For extending sequential pattern mining to exceptional sequential pattern
mining, one important step is to identify a suitable sequential pattern mining
algorithm. For the SEPP algorithm [Mollenhauer and Atzmueller, 2020], the basic
idea is to extend the PrefixSpan algorithm [Pei et al., 2001,Pei et al., 2004]. Most
importantly, this extension is also “compatible” with the GP-Growth approach
w.r.t. the given extension for exceptional model mining, c. f., [Mollenhauer and
Atzmueller, 2020]. With this technique, SEPP is able to include valuation bases,
as introduced in [Lemmerich et al., 2012]. Originally, valuation bases were devised
as a generalization of simple counts, e. g., as used in computing the support of
a pattern. In the algorithm, valuation bases are then used for computing the
quality of the respective patterns. The support (count) is a very simple example of
a valuation basis (and its domain) which can be simply aggregated. Essentially,
valuation bases then abstract the calculation and aggregation of values of parts
of the given database for the applied quality function. We refer to [Lemmerich
et al., 2012] for more details on more complex valuation bases. Essentially, SEPP
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then allows combining the problems of exceptional model mining and sequential
pattern mining, as described in [Mollenhauer and Atzmueller, 2020]. In particular,
sequential exceptional patterns are those for which their model has a deviation in
comparison to the overall model of the database from which they were extracted.

Following [Mollenhauer and Atzmueller, 2020], let e = (eid, ea, s) denote an
extended sequence, where eid is a unique identifier of e, ea are the model attributes
for estimating the model parameters and s is a sequence (in our case of items).
Let E = {e1, e2, ..., ei} be a database of extended sequences. Then, considering a
model M , a minimum support threshold ξ, a quality function qM and an integer k,
sequential exceptional model mining is the task of finding the k best sequential
patterns w.r.t. the quality function qM , with a support greater or equal to the
minimum support threshold ξ. As introduced in [Mollenhauer and Atzmueller,
2020], it is easy to see, that if ξ is set to one, then all possible patterns according
to the given quality function are retrieved. The threshold ξ was introduced as a
separate criterion in order to provide a way to limit individual outliers and restrict
the problem size easily. However, it could potentially also be integrated into the
quality function directly. In our case, we apply the qmean quality function, and
suitable minimal support thresholds as detailed in the experiments:

SEPP(TN u , US) = max
d∈S

qmean(d,TN u ,US) = Eu

3.6 Demonstration of the process workflow on a toy example

In this section, we illustrate the functioning of our Top-N recommendations explain-
ing method through a simple example of the execution of the different concepts
presented in the previous section. We consider the user (historical) sequence
u associated with a list of Top-N recommendations, denoted TN u of length 3
(|TN u | = 3). As a function for aggregating the scores Agg, we take the function
KSBounded (defined in Equation 5) which returns normalized values, therefore
easier to understand.

US1(s) US2(s)
ID Perturbed sequence Agg(TN u ) IDs Perturbed sequences Agg(TN u )
1 ⟨12, 580, 5⟩ 0.91 1 ⟨12, 580, 5⟩ 0.97
2 ⟨∅, ∅, 5⟩ 0.84 2 ⟨5, 580, 12⟩ 0.70
3 ⟨∅, 580, ∅⟩ 0.24 3 ⟨12, 5, 580⟩ 0.32
4 ⟨∅, 580, 5⟩ 0.88 4 ⟨580, 12, 5⟩ 0.98
5 ⟨12, ∅, ∅⟩ 0.25 5 ⟨5, 12, 580⟩ 0.71
6 ⟨12, ∅, 5⟩ 0.98 6 ⟨580, 5, 12⟩ 0.29
7 ⟨12, 580, ∅⟩ 0.12

Table 3: Example of US1(u) and US2(u) neighborhood generations with u =
⟨12, 580, 5⟩ and TN u=⟨1, 55, 89⟩ (values greater than 0.8 are highlighted).

We present in Table 3 the generation of US1(u) and US2(u) neighborhoods with
u=⟨12, 580, 5⟩. Since there are three items in the sequence u, we can generate 7 se-
quences in US1(u) (2

3−1 as we do not consider the empty sequence) and six possible
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sequences for US2(u) (the number of possible permutations is |US2(u)|=|u|!= 3!=6).
Hence, for each perturbed sequence, we compute the aggregate recommendation
score of the items in TN u : Agg(TN u).

SD-Map SEPP
ID Explanation qmean IDs Explanation qmean
1 {5} 4,12 1 ⟨580, 5⟩ 2.19
2 {12, 5} 3.02 2 ⟨12, 5⟩ 2.19
3 {580, 5} 2,97 3 ⟨12, 580, 5⟩ 1.13
4 {12, 580, 5} 1.88 4 ⟨580, 12, 5⟩ 1.13

Table 4: Example of explanations generated by SD-Map and SEPP for US1(u) and
US2(u) in Table 3.

Table 4 shows the 4 best explanations generated by SD-Map and SEPP, using
US1(u) and US2(u) neighborhoods from Table 3. The best explanations are {5} for
SD-Map and ⟨580, 5⟩ for SEPP. These results make sense and seem significant. In
fact, for US1(u), we can clearly see that the best scores are obtained when item {5}
is present in the user’s history. On the other hand, for US2(u), we can easily notice
that the aggregate score of the items i⋆ ∈ TN u with the KSBounded function
are high (close to 1) when {5} is the last item the user has consulted. Therefore
⟨580, 5⟩ and ⟨12, 5⟩ have the same qmean value (the quality function is described
in Equation 1).

3.7 Complexity

The complexity of our methods is due to the complexity related to the neighborhood
generations and the one due to the computation of the explanations on them. The
prediction of the score or rank of the TN u items by the recommender system has
an important impact on the complexity of the respective neighborhood generations.
Each recommender system has its own computational complexity, denoted as
RSComp. Thus, computing US1(u) has a complexity in O(RSComp×2|u|), while the
complexity of US2(u) is in O(RSComp×|I \u|×K), where K is number of generated
sequences. We limit the complexity for computing US1(u) by only considering users
with a history size |u| between 2 and 15. The impact of this limitation is evaluated
in Section 4.4.

Considering the computation of the explanations based on US1(u), we use
SD-Map [Atzmueller and Lemmerich, 2009] instantiated for numeric target at-
tributes. As discussed in [Atzmueller and Lemmerich, 2009] the complexity of
SD-Map grows exponentially with the number of items. However, with the effi-
cient pruning approaches implemented by SD-Map [Atzmueller and Lemmerich,
2009, Lemmerich et al., 2016] the runtime is typically significantly reduced in
practical applications. The explanations based on US2(s) are obtained thanks to
SEPP, where similar considerations as for SD-Map apply, while the complexity
is even larger due to the sequential pattern language. However, as for SD-Map,
our implementation of SEPP also applies efficient (optimistic estimate) pruning,
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c. f., [Lemmerich et al., 2016] for a general overview, which enables considerably
reduced runtimes in practice.

4 Experiments

In this section, we evaluate our method through several experiments. We first
describe the real-world datasets we consider and the experimental setup. Then,
we present a quantitative study of the explanations provided by our method. We
study the performance of the explanations through several metrics. Eventually, we
provide some specific examples of explanations in our recommendation context. We
implemented our methods in Python and performed the experiments on a machine
equipped with 8 Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz cores 126GB main
memory, running Debian GNU/Linux. The code and data are made available2.

4.1 Datasets, Models and Aims

Datasets: We evaluate our framework on both sparse and dense datasets from
different domains by considering four different benchmarks:

– Amazon was introduced by [McAuley et al., 2015]. It contains Amazon product
reviews from May 1996 to July 2014 from several product categories. We have
chosen to use the Video games categories as we can easily visualize the products
and have an intuition on the recommendations made.

– MovieLens 1M3 [Harper and Konstan, 2015] is a popular dataset including 1
million movie ratings from 6040 users between April 2000 and February 2003.
We pre-processed the dataset, selecting the most recent 50 ratings for each user.

– Foursquare [Falher et al., 2015] depicts a large number of user check-ins on
the Foursquare website from December 2011 to April 2012.

– Adressa [Gulla et al., 2017] includes news articles (in Norwegian). The dataset
was offered by Adresseavisen, a local newspaper company in Trondheim, Norway.

For each dataset, ratings are converted into implicit feedback, and we only
consider users and items with at least five interactions. Table 5 shows the datasets’
characteristics. These characteristics include the number of users (having at least
five interactions), the number of items, the total number of actions, the average
size of the user sequences, the average time a user takes an item, the density of the
dataset, and the concentration which is the percentage of actions that are related to
the Top 5% most popular items. Table 5 shows that the datasets are diverse, each
having its own specificity. ML-50 exhibits the highest density while the density and
the concentration are much greater for Adressa than others. The Foursquare dataset
has the biggest number of users and items but the lowest density. Eventually, the
Video-games dataset is rather ”square”, i.e., the number of user is similar to the
number of items. All these characteristics witness that the benchmarks we consider
are diverse. This supports thorough and systematic experimental study.

2 Source code link.
3 http://grouplens.org/datasets/movielens/1m/

https://drive.google.com/drive/folders/1JN3dvuHJqrFPXmm6BbMI1ZlzFBYaRhAw?usp=sharing
http://grouplens.org/datasets/movielens/1m/
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Table 5: Main characteristics of the datasets after preprocessing (users and items
that have at least 5 interactions): # U is the number of users, # I is the number
of different items, # A is the total number of items (with duplicates), #A/#U is
the average size of user sequences, #A/#I is the average time an item is taken by
a user, Density is # A/(# U× # I), Concentration is the proportion of the Top
5% of the most popular interacting items.

Datasets #U #I #A #A/#U #A/#I Density Concentration

Video games 31013 23715 287107 9.26 12.11 0.04% 40.13%
ML-50 6021 2909 214342 35.6 73.68 1.22% 29.54%
Foursquare 485381 83999 1021966 2.10 12.16 0.01% 73.92%
Adressa 141933 3257 1861901 13.12 571.66 0.40% 85.60%

Models: We consider two sequential recommender system models that have been
shown to perform well [Lonjarret et al., 2021]:

– Self-Attentive Sequential Recommendation (SASRec) [Kang and McAuley,
2018], a self-attention based model that captures both user preferences and
user sequential dynamics ;

– Convolutional Sequence Embedding Recommendation (CASER) [Tang and
Wang, 2018], a CNN-based method that captures both user preferences and
user sequential dynamics;

For both models, we used the first 80% of users’ actions (Items) in each user’s
sequence as the training set and the next remaining 20% as the test set for assessing
the model’s performance. We did not need a validation set since we adopted the
hyperparameters used in [Lonjarret et al., 2021]. Indeed, the training and internal
optimization processes appear to be the same. Table 6 reports the performance
of the models on the benchmarks according to several metrics such as nDCG@K,
MAP, Hit@K, Precision@K, and Recall@K (see Appendix A). We observe that
the models perform very well. However, their performance can be evaluated by
different measures which can be divergent from one model to another.

Aims: Through this empirical study, our goal is to evaluate our subgroup discovery
approach to explain the Top-N recommendations. Mainly, we investigate the
different functions we use in the quality measure and the two description languages
we consider. These experiments aim to bring answers to the following questions:

RQ1 Do the descriptions of the subgroups obtained constitute reliable explanations
of the recommendations?

RQ2 Which subgroup definition leads to the best explanations?
RQ3 Are the two languages complementary?
RQ4 Can the explanations alone be used as a recommender system that mimics

the studied one?

For each dataset, we consider a random sample of 1400 users whose Top-N
recommendations are explained using the proposed approach.
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Metrics Adressa Foursquare ML-50 Video games Avg

S
A
S
R
ec

AUC 93.87% 94.88% 81.17% 82.32% 88.06%
MAP 0.23% 1.53% 1.11% 0.131% 0.75%
NDCG@5 2.66% 16.35% 2.96% 0.96% 5.73%
NDCG@10 3.58% 19.99% 2.97% 1.30% 6.96%
HIT@5 3.93% 22.78% 3.51% 1.47% 7.92%
HIT@10 6.73% 33.75% 4.54% 2.50% 11.88%
PREC@5 0.03% 0.80% 0.79% 0.03% 0.41%
PREC@10 0.04% 0.52% 0.71% 0.04% 0.32%
RECALL@5 0.05% 1.95% 0.62% 0.07% 0.67%
RECALL@10 0.18% 2.54% 1.13% 0.19% 1.01%

C
A
S
E
R

AUC 83.46% 49.95% 77.86% 80.67% 72.98%
MAP 13.56% 5.77% 6.25% 1.83% 6.85%
NDCG@5 9.20% 4.72% 4.06% 1.21% 4.79%
NDCG@10 12.22% 6.60% 4.51% 1.69% 6.25%
HIT@5 11.28% 5.86% 5.08% 1.49% 5.67%
HIT@10 19.88% 10.97% 7.55% 2.85% 10.31%
PREC@5 7.89% 3.12% 5.93% 0.81% 4.44%
PREC@10 6.37% 2.04% 5.01% 0.70% 3.53%
RECALL@5 15.46% 7.89% 5.52% 1.97% 7.71%
RECALL@10 24.39% 13.0% 9.11% 3.35% 12.46%

Table 6: Performance of the two models on the 4 datasets (Top-5 recommendations).

4.2 General statistics of explanations

Figure 2 shows the sizes distributions of the explanation generated on the Adressa
dataset for both CASER and SASRec models. We can observe that the distributions
of the patterns found by SEPP are less sparse than those of SD-Map; this is mainly
due to the types of extracted pattern languages we use: sequential patterns in the
case of SEPP, which requires at least two items to be fully considered as a sequence,
and a relevant set of items for SD-Map, which tends to capture a restricted set of
items for better coverage.

To evaluate the quality of the generated explanations, we first report in Table 7
the number of users for whom each method can provide an explanation. Regardless
of the policies followed (e.g., Kendall, KScore, KSBounded , SumScore), the number
of users explained is always more critical for SD-Map than SEPP. Indeed, for
some users, the sequential aspect does not affect the recommendation and only the
presence of an item in the user’s history is important, whatever its position in it.
Therefore, one cannot provide a sequence of two or more items as an explanation,
while a set of items can serve as an explanation.

In order to assess the quality of the explanations provided by each method
(Eu = SD-Map(TN u , US) or Eu = SEPP(TN u , US)), we count the number of
users whose sum of scores on the Top-N items increases when only the items of
the explanation are provided to the recommendation system. This is formalized as
follows:

Improved⋆ =
1

|U |
∑
u∈U

δ∑
i⋆∈TNu rEu

i⋆
>
∑

i⋆∈TNu ru
i⋆

(6)

Table 8 reports the results. On average, the explanations reinforce the model’s
recommendations for at least 23% and up to 41% of the users. Nevertheless, please
note that based on its definition, Improved⋆ favors SumScore policy.
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(a) Adressa-CASER-SDMAP

(b) Adressa-SASRec-SDMAP

(c) Adressa-CASER-SEPP

(d) Adressa-SASRec-SEPP

Fig. 2: Distributions of explanation sizes as violin plots of the generated explanations
by SD-Map (Resp. SEPP) on recommendations made by CASER in subfigure (a)
(Resp. subfigure(c)), and SASRec in subfigure(b) (Resp. subfigure(d)) on the
Adressa dataset.

SD-Map SEPP
Datasets SumScore Kendall KScore KSBounded SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 1377 1384 1379 1377 1268 1124 1268 1268

Foursquare 1371 1400 1376 1371 1208 911 1208 1208
ML-50 1066 1066 1066 1066 1066 1063 1066 1066

Video games 1400 1400 1400 1400 1300 1260 1300 1300

C
A
S
E
R Adressa 1400 1400 1400 1400 1300 1297 1300 1300

Foursquare 1208 1208 1208 1208 1108 1108 1108 1108
ML-50 1066 1066 1066 1066 1066 1060 1066 1066

Video games 1400 1400 1400 1400 1300 1288 1300 1300

Table 7: Number of users explained by the SD-Map and SEPP algorithms on a
sample size of 1400 users (Top-5 recommendations).

Next, we compare the two methods by studying the sum of the scores obtained
using SD-Map and SEPP for each policy. More precisely, we count the number
of times the method x outperforms the method y in returning a higher score, as
expressed by equation 7:

Improved(x, y) =
∑
u∈U

δ∑
i⋆∈TNu r

Ex
u

i⋆
>
∑

i⋆∈TNu r
E

y
u

i⋆

(7)

Table 9 shows the respective results of Improved(SD-Map, SEPP) (left) and
Improved(SEPP, SD-Map) (right). In most of the cases, SD-Map obtains better
scores than SEPP. One can observe that the tendency is different on the Adressa
dataset.
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SD-Map SEPP
Datasets SumScore Kendall KScore KSBounded SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 44.71% 22.36% 28.71% 38.29% 47.00% 31.71% 38.86% 45.86%

Foursquare 56.21% 30.29% 36.36% 51.57% 45.36% 21.21% 35.29% 44.29%
ML-50 50.29% 24.21% 29.64% 40.50% 38.00% 17.43% 19.36% 33.07%

Video games 60.93% 25.36% 31.29% 48.14% 46.36% 30.29% 33.36% 43.29%

C
A
S
E
R Adressa 18.07% 15.93% 20.71% 21.29% 23.93% 16.21% 18.21% 25.71%

Foursquare 19.71% 11.64% 16.71% 21.64% 16.57% 13.29% 16.79% 18.57%
ML-50 53.36% 42.14% 50.86% 57.14% 43.14% 40.57% 41.57% 42.93%

Video games 23.86% 13.50% 22.07% 28.64% 10.14% 12.36% 12.71% 11.07%
Average 40.89% 23.18% 29.54% 38.40% 33.81% 22.88% 27.02% 33.10%

Table 8: Percentage of users whose sum of Top-N recommendation scores
(Improved⋆) increases where only considering the items of the descriptions gener-
ated by the SD-Map or SEPP (sample size of 1400 users, Top-5).

These first experiments indicate that SD-Map is better than SEPP on a global
view. However, there is not complete domination of SD-Map: For each dataset, at
least 25% of users score better with SEPP. Thus, it encourages us to keep both
methods in the rest of the experiments. Furthermore, it is important to note that
improving the score of the top-N items thanks to the descriptions generated does
provide guarantee on the recommendation. The Improved⋆ measure only focuses
on the initially recommended Top-N items and monitors the improvement of their
individual score. Even if one provides some description that boost the score of the
items, the same description may also promote other items that could be integrated
to the top-N items. Therefore, we have to take into account this fact to assess
the explanation: the explanation we provide has to keep the ranking of the initial
Top-N items. This is the objective of the next subsection.

Number of improved users’ scores
Models Datasets SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 883 , 494 888 , 496 847 , 532 860 , 517

Foursquare 847 , 524 994 , 406 855 , 521 852 , 519
ML-50 669 , 397 551 , 515 587 , 479 623 , 443

Video games 783 , 617 731 , 669 724, 676 760 , 640

C
A
S
E
R Adressa 554 , 846 673 , 727 718 , 682 596 , 804

Foursquare 728 , 480 664 , 544 758 , 450 778 , 430
ML-50 981 , 85 597 , 469 700 , 366 917 , 149

Video games 932 , 468 758 , 642 937 , 463 979 , 421

Table 9: Number of improved users’ scores (Improved(SD-Map, SEPP),
Improved(SEPP, SD-Map), Top-5 recommendations).

4.3 Assessing the explanations

Evaluating the accuracy of an explanation is difficult due to the lack of ground
truth: Even if we know the items that the user consumed, we do not know the
reasons that led to this choice. Hence, in the following, we consider G-free metrics
to assess the explanations. First, we opt for Fidelity [Pope et al., 2019], defined as
the difference in accuracy between the recommendations based on the original user
history and that obtained by hiding the part of the history corresponding to the
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explanation:

Fidelity =
1

|U |
∑
u∈U

1− |tu ∩ tu\Eu |
N

∈ [0; 1]

with

– U a sample of user’s sequences
– tu the Top-N items returned by the model when considering the sequence u

– tu\Eu be the Top-N items recommended by considering the sequence u from
which the items of the explanation Eu have been removed.

Similarly, we can study the changes of the recommendation by keeping only
the essential items (that of the explanation) and by deleting the others, as does
the measure of Infidelity:

Infidelity =
1

|U |
∑
u∈U

1− |tu ∩ tEu |
N

∈ [0; 1]

with tEu the Top-N items recommended by the model when considering the
sequence Eu as input. The higher the Fidelity and the lower the Infidelity, the
better the explanation. Obviously, masking all the user history would have a
significant impact on the model recommendations. Therefore, the former measures
should not be studied without considering the Sparsity metric that aims to measure
the fraction of user sequence selected as an explanation:

Sparsity =
1

|U |
∑
u∈U

(1− |Eu|
|u| )

Based on these measures, the best explainable method would achieve high
Fidelity, low Infidelity with a sparsity close to 1.

SD-Map SEPP (Support=5)
Datasets SumScore Kendall KScore KSBounded SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 0.336 0.295 0.319 0.329 0.371 0.365 0.405 0.393

Foursquare 0.187 0.173 0.175 0.186 0.195 0.164 0.202 0.197
ML-50 0.228 0.267 0.273 0.264 0.271 0.294 0.290 0.274

Video games 0.317 0.308 0.316 0.332 0.306 0.333 0.337 0.316

C
A
S
E
R Adressa 0.367 0.363 0.398 0.401 0.319 0.326 0.328 0.331

Foursquare 0.492 0.445 0.495 0.490 0.477 0.491 0.495 0.487
ML-50 0.216 0.356 0.357 0.266 0.361 0.365 0.367 0.357

Video games 0.634 0.534 0.605 0.636 0.577 0.569 0.578 0.582
Average 0.347 0.343 0.367 0.363 0.360 0.363 0.375 0.367

Table 10: Fidelity measures (Top-5 recommendations), the higher the better.

Tables 10, 11, and 12 respectively report the Fidelity, Infidelity, and sparsity
scores of the obtained explanations with the SD-Map and SEPP algorithms using
the aggregation policies defined in Section 3.3. We can observe that SD-Map
does well at extracting faithful explanations by highlighting important sparse
explanations, particularly by using KScore policy as an aggregation function. On
the other hand, we observe that SEPP achieves better results by keeping higher
Fidelity while SD-Map offers better Infidelity by selecting explanations that keep
the recommended items consistent.
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SD-Map SEPP (Support=5)
Datasets SumScore Kendall KScore KSBounded SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 0.2767 0.2384 0.2334 0.2313 0.2639 0.3451 0.2457 0.2541

Foursquare 0.2196 0.2279 0.2177 0.2229 0.2684 0.4511 0.2599 0.2650
ML50 0.5683 0.5584 0.5389 0.5557 0.4737 0.4511 0.4473 0.4580

Video games 0.4067 0.3744 0.3706 0.4109 0.3459 0.3331 0.3071 0.3363

C
A
S
E
R Adressa 0.2920 0.2443 0.2280 0.2453 0.3054 0.3296 0.2956 0.2956

Foursquare 0.6816 0.6559 0.6459 0.6293 0.6474 0.6147 0.5946 0.6156
ML50 0.5303 0.5113 0.6146 0.6921 0.5641 0.5567 0.5513 0.5616

Video games 0.5321 0.4207 0.4333 0.5091 0.5806 0.5876 0.5719 0.5726
Average 0.437 0.438 0.404 0.410 0.431 0.459 0.409 0.420

Table 11: Infidelity measure(Top-5 recommendations), the lower the better.

SD-Map SEPP (Support=5)
Datasets SumScore Kendall KScore KSBounded SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 82.06% 73.84% 74.78% 79.37% 58.89% 59.94% 58.94% 58.23%

Foursquare 77.59% 73.91% 72.83% 75.02% 55.30% 55.38% 54.71% 55.03%
ML50 83.37% 78.90% 78.72% 80.70% 60.41% 56.69% 56.80% 59.41%

Video games 79.00% 69.58% 69.22% 74.06% 61.29% 58.82% 58.49% 60.62%

C
A
S
E
R Adressa 67.77% 58.18% 55.48% 61.21% 51.67% 48.16% 50.84% 51.09%

Foursquare 57.86% 49.13% 41.13% 47.45% 48.65% 45.38% 45.46% 47.00%
ML50 76.46% 65.23% 65.40% 71.97% 55.36% 54.46% 53.92% 55.00%

Video games 63.86% 48.53% 42.58% 52.15% 51.12% 49.87% 49.79% 50.64%
Average 73.50% 64.66% 62.52% 67.74% 55.34% 53.59% 53.62% 54.63%

Table 12: Sparsity measure of SD-Map and SEPP results on SASRec and CASER
recommendation systems, where higher values (in bold) indicate the explanations
are more sparse and tend to only capture the most important input information
(Top-5 recommendations).

Accordingly, we propose in the following section to combine our two main
approaches, ensuring that the approach is applicable to a wide range of data and
that the explanations provided are as simple as possible.

4.4 Impact of method’s parameters on the explanation quality

To evaluate the impact of the maximal sequence size on the method, we report on
Fig 3 the Fidelity and Infidelity measures when the sizes of the generated sequences
US1(u) and US2(u) vary. We consider the two recommender systems, SASRec and
CASER, but only ML-50 dataset as it has an average number of items per user
over 35, while other datasets are below 13 (see Table 5). We can observe that the
neighbor sizes have a low impact on the quality of the explanations. Short sequences
have already captured the information necessary for the explanation of the models
whether for CASER or SASRec model. Indeed, CASER uses a hyperparameter L to
specify the number of items of the user history to be considered. In our experiments
this value is set to 5.Thus sequences longer than 5 should not provide additional
explanation. This is therefore consistent with the observations made in Fig 3. For
SASRec model, we set the maxlen hyperparameter to 50. Nevertheless, even if the
model can take into account longer sequences, in practice, the relevant information
is contained in the shorter recent sequences.



22 Mouloud Iferroudjene et al.

Fig. 3: Evolution of explanation quality measures with various user sequence
sizes (US1(u) at left) for two recommendation models (SASRec (top) and CASER
(bottom)). We also add an artificial limitation on the size of sequences of US2(u)
(right) for comparison.

4.5 Are the two languages complementary?

The first observations show that there is not one method that outperforms the
other on an entire data set. It is more subtle. There are users for whom SD-Map is
more suitable while for others it is SEPP. This motivates us to study how SD-Map
and SEPP are complementary. In particular, we want to know what advantages
can be derived by combining the two methods. To this end, we consider for each
user the explanation that optimizes either Fidelity or Infidelity values:

For Fidelity, we have:

Eu = argmax
x ∈ {ESD-Map

u , ESEPP
u }

{(
1− tu ∩ tu\E

x
u

N

)}
For Infidelity, we have:

Eu = argmin
x ∈ {ESD-Map

u , ESEPP
u }

{(
1− tu ∩ tE

x
u

N

)}
Tables 13 and 14 report the improvement in Fidelity and Infidelity for the

combined SD-Map and SEPP methods (Maximum SD-Map and SEPP). We can
observe that combining the two methods leads to an average improvement of at
least 6.84% in Fidelity and 6.21% for Infidelity. This improvement can go up to
10% according to some configurations. These results also emphasize the efficiency
of the KScore aggregation function.
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Fidelity Accuracy Improvement
Datasets SumScore Kendall KScore KSBounded SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 0.453 0.436 0.466 0.465 6.80% 9.10% 6.00% 5.90%

Foursquare 0.272 0.238 0.261 0.268 7.70% 6.50% 5.90% 7.10%
ML50 0.327 0.36 0.358 0.343 5.60% 6.60% 6.80% 6.90%

Video games 0.422 0.426 0.427 0.425 10.5% 9.30% 9.00% 9.30%

C
A
S
E
R Adressa 0.435 0.454 0.458 0.460 6.80% 9.10% 6.00% 5.90%

Foursquare 0.573 0.563 0.576 0.570 8.10% 7.20% 8.10% 8.00%
ML50 0.390 0.425 0.430 0.405 2.90% 6.00% 6.30% 4.80%

Video games 0.706 0.655 0.686 0.704 7.20% 8.60% 8.10% 6.80%
Average 0.447 0.445 0.458 0.455 6.95% 7.80% 7.02% 6.84%

Table 13: Max SD-Map-SEPP Fidelity measures (Top-5 recommendations).

Infidelity Accuracy Improvement
Datasets SumScore Kendall KScore KSBounded SumScore Kendall KScore KSBounded

S
A
S
R
ec Adressa 0.160 0.170 0.139 0.139 7.10% 10.7% 9.90% 7.90%

Foursquare 0.139 0.131 0.131 0.131 8.40% 8.90% 10.4% 8.70%
ML50 0.437 0.415 0.411 0.417 3.70% 3.60% 3.60% 4.10%

Video games 0.250 0.207 0.190 0.223 9.60% 12.6% 11.7% 1.13%

C
A
S
E
R Adressa 0.180 0.192 0.169 0.169 6.50% 10.0% 7.50% 5.90%

Foursquare 0.529 0.521 0.498 0.517 10.0% 9.40% 9.70% 9.90%
ML50 0.543 0.464 0.448 0.503 2.10% 6.60% 6.30% 5.90%

Video games 0.425 0.417 0.354 0.372 8.41% 11.5% 6.67% 6.13%
Average 0.333 0.315 0.292 0.309 6.98% 9.16% 8.22% 6.21%

Table 14: Max SD-Map-SEPP Infidelity measures (Top-5 recommendations).

4.6 Can the explanations alone be used as a recommender system that mimics the
studied one?

We experiment with building a global model solely based on the explanations.
We first consider the explanations found for each user as a set of rules of the
form Eu → TN u . We build a global recommender system using a heuristic that
is commonly used to solve the weighted set cover problem. More precisely (see
Algorithm 1), the greedy method consists of iteratively choosing the explanation
that covers the most users and eliminating them for the next iteration. Once the
rule cover is computed, we can use it as a Top-N recommendation model. To do
this, we retain the N most frequent items among the items appearing in the set of
triggered rules by a user.

To measure the performance of this global model, we based our evaluation on
the metrics used in Section 4.1. The Results are provided in Figure 4 (SASRec)
and Figure 5 (CASER). Notice that we only report the performance of the models
based on KScore evaluation of explanations because it gives the best result. On
each radar plot, several models are represented: the global model (Algorithm 1)
based only on the SD-Map rules in red, the one using the SEPP rules in blue, and
in yellow the mixed model using the two types of rules. The perimeter with the
white vertices indicates the values of the original model.

We can observe that the rule-based models achieve performances similar to the
ones of CASER and SASRec, and even outperform them in some cases (on Adressa
and Foursquare for CASER, on Foursquare for SASRec). Regarding the mimicked
models, we notice that the SEPP-based global model outperforms the others
(SD-Map-based model, mixed-model) while imitating the SASRec recommendation
model. Meanwhile, for CASER, it appears that the combination of both SEPP and
SD-Map-based explanations allows to build a better model that performs similarly
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Algorithm 1 Global model: Explanations as recommender system.

Require: U the set of user sequences, E =
{
Eu → TN u , u ∈ U

}
the set of explanations, T

the type of explanations (either SD-Map or SEPP).
Ensure: R: the set of rules used to recommend items and the Top-N recommended items for

a user u.
function Select explanations(U , E, T )

S ← U
while S ̸= ∅ do

if T=SD-Map then
e← argmax(Xe→Ye)∈E |{u ∈ S | Xe ∈ Iu}|
S′ → {u ∈ S | Xe ∈ Iu}

else
e← argmax(Xe→Ye)∈E |{u ∈ S | Xe ⊑ u}|
S′ → {u ∈ S | Xe ⊑ u}

end if
R← R ∪ e
S ← X \ S′

end while
return R

end function
function Recommender system(u, R, T )

if T = SD-Map then
Ru ← {r ≡ Xr → Yr, r ∈ R | Xr ∈ Iu}

else
Ru ← {r ≡ Xr → Yr, r ∈ R | Xr ⊑ u}

end if
Yu ← {(y, f) | y ∈ Yr, with Xr → Yr ∈ Ru, and f = |r ∈ Ru, y ∈ Yr|}
return Top-N frequent items in Yu

end function

to the original model or even better. One also can observe that the mixed model
outperforms SD-Map-based model in most of the cases.

Table 15 reports the compression ratio (CR) resulting from the different global
models on each dataset. It reflects how well we manage to imitate the original
model with a relatively small and meaningful set of explanations (i.e. rules). The
higher the ratio the better. Also, one of the benefits worth mentioning of the mixed
global model is that it increases the compression rate by decreasing the number of
explanations on which it is based.

These experiments demonstrate the high quality of the explanations since it is
possible to build powerful global models based on them. These global models reach
similar performance or outperform the models they mimic. Furthermore, they are
small enough to be human-understandable and interpretable.

4.7 Examples

Figure 6 shows specific examples of explanations of SASRec Top-N recommenda-
tions. To show how our two explanatory approaches work under varied conditions
– whether or not the model succeeds in identifying the ground truth – we have
carefully chosen the examples with objective characteristics. The first example is
the one with a historic length between 2 and 6 items that maximizes the NDCG@5
value. Hence, SASRec performs well on this example and recommends SUPER
MARIO 3D LAND (NINTENDO 3DS game), a similar game to the ground truth
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Fig. 4: Radar plot of the performance values (Based on : AUC, MAP, NDCG@k,
HIT@k, Precision@k and Recall@k metrics) of the global models based on SASRec
on Adressa (top left), Foursquare (top right), ML50 (bottom left) and Video games
(bottom right).

one SUPER MARIO BROS. It also recommends three (03) video games related to
NINTENDO’s consoles (3DS and Wii) and two (02) other items related to XBOX
360 console. The explanations found by SD-Map are made of the last purchased
NINTENDO game by the user. SEPP found a sequence whose first item is related
to XBOX 360 and the two others are related to NINTENDO video games.

The second example is one where SASRec fails to identify ground truth items.
It has been chosen as the one that minimizes NDCG@5 among the examples with
length between 2 and 6. SASRec mainly recommends PlayStation 3 hardware
and video games. SD-Map explains these recommendations by isolating the two
PlayStation 3 video games. SEPP identifies that the user is interested in motoring
video games and that recently he turns to PlayStation. This shows that our methods
explain the recommendations made by SASRec and not the ground truth.

The third example is the one with maximum mean score on the Top-5 recom-
mended items. SASRec recommends PlayStation 3 war video games (Call of Duty:

Black Ops) and a joystick for this game console. SD-Map selects war video games
for PlayStation 3 among which a previous edition of Call Of Duty (World At War).



26 Mouloud Iferroudjene et al.

Fig. 5: Radar plot of the performance values (Based on : AUC, MAP, NDCG@k,
HIT@k, Precision@k and Recall@k metrics) of the global models based on CASER
on Adressa (top left), Foursquare (top right), ML50 (bottom left) and Video games
(bottom right).

SEPP identifies a sequence of games often bought together that includes an edition
of Uncharted, a video game that appears in the Top-N recommendation.

The fourth example is the one that minimizes the Infidelity among those that
maximize the Fidelity. We can notice that the items selected by both methods are
nearly identical. They highlight role-playing (Final Fantasy VII ) and fighting games
(Mortal Kombat) that appear to be an explanation of the Top-1 item (The Legend

of Zelda: Ocarina of Time), an adventure-style game.

The last example is the one with the best precision@5 and recall@5. Although
SASRec got a recall of 1 (perfect recommendation). SD-Map provides FINAL

FANTASY IX as explanation, that is relevant as 3 of the Top-5 recommendations
are related to this license. SEPP explains the recommendation by a sequence of
adventure-type games including two chapters (versions) of ZELDA game. Looking
closely at the latter, we can notice complementarity between the explanations
as SD-Map captured the name of the game and SEPP the user’s tendency (i.e
dynamic behavior) to play successive versions of the same game.
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RS Approach Policy Adressa Foursq ML50 Video games
S
A
S
R
ec

SD-Map SumScore 92.74% 80.45% 92.21% 54.07%
Kendall 92.41% 81.50% 91.93% 41.71%
KScore 92.46% 81.25% 91.65% 42.64%

KSBounded 92.45% 80.67% 91.84% 47.14%
SEPP SumScore 91.64% 69.21% 9.47% 13.92%

Kendall 91.19% 70.25% 10.72% 14.05%
KScore 91.88% 69.62% 9.57% 14.08%

KSBounded 91.64% 69.12% 8.54% 13.92%
SD-Map & SEPP SumScore 96.22% 89.84% 96.01% 79.26%

Kendall 95.81% 88.84% 95.96% 73.68%
KScore 96.07% 90.21% 95.78% 74.41%

KSBounded 96.22% 89.92% 95.92% 76.19%

C
A
S
E
R

SD-Map SumScore 93.64% 66.72% 77.30% 24.21%
Kendall 95.00% 72.19% 43.25% 30.71%
KScore 94.50% 58.61% 49.44% 19.64%

KSBounded 93.86% 58.20% 66.89% 18.29%
SEPP SumScore 94.46% 64.62% 15.48% 18.00%

Kendall 90.13% 67.96% 14.53% 8.00%
KScore 94.69% 65.79% 11.63% 15.69%

KSBounded 95.08% 66.79% 14.73% 17.85%
SD-Map & SEPP SumScore 97.22% 86.96% 71.67% 60.44%

Kendall 97.52% 87.95% 71.45% 60.68%
KScore 97.41% 85.54% 71.20% 58.33%

KSBounded 97.30% 85.92% 68.25% 58.59%

Table 15: Compression rate (CR) of the global models that mimic a recommendation
system; CR is the proportion reduction in the number of possible explanations
defined as (1 - #E’/#E) where #E and #E’ are, respectively, the number of
unique explanation before and after constructing the global model. In the case
of the mixed global model #E is equal to the sum of both SD-Map and SEPP
explanation (#E=#E(SD-Map)+#E(SEPP)). The best approach and policy for
each recommender system and each dataset is highlighted.

5 Conclusion

In this paper, we presented a method for explaining the Top-N recommendations
made by a recommender system. We used the recommendation history utilizing
subgroup discovery techniques to identify the operational data used for recommen-
dation. In general, this methodological approach to generating explanations based
on histories is independent of the model and has broad applicability.

We proposed to use two pattern languages, one time-agnostic, the other one
time-sensitive and studied four aggregation policies of the Top-N recommendation
values, i. e., the set of items.

For evaluating and assessing the proposed approach, we presented a set of
experiments performing a deep analysis of 2 state-of-the-art models constructed on
4 datasets. We presented an extensive discussion of our results in context. These
experiments reveal that the proposed approach provides local explanations based
on the user preferences (SD-Map) or on the order of actions performed by the
user (SEPP) if this order impacts the recommendation. We cannot conclude that
SD-Map provides better results than SEPP. Overall, SD-Map performs better than
SEPP with regard to several indicators (i. e., Improved⋆) but this only means that
local recommendations are explainable based on the user-preferences only for a large
proportion of users (RQ1 and RQ2). Interestingly, SEPP is complementary and
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Fig. 6: Explanation examples found in Video games dataset. Yellow stars highlight
accuracy in the recommendations, whereas red stars identify “good” recommenda-
tions (i.e., the related items are similar to the ground truth).

allows to improve the explanation reliability for users whose sequential dynamics
is a key factor of the recommendation. Further tests show that simultaneously
considering both SD-Map and SEPP leads to better explanation in term of fidelity
and infidelity with respectively average improvements of at least 6.84% and 6.21%
(RQ3). Our results also suggest that the KScore aggregation function is the most
promising function among the four functions we considered. Eventually, our experi-
ments highlight that it is also possible to provide global explanations of a model
based on a wisely selected set of local explanations. The identified explanations
are sufficiently precise to mimic the original recommender systems and to be used
as a model themselves (RQ4).

We believe that SD-Map and SEPP can support the explanations of Top-N
recommendation made by any recommender system that takes as input a user
history only. However, a number of potential limitations need to be considered for
future research to make these methods fully effective in practice for any type of
models.

First, our approach remains costly, especially if we want to explain a large
number of users. To overcome this limitation, the completeness must be relaxed
and some heuristic-based algorithms used (e.g., Beam-search or Monte-Carlo Tree
Search-based algorithms). Furthermore, we provide, in this paper, explanations for
each user in an independent way. We can imagine more global process to handle the
high number of users to explain (e.g., group users with similar recommendations
and/or with similar action histories).

Experiments suggest that for most of the users, SD-Map (i. e., user preferences)
is enough to explain the Top-N recommendations while SEPP (i. e., sequential
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dynamics) is the complementary method to consider for a non negligible part of
users. Our empirical study did not reveal why for some users the sequential aspect
does not affect the recommendation. This absence of justification is a limitation
which requires to investigate the item embedding built by the model to be overcame.
Further studies, which aims at characterizing how the items’ embedding is built
based on user preferences and the sequential dynamics, will need to be undertaken.

Eventually, SEPP and SD-Map make it possible to explain the Top-N recom-
mendations based only on the past user’s actions. Nevertheless, we believe that
these two methods can be extended to be applicable to any recommendation system.
Further interesting options concern exploiting additional information about the
time and the respective attributes of the item interactions as well as the user
information.
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A Appendix

Hit rate (Hit@N):

Hit@N =
1

|U |
∑
u∈U

∑
i∈GTu

1(Ri ≤ N)

|GTu|
.

where the indicator function 1(b) returns 1 if its argument b is True, 0 otherwise. Ri is the
ranking of the ground-truth item i. The HIT@N function returns the average number of times
the ground-truth item is ranked in the Top-N items. We compute HIT@5, HIT@10, HIT@25.

Normalized Discounted Cumulative Gain at position N (nDCG@N):

nDCG@N =
1

|U | ×N

∑
u∈U

∑
it∈GTu

1(Rit ≤ N)

log2(max(Rit + 2− t), 2)
,

The NDCG@k is a position-aware metric which assigns larger weights to higher positions. We
compute NDCG@5, NDCG@10, NDCG@25 and NDCG@50.

Area Under Curve (AUC):

AUC =
1

|U |
∑
u∈U

1

|GTu|
∑

it∈GTu

|I| −Rit − t

|I|
.

This measure calculates how high the ground-truth items of each user has been ranked in
average.

Precision at N (Precision@N):

Precision@N =
1

U

∑
u∈U

TNu ∩GTu

N
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Recall at N (Recall@N):

Recall@N =
1

U

∑
u∈U

TNu ∩GTu

|GTu|

Mean Average Precision (MAP):

MAP =
1

|U |
∑
u∈U

∑N
k=1 Precision@k × rel(k)

N

where rel(k) = 1 if the k-th item in TN belongs to GT , the ground Truth items of the user.

References

Atzmueller, 2015. Atzmueller, M. (2015). Subgroup Discovery. WIREs Data Mining and
Knowledge Discovery, 5(1):35–49.

Atzmueller and Lemmerich, 2009. Atzmueller, M. and Lemmerich, F. (2009). Fast Subgroup
Discovery for Continuous Target Concepts. In Proc. International Symposium on Methodolo-
gies for Intelligent Systems, volume 5722 of LNCS, pages 1–15, Berlin/Heidelberg, Germany.
Springer.

Atzmueller and Puppe, 2006. Atzmueller, M. and Puppe, F. (2006). SD-Map - A Fast Algo-
rithm for Exhaustive Subgroup Discovery. In Proc. PKDD, pages 6–17. Springer.

Falher et al., 2015. Falher, G. L., Gionis, A., and Mathioudakis, M. (2015). Where is the soho
of rome? measures and algorithms for finding similar neighborhoods in cities. In Proceedings
of the Ninth International Conference on Web and Social Media, ICWSM 2015, University
of Oxford, Oxford, UK, May 26-29, 2015, pages 228–237.

Fournier-Viger et al., 2017. Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., and
Thomas, R. (2017). A survey of sequential pattern mining. Data Science and Pattern
Recognition, 1(1):54–77.

Fürnkranz et al., 2020. Fürnkranz, J., Kliegr, T., and Paulheim, H. (2020). On cognitive
preferences and the plausibility of rule-based models. Mach. Learn., 109(4):853–898.

Gulla et al., 2017. Gulla, J. A., Zhang, L., Liu, P., Özgöbek, O., and Su, X. (2017). The
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